Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.591
Filter
1.
J Phys Chem B ; 128(28): 6853-6865, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38981040

ABSTRACT

This work presents a study on the effects of periodic boundary conditions (PBC) on the energetic/structural properties and hydrogen bond dynamics (HB) using molecular dynamics (MD) simulations of peptide membranes composed of alanine and histidine. Our results highlight that simulations using small surface areas for the peptide membrane may result in nonconvergent values for membrane properties, which are only observed in regions simulated at a certain distance from the PBCs. Specifically, regarding hydrogen bonds, a property pervasive in peptide membranes, our findings indicate a significant increase in the lifetime of these interactions, reaching values ∼19% higher when observed in structures free from PBCs. For peptide mobility in these nanomembranes, our results compare regions simulated directly under the influence of PBCs with regions free from these conditions, emphasizing greater mobility of amino acid psi/phi angles in the latter model.


Subject(s)
Hydrogen Bonding , Molecular Dynamics Simulation , Nanostructures , Peptides , Nanostructures/chemistry , Peptides/chemistry , Histidine/chemistry , Alanine/chemistry
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000589

ABSTRACT

Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.


Subject(s)
Alanine , MAP Kinase Kinase 1 , Molecular Dynamics Simulation , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Alanine/metabolism , Humans , Catalytic Domain , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Enzyme Activation/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry
3.
J Magn Reson ; 364: 107710, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38901172

ABSTRACT

Motionally averaged dipolar couplings are an important tool for understanding the complex dynamics of catalysts, polymers, and biomolecules. While there is a plethora of solid-state NMR pulse sequences available for their measurement, in can be difficult to gauge the methods' strengths and weaknesses. In particular, there has not been a comprehensive comparison of their performance in natural abundance samples, where 1H homonuclear dipolar couplings are important and the use of large MAS rotors may be required for sensitivity reasons. In this work, we directly compared some of the more common methods for measuring C-H dipolar couplings in natural abundance samples using L-alanine (L-Ala) and the N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) tripeptide as model systems. We evaluated their performance in terms of accuracy, resolution, sensitivity, and ease of implementation. We found that, despite the presence of 1H homonuclear dipolar interactions, all methods, with the exception of REDOR, were able to yield the reasonable dipolar coupling strengths for both mobile and static moieties. Of these methods, PDLF provides the most convenient workflow and precision at the expense of low sensitivity. In low-sensitivity cases, MAS-PISEMA and DIPSHIFT appear to be the better options.


Subject(s)
Alanine , Algorithms , Alanine/chemistry , Magnetic Resonance Spectroscopy/methods , N-Formylmethionine Leucyl-Phenylalanine/chemistry , Motion , Nuclear Magnetic Resonance, Biomolecular/methods
4.
J Phys Chem B ; 128(25): 6217-6231, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38877893

ABSTRACT

Molecular dynamics (MD) is a great tool for elucidating conformational dynamics of proteins and peptides in water at the atomistic level that often surpasses the level of detail available experimentally. Structure predictions, however, are limited by the accuracy of the underlying MD force field. This limitation is particularly stark in the case of intrinsically disordered peptides and proteins, which are characterized by solvent-accessible and disordered peptide regions and domains. Recent studies show that most additive MD force fields, including CHARMM36m, do not reproduce the intrinsic conformational distributions of guest amino acid residues x in cationic GxG peptides in water in line with experimental data. Positing that a lack of polarizability in additive MD force fields may be the culprit for the reported discrepancies, we here examine the conformational dynamics of guest glycine and alanine residues in cationic GxG peptides in water using two polarizable MD force fields, CHARMM Drude and AMOEBA. Our results indicate that while AMOEBA captures the experimental data better than CHARMM Drude, neither of the two polarizable force fields offers an improvement of the Ramachandran distributions of glycine and alanine residues in cationic GGG and GAG peptides, respectively, over CHARMM36m.


Subject(s)
Alanine , Glycine , Molecular Dynamics Simulation , Glycine/chemistry , Alanine/chemistry , Water/chemistry , Protein Conformation , Peptides/chemistry
5.
Int J Pharm ; 660: 124317, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38851410

ABSTRACT

Human immunodeficiency virus (HIV) continues to pose a serious threat to global health. Oral preexposure prophylaxis (PrEP), considered highly effective for HIV prevention, is the utilisation of antiretroviral (ARV) drugs before HIV exposure in high-risk uninfected individuals. However, ARV drugs are associated with poor patient compliance and pill fatigue due to their daily oral dosing. Therefore, an alternative strategy for drug delivery is required. In this work, two dissolving microneedle patches (MNs) containing either bictegravir (BIC) or tenofovir alafenamide (TAF) solid drug nanoparticles (SDNs) were developed for systemic delivery of a novel ARV regimen for potential HIV prevention. According to ex vivo skin deposition studies, approximately 11% and 50% of BIC and TAF was delivered using dissolving MNs, respectively. Pharmacokinetic studies in Sprague Dawley rats demonstrated that BIC MNs achieved a long-acting release profile, maintaining the relative plasma concentration above the 95% inhibitory concentration (IC95) for 3 weeks. For TAF MNs, a rapid release of drug and metabolism of TAF into TFV were obtained from the plasma samples. This work has shown that the proposed transdermal drug delivery platform could be potentially used as an alternative method to systemically deliver ARV drugs for HIV PrEP.


Subject(s)
Administration, Cutaneous , Alanine , Anti-HIV Agents , HIV Infections , Needles , Pre-Exposure Prophylaxis , Rats, Sprague-Dawley , Tenofovir , Animals , Tenofovir/administration & dosage , Tenofovir/pharmacokinetics , Tenofovir/analogs & derivatives , Alanine/pharmacokinetics , Alanine/administration & dosage , Alanine/chemistry , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Pre-Exposure Prophylaxis/methods , HIV Infections/prevention & control , Male , Adenine/administration & dosage , Adenine/pharmacokinetics , Adenine/analogs & derivatives , Adenine/chemistry , Rats , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Drug Liberation , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/chemistry , Pyridones/administration & dosage , Pyridones/pharmacokinetics , Drug Delivery Systems , Piperazines/pharmacokinetics , Piperazines/administration & dosage , Piperazines/chemistry , Cyclopropanes/administration & dosage , Cyclopropanes/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Amides/administration & dosage , Amides/pharmacokinetics , Amides/chemistry
6.
J Med Chem ; 67(12): 10293-10305, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38838188

ABSTRACT

To fully explore the potential of 18F-labeled l-fluoroalanine for imaging cancer and other chronic diseases, a simple and mild radiosynthesis method has been established to produce optically pure l-3-[18F]fluoroalanine (l-[18F]FAla), using a serine-derivatized, five-membered-ring sulfamidate as the radiofluorination precursor. A deuterated analogue, l-3-[18F]fluoroalanine-d3 (l-[18F]FAla-d3), was also prepared to improve metabolic stability. Both l-[18F]FAla and l-[18F]FAla-d3 were rapidly taken up by 9L/lacZ, MIA PaCa-2, and U87MG cells and were shown to be substrates for the alanine-serine-cysteine (ASC) amino acid transporter. The ability of l-[18F]FAla, l-[18F]FAla-d3, and the d-enantiomer, d-[18F]FAla-d3, to image tumors was evaluated in U87MG tumor-bearing mice. Despite the significant bone uptake was observed for both l-[18F]FAla and l-[18F]FAla-d3, the latter had enhanced tumor uptake compared to l-[18F]FAla, and d-[18F]FAla-d3 was not specifically taken up by the tumors. The enhanced tumor uptake of l-[18F]FAla-d3 compared with its nondeuterated counterpart, l-[18F]FAla, warranted the further biological investigation of this radiotracer as a potential cancer imaging agent.


Subject(s)
Deuterium , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Fluorine Radioisotopes/chemistry , Animals , Humans , Positron-Emission Tomography/methods , Deuterium/chemistry , Cell Line, Tumor , Mice , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Neoplasms/diagnostic imaging , Mice, Nude , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/chemical synthesis , Alanine/pharmacokinetics , Tissue Distribution
7.
J Am Chem Soc ; 146(20): 14213-14224, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739765

ABSTRACT

The formation of an amide bond is an essential step in the synthesis of materials and drugs, and in the assembly of amino acids to form peptides. The mechanism of this reaction has been studied extensively, in particular to understand how it can be catalyzed, but a representation capable of explaining all the experimental data is still lacking. Numerical simulation should provide the necessary molecular description, but the solvent involvement poses a number of challenges. Here, we combine the efficiency and accuracy of neural network potential-based reactive molecular dynamics with the extensive and unbiased exploration of reaction pathways provided by transition path sampling. Using microsecond-scale simulations at the density functional theory level, we show that this method reveals the presence of two competing distinct mechanisms for peptide bond formation between alanine esters in aqueous solution. We describe how both reaction pathways, via a general base catalysis mechanism and via direct cleavage of the tetrahedral intermediate respectively, change with pH. This result contrasts with the conventional mechanism involving a single pathway in which only the barrier heights are affected by pH. We show that this new proposal involving two competing mechanisms is consistent with the experimental data, and we discuss the implications for peptide bond formation under prebiotic conditions and in the ribosome. Our work shows that integrating deep potential molecular dynamics with path sampling provides a powerful approach for exploring complex chemical mechanisms.


Subject(s)
Molecular Dynamics Simulation , Peptides , Water , Water/chemistry , Peptides/chemistry , Density Functional Theory , Hydrogen-Ion Concentration , Alanine/chemistry , Amides/chemistry
8.
AAPS PharmSciTech ; 25(5): 123, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816624

ABSTRACT

Tenofovir alafenamide (TAF) is a BCS Class III compound and an oral pro-drug of Tenofovir (TFV) with limited oral bioavailability. The bioavailability of the oral intake increases with food as a result of the low stability of the active substance in the stomach. The reference drug is "Vemlidy® 25 mg Film Tablet", which contains 25 mg of TAF in "hemifumarate" form, is under patent protection until 15.08.2032 by Gilead, and so the "monofumarate" form was used in the present study. At first, a pilot study was conducted involving 12 subjects under fed conditions. The results of the pilot study revealed the test and reference products were not bioequivalent, as a result of insufficient statistical power and high inter-subject variability. Secondly, a physiologically based pharmacokinetic (PBPK) simulation was performed based on the pilot study results and literature data. Finally, the power of the design was increased and the pivotal study design was optimized into a four-period, full-replicated, cross-over study with 34 subjects under fed conditions and it was concluded that the test and reference products were bioequivalent. In conclusion, the present study proved the importance of a correct study design with higher statistical power for a BCS Class III compound with high variability, to present the pharmacokinetics.


Subject(s)
Alanine , Biological Availability , Cross-Over Studies , Tablets , Tenofovir , Therapeutic Equivalency , Tenofovir/pharmacokinetics , Tenofovir/administration & dosage , Tenofovir/analogs & derivatives , Humans , Pilot Projects , Alanine/pharmacokinetics , Alanine/chemistry , Adult , Male , Administration, Oral , Young Adult , Adenine/analogs & derivatives , Adenine/pharmacokinetics , Adenine/administration & dosage , Prodrugs/pharmacokinetics , Prodrugs/administration & dosage
9.
Org Lett ; 26(18): 3991-3996, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38691578

ABSTRACT

Peptide modification by C(sp3)-H functionalization of residues at the internal positions remains underdeveloped due to the inhibitory effect of backbone amides. In this study, using histidine (His) as an endogenous directing group, we developed a novel method for the ß-C(sp3)-H functionalization of alanine (Ala) at diverse positions of peptides. Through this approach, a wide range of linear peptides were modified on the side-chain of Ala adjacent to His to afford the functionalized peptides in moderate to good yield and excellent position selectivity. Furthermore, conjugation of peptides with functional molecules such as glucuronide, oleanolic acid, dipeptide, and fluorophore derivatives was achieved.


Subject(s)
Alanine , Histidine , Peptides , Alanine/chemistry , Histidine/chemistry , Peptides/chemistry , Molecular Structure
10.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695891

ABSTRACT

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Subject(s)
Alanine , Asparagine , Maillard Reaction , Pyrazines , Volatile Organic Compounds , Pyrazines/chemistry , Alanine/chemistry , Asparagine/chemistry , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry
11.
Carbohydr Res ; 540: 109139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728964

ABSTRACT

The chemistry of N,N-diglycated amino acids remains unexplored due to their transient nature in the Maillard reaction. Their increased reactivity is attributed to the presence of high concentrations of open ring forms in at least one of their sugar moieties. The N,N-diglycated alanine derivatives were generated in situ via dissociation from their stable precursors the bis[N,N-diglycated alanine]iron(II) complexes, in the alanine/glucose/FeCl2 model system heated at 110 °C for 2 h. The thermal degradations of these complexes were followed in the reaction mixture, using isotope-labelled reactants, such as [13C-3] alanine and [13C-U] glucose, and ESI/qTOF/MS analysis. The N,N-diglycated amino acids exhibited a unique and characteristic chemical interaction between the neighbouring sugar moieties generating hitherto unknown heterocyclic moieties. The origin of these products was tracked by identifying ions incorporating one C-3 atom from alanine and between seven to 12 carbon atoms from the sugar moieties in the same structure. Temperature-dependent FTIR spectra of di-glycated alanine generated through ball milling provided further evidence for their reactivity.


Subject(s)
Alanine , Alanine/chemistry , Glycosylation , Maillard Reaction , Glucose/chemistry
12.
Bioorg Med Chem Lett ; 107: 129794, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735344

ABSTRACT

Chem-KVL is a tandem repeating peptide, with 14 amino acids that was modified based on a short peptide from a fragment of the human host defense protein chemerin. Chem-KVL increases cationicity and hydrophobicity and shows broad-spectrum antibacterial activity. To determine the molecular determinants of Chem-KVL and whether staple-modified Chem-KVL would improve antibacterial activity and protease stability or decrease cytotoxicity, we combined alanine and stapling scanning, and designed a series of alanine and staple-derived Chem-KVL peptides, termed Chem-A1 to Chem-A14 and SCL-1 to SCL-7. We next examined their antibacterial activity against several gram-positive and gram-negative bacteria, their proteolytic stability, and their cytotoxicity. Ala scanning of Chem-KVL suggested that both the positively charged residues (Lys and Arg) and the hydrophobic residues (Lue and Val) were critical for the antibacterial activities of Chem-KVL peptide. Of note, Chem-A4 was able to remarkably inhibit the growth of gram-positive and gram-negative bacteria when compared to the original peptide. And the antibacterial activities of stapled SCL-4 and SCL-7 were several times higher than those of the linear peptide against gram-positive and gram-negative bacteria. Stapling modification of peptides resulted in increased helicity and protein stability when compared with the linear peptide. These stapled peptides, especially SCL-4 and SCL-7, may serve as the leading compounds for further optimization and antimicrobial therapy.


Subject(s)
Alanine , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects , Alanine/chemistry , Alanine/pharmacology , Humans , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/chemical synthesis , Structure-Activity Relationship , Mutation , Amino Acid Sequence
13.
Org Lett ; 26(19): 4127-4131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38718303

ABSTRACT

Hybrid genome-mining/15N-NMR was used to target compounds containing piperazate (Piz) residues, leading to the discovery of caveamides A (1) and B (2) from Streptomyces sp. strain BE230, isolated from New Rankin Cave (Missouri). Caveamides are highly dynamic molecules containing an unprecedented ß-ketoamide polyketide fragment, two Piz residues, and a new N-methyl-cyclohexenylalanine residue. Caveamide B (2) exhibited nanomolar cytotoxicity against several cancer cell lines and nanomolar antimicrobial activity against MRSA and E. coli.


Subject(s)
Escherichia coli , Methicillin-Resistant Staphylococcus aureus , Streptomyces , Humans , Molecular Structure , Streptomyces/chemistry , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Alanine/chemistry , Alanine/pharmacology , Alanine/analogs & derivatives , Drug Screening Assays, Antitumor , Peptides/chemistry , Peptides/pharmacology , Peptides/isolation & purification , Cell Line, Tumor , Pyridazines
14.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690769

ABSTRACT

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
15.
Org Biomol Chem ; 22(23): 4625-4636, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38804977

ABSTRACT

Both natural and unnatural amino acids, peptides, and proteins are widely recognized as green and sustainable organic chemicals, not only in the field of biological sciences but also in materials science. It has been discovered that artificially designed unnatural peptides and proteins exhibit advanced properties in medical and materials science. In this context, the development of precise chemical modification methods for amino acids and peptides is acknowledged as an important research project in the field of organic synthesis. While a wide variety of modification methods for amino acid residues have been developed to artificially modify peptides and proteins, the representative methods for modifying amino acid residues have traditionally relied on the nucleophilic properties of the functionalities on the residues. In this context, the development of different modification methods using an umpolung-like approach by utilizing the electrophilic nature of amino acid derivatives appears to be very attractive. One of the promising electrophilic amino acid compounds for realizing important modification methods of amino acid derivatives is α,ß-dehydroamino acids, which possess an α,ß-unsaturated carbonyl structure. This review article summarizes methods for the preparation of α,ß-dehydroamino acids derived from natural and unnatural amino acid derivatives. The utilities of α,ß-dehydroamino acid derivatives, including peptides and proteins containing dehydroalanine units, in bioconjugations are also discussed.


Subject(s)
Amino Acids , Amino Acids/chemistry , Amino Acids/chemical synthesis , Proteins/chemistry , Proteins/chemical synthesis , Materials Science , Peptides/chemistry , Peptides/chemical synthesis , Green Chemistry Technology , Chemistry Techniques, Synthetic/methods , Alanine/chemistry , Alanine/analogs & derivatives , Alanine/chemical synthesis
16.
Biochemistry ; 63(12): 1569-1577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38813769

ABSTRACT

The Escherichia coli cysteine desulfurase SufS (EcSufS) is a dimeric, PLP-dependent enzyme responsible for sulfur mobilization in the SUF Fe-S cluster bioassembly pathway. The enzyme uses cysteine as a sulfur source and generates alanine and a covalent persulfide located on an active site of cysteine. Optimal in vitro activity of EcSufS requires the presence of the transpersulfurase protein, EcSufE, and a strong reductant. Here, presteady-state and single-turnover kinetics are used to investigate the mechanism of EcSufS activation by EcSufE. In the absence of EcSufE, EcSufS exhibits a presteady-state burst of product production with an amplitude of ∼0.4 active site equivalents, consistent with a half-sites reactivity. KinTek Explorer was used to isolate the first turnover of alanine formation and fit the data with a simplified kinetic mechanism with steps for alanine formation (k3) and a net rate constant for the downstream steps (k5). Using this treatment, microscopic rate constants of 2.3 ± 0.5 s-1 and 0.10 ± 0.01 s-1 were determined for k3 and k5, respectively. The inclusion of EcSufE in the reaction results in a similar rate constant for k3 but induces a 10-fold enhancement of k5 to 1.1 ± 0.2 s-1, such that both steps are partially rate-determining. The most likely downstream step where EcSufE could exert influence on EcSufS activity is the removal of the persulfide intermediate. Importantly, this step appears to serve as a limiting feature in the half-sites activity such that activating persulfide transfer allows for rapid shifting between active sites. Single-turnover assays show that the presence of EcSufE slightly slowed the rates of alanine-forming steps, suggesting it does not activate steps in the desulfurase half reaction.


Subject(s)
Carbon-Sulfur Lyases , Escherichia coli Proteins , Escherichia coli , Sulfides , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Sulfides/metabolism , Sulfides/chemistry , Escherichia coli/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Kinetics , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/chemistry , Alanine/metabolism , Alanine/chemistry , Catalytic Domain , Cysteine/metabolism , Cysteine/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry
17.
Org Lett ; 26(22): 4767-4772, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38780227

ABSTRACT

A method for introducing a range of phosphonates into oligopeptides through a Michael addition reaction between dehydroalanine and phosphite is presented. The method offers a mild, cheap, and straightforward approach to peptide phosphorylation that has potential applications in chemical biology and medicinal chemistry. Moreover, the introduction of a phosphonate group into short antibacterial peptides is described to demonstrate its utility, leading to the discovery of phosphonated antibacterial peptides with potent broad-spectrum antibacterial activity.


Subject(s)
Alanine , Anti-Bacterial Agents , Oligopeptides , Organophosphonates , Phosphites , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Oligopeptides/chemistry , Phosphites/chemistry , Molecular Structure , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Alanine/chemistry , Alanine/analogs & derivatives , Microbial Sensitivity Tests , Phosphorylation
18.
J Phys Chem B ; 128(22): 5310-5319, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38806061

ABSTRACT

Every residue on a protein can be characterized by its interaction with water, in lack or in excess, as water is the matrix of biological systems. Infrared spectroscopy and the implementation of local azidohomoalanine (AHA) probes allow us to move beyond an ensemble or surface-driven conceptualization of water behavior and toward a granular, site-specific picture. In this paper, we examined the role of crowding in modulating both global and local behavior on the ß-hairpin, TrpZip2 using a combination of Fourier-transform infrared spectroscopy (FTIR) spectroscopy, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics simulations. We found that, at the amino acid level, crowding drove dehydration of both sheet and turn peptide sites as well as free AHA. However, the subpicosecond dynamics showed highly individualized responses based on the local environment. Interestingly, while steady-state FTIR measurements revealed similar responses at the amino-acid level to hard versus soft crowding (dehydration), we found that PEG and glucose had opposite stabilizing and destabilizing effects on the protein secondary structure, emphasizing an important distinction in understanding the impact of crowding on protein structure as well as the role of crowding across length scales.


Subject(s)
Alanine , Molecular Dynamics Simulation , Water , Alanine/chemistry , Alanine/analogs & derivatives , Water/chemistry , Spectroscopy, Fourier Transform Infrared , Protein Structure, Secondary , Glucose/chemistry
19.
Molecules ; 29(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675600

ABSTRACT

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Subject(s)
Alanine , Alanine/analogs & derivatives , Phenazines , Phenazines/chemistry , Phenazines/pharmacology , Phenazines/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Phytophthora/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Phloem/metabolism , Phloem/drug effects , Ascomycota/drug effects , Ascomycota/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Drug Design , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis
20.
J Phys Chem B ; 128(16): 3856-3869, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606880

ABSTRACT

We have studied in silico the effect of proline, a model cosolvent, on local and global friction coefficients in (un)folding of several typical alanine-based α-helical peptides. Local friction is related to dwell times of a single, ensemble-averaged hydrogen bond (HB) within each peptide. Global friction is related to energy dissipated in a series of configurational changes of each peptide experienced by increasing the number of HBs during folding. Both of these approaches are important in relation to future atomic force microscopic-based measurements of internal friction via force-clamp single-molecule force spectroscopy. Molecular dynamics (MD) simulations for six peptides, namely, ALA5, ALA8, ALA15, ALA21, (AAQAA)3, and H2N-GN(AAQAA)2G-COONH2, have been conducted at 2 and 5 M proline solutions in water. Using previously obtained MD data for these peptides in pure water as well as upgraded theoretical models, we obtained variations of local and global internal friction coefficients as a function of solution viscosity. The results showed the substantial role of proline in stabilizing the folded state and slowing the overall folding dynamics. Consequently, larger friction coefficients were obtained at larger viscosities. The local and global internal friction, i.e., respective, friction coefficients approximated to zero viscosity, was also obtained. The evolution of friction coefficients with viscosity was weakly dependent on the number of concurrent folding pathways but was rather dominated by a stabilizing effect of proline on the folded states. Obtained values of local and global internal friction showed qualitatively similar results and a clear dependency on the structure of the studied peptide.


Subject(s)
Molecular Dynamics Simulation , Peptides , Proline , Protein Folding , Proline/chemistry , Peptides/chemistry , Protein Conformation, alpha-Helical , Alanine/chemistry , Hydrogen Bonding , Friction
SELECTION OF CITATIONS
SEARCH DETAIL