Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.888
Filter
1.
Mol Genet Genomics ; 299(1): 82, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196386

ABSTRACT

Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.


Subject(s)
Agrobacterium tumefaciens , Penicillium , Transformation, Genetic , Penicillium/genetics , Penicillium/pathogenicity , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/pathogenicity , Citrus/microbiology , Virulence/genetics , Mutation , Spores, Fungal/genetics , Spores, Fungal/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , DNA, Bacterial/genetics , Mutagenesis, Insertional , Genes, Fungal/genetics
2.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2882-2888, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041147

ABSTRACT

This study aims to evaluate the in vivo function of Fusarium oxysporum in Glycyrrhiza uralensis by salt tolerance,indoleacetic acid(IAA) production capacity, phosphate-dissolving capacity, and iron carrier production capacity. The stable genetic transformation system of the F. oxysporum was established by Agrobacterium tumefaciens-mediated genetic transformation( ATMT)technology, and the stability and staining efficiency of transformants were detected by the cloning of the marker gene green fluorescent protein(GFP) and the efficiency of ß-glucuronidase staining(GUS). Efficient and stable transformants were selected for restaining G. uralensis and evaluating its influence on the growth of the G. uralensis seedlings. The results show that F. oxysporum has good salt tolerance and could still grow on potato glucose agar(PDA) medium containing 7% sodium chloride, but the growth rate slows down with the increase in sodium chloride content in PDA medium. F. oxysporum has the function of producing indoleacetic acid, and the concentration of IAA in its fermentation broth is about 3. 32 mg · m L~(-1). In this study, the genetic transformation system of F. oxysporum is successfully constructed, and the ATMT system is efficient and stable. One transformant with both high staining efficiency and genetic stability is selected, and the restaining rate of the transformant in G. uralensis is 76. 92%, which could significantly improve the main root length of one-month-old G. uralensis seedlings and promote the growth and development of G. uralensis seedlings. The results of this study can lay the foundation for the development of biological bacterial fertilizer and the growth regulation of high-quality G. uralensis.


Subject(s)
Fusarium , Glycyrrhiza uralensis , Transformation, Genetic , Fusarium/genetics , Fusarium/growth & development , Fusarium/metabolism , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/microbiology , Glycyrrhiza uralensis/growth & development , Indoleacetic Acids/metabolism , Agrobacterium tumefaciens/genetics , Salt Tolerance/genetics
3.
Methods Mol Biol ; 2827: 223-241, 2024.
Article in English | MEDLINE | ID: mdl-38985274

ABSTRACT

Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.


Subject(s)
Agrobacterium tumefaciens , Bixaceae , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Bixaceae/genetics , Bixaceae/metabolism , Tissue Culture Techniques/methods , Plant Somatic Embryogenesis Techniques/methods , Gene Editing/methods , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
4.
Microb Cell Fact ; 23(1): 216, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080612

ABSTRACT

BACKGROUND: D-psicose 3-epimerase (DPEase) is a potential catalytic enzyme for D-psicose production. D-psicose, also known as D-allulose, is a low-calorie sweetener that has gained considerable attention as a healthy alternative sweetener due to its notable physicochemical properties. This research focused on an in-depth investigation of the expression of the constructed DPEase gene from Agrobacterium tumefaciens in Escherichia coli for D-psicose synthesis. Experimentally, this research created the recombinant enzyme, explored the optimization of gene expression systems and protein purification strategies, investigated the enzymatic characterization, and then optimized the D-psicose production. Finally, the produced D-psicose syrup underwent acute toxicity evaluation to provide scientific evidence supporting its safety. RESULTS: The optimization of DPEase expression involved the utilization of Mn2+ as a cofactor, fine-tuning isopropyl ß-D-1-thiogalactopyranoside induction, and controlling the induction temperature. The purification process was strategically designed by a nickel column and an elution buffer containing 200 mM imidazole, resulting in purified DPEase with a notable 21.03-fold increase in specific activity compared to the crude extract. The optimum D-psicose conversion conditions were at pH 7.5 and 55 °C with a final concentration of 10 mM Mn2+ addition using purified DPEase to achieve the highest D-psicose concentration of 5.60% (w/v) using 25% (w/v) of fructose concentration with a conversion rate of 22.42%. Kinetic parameters of the purified DPEase were Vmax and Km values of 28.01 mM/min and 110 mM, respectively, which demonstrated the high substrate affinity and efficiency of DPEase conversion by the binding site of the fructose-DPEase-Mn2+ structure. Strategies for maintaining stability of DPEase activity were glycerol addition and storage at -20 °C. Based on the results from the acute toxicity study, there was no toxicity to rats, supporting the safety of the mixed D-fructose-D-psicose syrup produced using recombinant DPEase. CONCLUSIONS: These findings have direct and practical implications for the industrial-scale production of D-psicose, a valuable rare sugar with a broad range of applications in the food and pharmaceutical industries. This research should advance the understanding of DPEase biocatalysis and offers a roadmap for the successful scale-up production of rare sugars, opening new avenues for their utilization in various industrial processes.


Subject(s)
Escherichia coli , Fructose , Recombinant Proteins , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Fructose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Agrobacterium tumefaciens , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/isolation & purification , Animals , Racemases and Epimerases/metabolism , Racemases and Epimerases/genetics , Rats , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
J Microbiol Methods ; 224: 106989, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996925

ABSTRACT

Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.


Subject(s)
Agrobacterium tumefaciens , Aspergillus niger , Transformation, Genetic , Aspergillus niger/genetics , Agrobacterium tumefaciens/genetics , Malus/microbiology , Drug Resistance, Fungal/genetics , Genetic Markers , Fungal Proteins/genetics , Plant Diseases/microbiology , Hygromycin B/pharmacology , Fruit/microbiology , Genes, Fungal/genetics
6.
Methods Mol Biol ; 2844: 33-44, 2024.
Article in English | MEDLINE | ID: mdl-39068330

ABSTRACT

Promoters are the genomic regions upstream of genes that RNA polymerase binds in order to initiate gene transcription. Understanding the regulation of gene expression depends on being able to identify promoters, because they are the most important component of gene expression. Agrobacterium tumefaciens (A. tumefaciens) strain C58 was the subject of this study with the goal of creating a machine learning-based model to predict promoters. In this study, nucleotide density (ND), k-mer, and one-hot were used to encode the promoter sequence. Support vector machine (SVM) on fivefold cross-validation with incremental feature selection (IFS) was used to optimize the generated features. These improved characteristics were then used to distinguish promoter sequences by feeding them into the random forest (RF) classifier. Tenfold cross-validation (CV) analysis revealed that the projected model has the ability to produce an accuracy of 84.22%.


Subject(s)
Agrobacterium tumefaciens , Artificial Intelligence , Promoter Regions, Genetic , Support Vector Machine , Agrobacterium tumefaciens/genetics , Computational Biology/methods , Algorithms
7.
Microb Pathog ; 193: 106787, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992510

ABSTRACT

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.


Subject(s)
Agrobacterium tumefaciens , Anti-Bacterial Agents , Metronidazole , Molecular Docking Simulation , Molecular Dynamics Simulation , Quorum Sensing , Agrobacterium tumefaciens/drug effects , Quorum Sensing/drug effects , Metronidazole/pharmacology , Metronidazole/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Gels/chemistry , Drug Synergism , Drug Liberation
8.
J Biosci Bioeng ; 138(3): 218-224, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997871

ABSTRACT

Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 µM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 µM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.


Subject(s)
Agrobacterium tumefaciens , Anti-Inflammatory Agents , Catechols , Fatty Alcohols , Glucosides , alpha-Glucosidases , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Fatty Alcohols/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Catechols/chemistry , Catechols/pharmacology , Catechols/metabolism , Glucosides/chemistry , Glucosides/pharmacology , Glucosides/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Solubility , Zingiber officinale/chemistry
9.
PLoS One ; 19(7): e0307590, 2024.
Article in English | MEDLINE | ID: mdl-39052566

ABSTRACT

Telomere resolvases are a family of DNA cleavage and rejoining enzymes that produce linear DNAs terminated by hairpin telomeres from replicated intermediates in bacteria that possess linear replicons. The telomere resolvase of Agrobacterium tumefaciens, TelA, has been examined at the structural and biochemical level. The N-terminal domain of TelA, while not required for telomere resolution, has been demonstrated to play an autoinhibitory role in telomere resolution, conferring divalent metal responsiveness on the reaction. The N-terminal domain also inhibits the competing reactions of hp telomere fusion and recombination between replicated telomere junctions. Due to the absence of the N-terminal domain from TelA/DNA co-crystal structures we produced an AlphaFold model of a TelA monomer. The AlphaFold model suggested the presence of two inhibitory interfaces; one between the N-terminal domain and the catalytic domain and a second interface between the C-terminal helix and the N-core domain of the protein. We produced mutant TelA's designed to weaken these putative interfaces to test the validity of the modeled interfaces. While our analysis did not bear out the details of the predicted interfaces the model was, nonetheless, extremely useful in guiding design of mutations that, when combined, demonstrated an additive activation of TelA exceeding 250-fold. For some of these hyperactive mutants stimulation of telomere resolution has also been accompanied by activation of competing reactions. However, we have also characterized hyperactive TelA mutants that retain enough autoinhibition to suppress the competing reactions.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Telomere , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/enzymology , Telomere/metabolism , Telomere/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Mutation , Models, Molecular
10.
Planta ; 260(1): 18, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837044

ABSTRACT

MAIN CONCLUSION: We have developed and optimized a rapid, versatile Agrobacterium-mediated transient expression system for cannabis seedlings that can be used in functional genomics studies of both hemp-type and drug-type cannabis. Cannabis (Cannabis sativa L.) holds great promise in the medical and food industries due to its diverse chemical composition, including specialized cannabinoids. However, the study of key genes involved in various biological processes, including secondary metabolite biosynthesis, has been hampered by the lack of efficient in vivo functional analysis methods. Here, we present a novel, short-cycle, high-efficiency transformation method for cannabis seedlings using Agrobacterium tumefaciens. We used the RUBY reporter system to monitor transformation results without the need for chemical treatments or specialized equipment. Four strains of A. tumefaciens (GV3101, EHA105, LBA4404, and AGL1) were evaluated for transformation efficiency, with LBA4404 and AGL1 showing superior performance. The versatility of the system was further demonstrated by successful transformation with GFP and GUS reporter genes. In addition, syringe infiltration was explored as an alternative to vacuum infiltration, offering simplicity and efficiency for high-throughput applications. Our method allows rapid and efficient in vivo transformation of cannabis seedlings, facilitating large-scale protein expression and high-throughput characterization studies.


Subject(s)
Agrobacterium tumefaciens , Cannabis , Genomics , Seedlings , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Seedlings/genetics , Genomics/methods , Cannabis/genetics , Cannabis/metabolism , Plants, Genetically Modified , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 121(25): e2319903121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870058

ABSTRACT

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Biofilms , Cyclic GMP , Pterins , Biofilms/growth & development , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/genetics , Pterins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteobacteria/metabolism , Proteobacteria/genetics , Molybdenum Cofactors , Periplasm/metabolism , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/genetics , Gene Expression Regulation, Bacterial
12.
Plant J ; 119(4): 2116-2132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923048

ABSTRACT

Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.


Subject(s)
Genetic Vectors , Plants, Genetically Modified , Transformation, Genetic , Zea mays , Zea mays/genetics , Zea mays/growth & development , Gene Editing/methods , Plant Proteins/genetics , Plant Proteins/metabolism , DNA, Bacterial/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Agrobacterium tumefaciens/genetics , Plasmids/genetics
13.
Microb Pathog ; 192: 106680, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729380

ABSTRACT

Biocontrol of phytopathogens involving the use of bioactive compounds produced by lactic acid bacteria (LAB), is a promising approach to manage many diseases in agriculture. In this study, a lactic acid bacterium designated YB1 was isolated from fermented olives and selected for its antagonistic activity against Verticillium dahliae (V. dahliae) and Agrobacterium tumefaciens (A. tumefaciens). Based on the 16S rRNA gene nucleotide sequence analysis (1565 pb, accession number: OR714267), the new isolate YB1 bacterium was assigned as Leuconostoc mesenteroides YB1 (OR714267) strain. This bacterium produces an active peptide "bacteriocin" called BacYB1, which was purified in four steps. Matrix-assisted lasers desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) based approach was performed to identify and characterize BacYB1. The exact mass was 5470.75 Da, and the analysis of the N-terminal sequence (VTRASGASTPPGTASPFKTL) of BacYB1 revealed no significant similarity to currently available antimicrobial peptides. The BacYB1 displayed a bactericidal mode of action against A. tumefaciens. The potentiel role of BacYB1 to supress the growth of A. tumefaciens was confirmed by live-dead cells viability assay. In pot experiments, the biocontrol efficacy of BacYB1 against V. dahliae wilt on young olive trees was studied. The percentage of dead plants (PDP) and the final mean symptomes severity (FMS) of plants articifialy infected by V. dahliae and treated with the pre-purified peptide BacYB1 (preventive and curative treatments) were significantly inferior to untreated plants. Biochemical analysis of leaves of the plants has shown that polyophenols contents were highly detected in plants infected by V. dahliae and the highest contents of chlorophyl a, b and total chlorophyll were recorded in plants treated with the combination of BacYB1 with the biofertilisant Humivital. BacYB1 presents a promising alternative for the control of Verticillium wilt and crown gall diseases.


Subject(s)
Agrobacterium tumefaciens , Bacteriocins , Leuconostoc mesenteroides , Olea , Plant Diseases , RNA, Ribosomal, 16S , Agrobacterium tumefaciens/metabolism , Bacteriocins/pharmacology , Bacteriocins/metabolism , Olea/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , RNA, Ribosomal, 16S/genetics , Leuconostoc mesenteroides/metabolism , Leuconostoc mesenteroides/genetics , Biological Control Agents/metabolism , Biological Control Agents/pharmacology , Verticillium/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Antibiosis , Phylogeny , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
14.
Methods Mol Biol ; 2775: 81-90, 2024.
Article in English | MEDLINE | ID: mdl-38758312

ABSTRACT

Transformation of foreign DNA into Cryptococcus species is a powerful tool for exploring gene functions in these human pathogens. Agrobacterium tumefaciens-mediated transformation (AtMT) has been used for the stable introduction of exogenous DNA into Cryptococcus for over two decades, being particularly impactful for insertional mutagenesis screens to discover new genes involved in fungal biology. A detailed protocol to conduct this transformation method is provided in the chapter. Scope for modifications and the benefits and disadvantages of using AtMT in Cryptococcus species are also presented.


Subject(s)
Agrobacterium tumefaciens , Cryptococcus , Transformation, Genetic , Cryptococcus/genetics , Agrobacterium tumefaciens/genetics , DNA, Bacterial/genetics , Genetic Vectors/genetics , Gene Transfer Techniques
15.
PLoS One ; 19(5): e0298299, 2024.
Article in English | MEDLINE | ID: mdl-38722945

ABSTRACT

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Subject(s)
Agrobacterium tumefaciens , Helianthus , Plants, Genetically Modified , Transformation, Genetic , Helianthus/genetics , Helianthus/microbiology , Helianthus/growth & development , Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Tissue Culture Techniques/methods , Plant Roots/microbiology , Plant Roots/genetics , Plant Roots/growth & development , Plant Breeding/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development
16.
Phytopathology ; 114(8): 1791-1801, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38809697

ABSTRACT

Dendrobium officinale soft rot is a widespread and destructive disease caused by Fusarium oxysporum that can seriously affect yield and quality. To better understand the fungal infection and colonization, we successfully created an F. oxysporum labeled with green fluorescent protein using the Agrobacterium tumefaciens-mediated transformation method. Transformants had varying fluorescence intensities, but their pathogenicity did not differ from that of the wild type. Fluorescence microscopy revealed that F. oxysporum primarily entered the aboveground portion of D. officinale through the leaf margin, stomata, or by direct penetration of the leaf surface. It then colonized the mesophyll and spread along its vascular bundles. D. officinale exhibited typical symptoms of decay and wilting at 14 days postinoculation, accompanied by a pronounced fluorescence signal in the affected area. The initial colonization of F. oxysporum in the subterranean region primarily involved attachment to the root hair and epidermis, which progressed to the medullary vascular bundle. At 14 days postinoculation, the root vascular bundles of D. officinale exhibited significant colonization by F. oxysporum. Macroconidia were also observed in black rot D. officinale tissue. In particular, the entire root was surrounded by a significant number of chlamydospore-producing F. oxysporum mycelia at 28 days postinoculation. This approach allowed for the visualization of the complete infection process of F. oxysporum and provided a theoretical foundation for the development of field control strategies.


Subject(s)
Agrobacterium tumefaciens , Dendrobium , Fusarium , Green Fluorescent Proteins , Plant Diseases , Plant Leaves , Plant Roots , Fusarium/genetics , Fusarium/physiology , Fusarium/pathogenicity , Fusarium/growth & development , Dendrobium/microbiology , Dendrobium/genetics , Green Fluorescent Proteins/genetics , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Leaves/microbiology , Agrobacterium tumefaciens/genetics , Microscopy, Fluorescence , Transformation, Genetic
17.
Curr Opin Microbiol ; 79: 102470, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569420

ABSTRACT

The governing principles and suites of genes for lateral elongation or incorporation of new cell wall material along the length of a rod-shaped cell are well described. In contrast, relatively little is known about unipolar elongation or incorporation of peptidoglycan at one end of the rod. Recent work in three related model systems of unipolar growth (Agrobacterium tumefaciens, Brucella abortus, and Sinorhizobium meliloti) has clearly established that unipolar growth in the Hyphomicrobiales order relies on a set of genes distinct from the canonical elongasome. Polar incorporation of envelope components relies on homologous proteins shared by the Hyphomicrobiales, reviewed here. Ongoing and future work will reveal how unipolar growth is integrated into the alphaproteobacterial cell cycle and coordinated with other processes such as chromosome segregation and cell division.


Subject(s)
Brucella abortus , Brucella abortus/growth & development , Brucella abortus/genetics , Brucella abortus/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/growth & development , Sinorhizobium meliloti/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/growth & development , Agrobacterium tumefaciens/metabolism , Cell Wall/metabolism , Peptidoglycan/metabolism , Cell Division
18.
J Microbiol Biotechnol ; 34(5): 1178-1187, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38563100

ABSTRACT

Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.


Subject(s)
Agrobacterium tumefaciens , Cordyceps , Transformation, Genetic , Uracil , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Cordyceps/genetics , Cordyceps/metabolism , Cordyceps/growth & development , Uracil/metabolism , Histidine/metabolism , Uridine/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Knockout Techniques , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Genes, Reporter , Mutation , Homologous Recombination
19.
Methods Mol Biol ; 2788: 227-241, 2024.
Article in English | MEDLINE | ID: mdl-38656517

ABSTRACT

The Coffea spp. plant is a significant crop in Latin America, Africa, and Asia, and recent advances in genomics and transcriptomics have opened possibilities for studying candidate genes and introducing new desirable traits through genetic engineering. While stable transformation of coffee plants has been reported using various techniques, it is a time-consuming and laborious process. To overcome this, transient transformation methods have been developed, which avoid the limitations of stable transformation. This chapter describes an ex vitro protocol for transient expression using A. tumefaciens-mediated infiltration of coffee leaves, which could be used to produce coffee plants expressing desirable traits against biotic and abiotic stresses, genes controlling biochemical and physiological traits, as well as for gene editing through CRISPR/Cas9.


Subject(s)
Agrobacterium tumefaciens , Coffea , Gene Editing , Plant Leaves , Plants, Genetically Modified , Transgenes , Coffea/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Agrobacterium tumefaciens/genetics , Gene Editing/methods , Transformation, Genetic , CRISPR-Cas Systems , Gene Expression Regulation, Plant
20.
Methods Mol Biol ; 2788: 209-226, 2024.
Article in English | MEDLINE | ID: mdl-38656516

ABSTRACT

Coffea arabica L. is a crucial crop globally, but its genetic homogeneity leads to its susceptibility to diseases and pests like the coffee berry borer (CBB). Chemical and cultural control methods are difficult due to the majority of the CBB life cycle taking place inside coffee beans. One potential solution is the use of the gene cyt1Aa from Bacillus thuringiensis as a biological insecticide. To validate candidate genes against CBB, a simple, rapid, and efficient transient expression system is necessary. This study uses cell suspensions as a platform for expressing the cyt1Aa gene in the coffee genome (C. arabica L. var. Catuaí) to control CBB. The Agrobacterium tumefaciens strain GV3101::pMP90 containing the bar and cyt1Aa genes are used to genetically transform embryogenic cell suspensions. PCR amplification of the cyt1Aa gene is observed 2, 5, and 7 weeks after infection. This chapter describes a protocol that can be used for the development of resistant varieties against biotic and abiotic stresses and CRISPR/Cas9-mediated genome editing.


Subject(s)
Agrobacterium tumefaciens , Coffea , Coffea/genetics , Agrobacterium tumefaciens/genetics , CRISPR-Cas Systems , Plants, Genetically Modified/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Gene Editing/methods , Hemolysin Proteins/genetics , Gene Expression Regulation, Plant , Transformation, Genetic , Coffee/genetics
SELECTION OF CITATIONS
SEARCH DETAIL