Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.333
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063136

ABSTRACT

A method for the reduction of aldehydes with pinacolborane catalyzed by pincer cobalt complexes based on a triazine backbone is developed in this paper. The presented methodology allows for the transformation of several aldehydes bearing a wide range of electron-withdrawing and electron-donating groups under mild conditions. The presented procedure allows for the direct one-step hydrolysis of the obtained intermediates to the corresponding primary alcohols. A plausible reaction mechanism is proposed.


Subject(s)
Alcohols , Aldehydes , Cobalt , Oxidation-Reduction , Cobalt/chemistry , Aldehydes/chemistry , Catalysis , Alcohols/chemistry , Molecular Structure , Boranes/chemistry
2.
Molecules ; 29(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39064829

ABSTRACT

The fermentation process has a significant impact on the aromatic profile of wines, particularly in relation to the difference in fermentation matrix caused by grape varieties. This study investigates the leaching and evolution patterns of aroma compounds in Vitis vinifera L. Marselan and Merlot during an industrial-scale vinification process, including the stages of cold soak, alcohol fermentation, malolactic fermentation, and one-year bottle storage. The emphasis is on the differences between the two varieties. The results indicated that most alcohols were rapidly leached during the cold soak stage. Certain C6 alcohols, terpenes, and norisoprenoids showed faster leaching rates in 'Marselan', compared to 'Merlot'. Some branched chain fatty-acid esters, such as ethyl 3-methylbutyrate, ethyl 2-methylbutyrate, and ethyl lactate, consistently increased during the fermentation and bottling stages, with faster accumulation observed in 'Marselan'. The study combines the Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) model based on odor activity values to elucidate the accumulation of these ethyl esters during bottle storage, compensating for the reduction in fruity aroma resulting from decreased levels of (E)-ß-damascenone. The 'Marselan' wine exhibited a more pronounced floral aroma due to its higher level of linalool, compared to the 'Merlot' wine. The study unveils the distinctive variation patterns of aroma compounds from grapes to wine across grape varieties. This provides a theoretical framework for the precise regulation of wine aroma and flavor, and holds significant production value.


Subject(s)
Fermentation , Odorants , Vitis , Volatile Organic Compounds , Wine , Vitis/chemistry , Wine/analysis , Odorants/analysis , Volatile Organic Compounds/analysis , Fruit/chemistry , Alcohols/analysis , Terpenes/analysis , Gas Chromatography-Mass Spectrometry
3.
Methods Mol Biol ; 2816: 129-138, 2024.
Article in English | MEDLINE | ID: mdl-38977594

ABSTRACT

Phospholipase D (PLD) is an enzyme with many functions, one of which is the synthesis of phosphatidic acid (PA), a molecule with a myriad of effects on various organ systems and processes. These numerous roles make it hard to understand the true action of PA in cellular and bodily processes. Imaging PLD activity is one way to better understand the synthesis of PA and start to elucidate its function. However, many of the current imaging techniques for PLD come with limitations. This chapter presents a thorough methodology of a new imaging technique for PLD activity with clickable alcohols via transphosphatidylation (IMPACT) and Real-Time IMPACT (RT-IMPACT) that takes advantage of clickable chemistry to overcome current limitations. Using strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA), and the synthesis of various organic compounds, this chapter will explain a step-by-step procedure of how to perform the IMPACT and RT-IMPACT method(s).


Subject(s)
Alcohols , Click Chemistry , Phospholipase D , Phospholipase D/metabolism , Phospholipase D/chemistry , Click Chemistry/methods , Alcohols/chemistry , Alcohols/metabolism , Cycloaddition Reaction , Humans , Phosphatidic Acids/metabolism , Phosphatidic Acids/chemistry , Azides/chemistry , Molecular Imaging/methods , Alkynes/chemistry
4.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000077

ABSTRACT

Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.


Subject(s)
Electrons , Alkylation , Alcohols/chemistry , Catalysis , Hydrocarbons, Aromatic/chemistry
5.
Environ Sci Pollut Res Int ; 31(33): 45847-45861, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976191

ABSTRACT

Recently, alcohol-based draw solute (DS), i.e., alcohol with water, is one of the trending research topics in forward osmosis (FO) because of its performance and ease of regeneration. Nevertheless, the higher reverse solute flux (RSF) of the alcohol-based DS hinders its commercialization in water and wastewater treatment applications. This research aims to minimize the RSF of the alcohol-based DS in FO by investigating the possibility of using alcohol-alcohol-based draw solutes for the first time. Three alcohol-alcohol-based draw solutions, namely, (1) E70 + IPA30 (ethanol: 70% + isopropanol: 30%), (2) E40 + IPA60 (ethanol: 40% + isopropanol: 60%), and (3) E10 + IPA90 (ethanol: 10% + isopropanol: 90%), were prepared and the properties (including osmolality, shear stress, and viscosity) of the DS were first investigated followed by the parametric investigation (concerning temperature and concentration). The results were further analyzed with the fixed-point iterative method in MATLAB to obtain the performance parameters. Results reveal that the E10 + IPA90 mixture yields a lower RSF of 40.62 g/m2/h and specific reverse solute flux of 3.78 g/L with a considerably good water flux and recovery percentage of 11.47 LMH and 26.29%, respectively, as compared to other DS E70 + IPA30 and E40 + IPA60 at 25 °C. Thus, E10 + IPA90 is recommended as a potential candidate to be used as a DS in FO.


Subject(s)
Osmosis , Water Purification , Water Purification/methods , Alcohols/chemistry , Wastewater/chemistry
6.
Appl Environ Microbiol ; 90(7): e0055724, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38953658

ABSTRACT

Klebsiella pneumoniae can enter a viable but nonculturable (VBNC) state to survive in unfavorable environments. Our research found that high-, medium-, and low-alcohol-producing K. pneumoniae strains are associated with nonalcoholic fatty liver disease. However, the presence of the three Kpn strains has not been reported in the VBNC state or during resuscitation. In this study, the effects of different strains, salt concentrations, oxygen concentrations, temperatures, and nutrients in K. pneumoniae VBNC state were evaluated. The results showed that high-alcohol-producing K. pneumoniae induced a slower VBNC state than medium-alcohol-producing K. pneumoniae, and low-alcohol-producing K. pneumoniae. A high-salt concentration and micro-oxygen environment accelerated the loss of culturability. Simultaneously, both real-time quantitative PCR and droplet digital PCR were developed to compare the quantitative comparison of three Kpn strain VBNC states by counting single-copy gene numbers. At 22°C or 37°C, the number of culturable cells decreased significantly from about 108 to 105-106 CFU/mL. In addition, imipenem, ciprofloxacin, polymyxin, and phiW14 inhibited cell resuscitation but could not kill VBNC-state cells. These results revealed that the different environments evaluated play different roles in the VBNC induction process, and new effective strategies for eliminating VBNC-state cells need to be further studied. These findings provide a better understanding of VBNC-state occurrence, maintenance, detection, and absolute quantification, as well as metabolic studies of resuscitation resistance and ethanol production.IMPORTANCEBacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.


Subject(s)
Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Microbial Viability/drug effects , Anti-Bacterial Agents/pharmacology , Temperature , Alcohols/metabolism , Alcohols/pharmacology
7.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928142

ABSTRACT

In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair-π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena.


Subject(s)
Alcohols , Alcohols/chemistry , Perylene/chemistry , Perylene/analogs & derivatives , Volatile Organic Compounds/chemistry , Halogens/chemistry , Magnetite Nanoparticles/chemistry , Quantum Theory
8.
J Chromatogr A ; 1729: 465036, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38843573

ABSTRACT

In this work, a microchip gas chromatography (GC) column assembly utilizing a three-dimensional (3D) printed micro oven and a flexible stainless steel capillary column was developed. The assembly's performance and separation capabilities were characterized. The key components include a 3D printed aluminum plate (7.50 × 7.50 × 0.16 cm) with a 3-meter-long circular spiral channel, serving as the oven, and the column coiled on the channel with an inner diameter of 320 µm and a stationary phase of OV-1. A heating ceramic plate was affixed on the opposite side of the plate. The assembly weighed 40.3 g. The design allows for easy disassembly, or stacking of heating devices and columns, enabling flexibility in adjusting column length. When using n-C13 as the test analyte at 140 °C, a retention factor (k) was 8.5, and 7797 plates (2599 plates/m) were obtained. The assembly, employing resistance heating, demonstrated effective separation performance for samples containing alkanes, aromatics, alcohols and ketones, with good reproducibility. The reduction in theoretical plates compared to oven heating was only 2.95 %. In the boiling point range of C6 to C18, rapid temperature programming (120 °C/min) was achieved with a power consumption of 119.512 W. The assembly was successfully employed to separate benzene series compounds, gasoline and volatile organic compounds (VOCs), demonstrating excellent separation performance. This innovative design addresses the challenges of the complexity and low repeatability of the fabrication process and the high cost associated with microchip columns. Furthermore, its versatility makes it suitable for outdoor analysis applications.


Subject(s)
Printing, Three-Dimensional , Stainless Steel , Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Stainless Steel/chemistry , Equipment Design , Reproducibility of Results , Alkanes/analysis , Alkanes/isolation & purification , Alkanes/chemistry , Alcohols/analysis , Alcohols/chemistry , Alcohols/isolation & purification
9.
Langmuir ; 40(27): 14057-14065, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38935825

ABSTRACT

In spite of the widespread use of alkanols as penetration enhancers, their effect on vesicular formulations remains largely unexplored. These can affect the stability and integrity of the phospholipid bilayers. In this study, we have investigated the interaction of linear (ethanol, butanol, hexanol, octanol) and branched alkanols (t-amylol and t-butanol) with three phospholipids (soya lecithin, SL; soy L-α-phosphatidylcholine, SPC; and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC). Thermodynamic and structural aspects of these interactions were studied as a function of the alkanol concentration and chain length. Our interpretations are based on isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) experiments. We observed one-site interactions wherein hydroxyl and acyl groups interacted with the polar and nonpolar regions of the phospholipid, respectively. The stability and structural integrity of bilayers appeared to be dependent upon (a) the hydrocarbon chain length and concentration of alcohols, and (b) the degree of unsaturation in the phospholipid molecule. We found that these interactions triggered a reduction in the enthalpy which was compensated by increased entropy, keeping free energy negative. Drop in enthalpy indicates reversible disordering of the bilayer which enables the diffusion of alcohol without triggering destabilization. Ethanol engaged predominantly with the interface, and it resulted in higher enthalpic changes. Interactions became increasingly unfavorable with longer alcohols - a cutoff point was recorded with hexanol. The overall sequence of membrane disordering capability was recorded as follows: ethanol < butanol < octanol < hexanol. Octanol's larger size restricted its penetration in the bilayer, and hence it caused less enthalpic changes relative to hexanol. This could also be verified from the trends in the area ratio of these vesicles obtained from the DLS data. Branched alkanols displayed a lower binding affinity with the phospholipids relative to their linear counterparts. These data are useful while contemplating the inclusion of short-chain alcohols as penetration enhancers in phospholipid vesicles.


Subject(s)
Lipid Bilayers , Phospholipids , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Phospholipids/chemistry , Alcohols/chemistry , Thermodynamics , Membrane Fluidity
10.
Int J Biol Macromol ; 273(Pt 2): 133007, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857729

ABSTRACT

Heteroatom-doped porous carbon-based materials with high surface area compared to their metal-based homologs are considered environmentally friendly and ideal catalysts for organic reactions. In this paper, a new method for the convenient fabrication, cost-effective, and high efficiency of nitrogen/selenium co-doped porous carbon-based catalysis (marked as N/SePC-T) was designed. The N/SePC-T catalysts were created from the direct pyrolysis of a eutectic solvent containing choline chloride/urea as the nitrogen-rich carbon source, selenium dioxide as a source of heteroatom and chitosan as a secondary carbon source in different temperatures (T). The efficacy of the carbonization temperature on the pore structure, morphology, and catalytic activity of the N/SePC-T materials was investigated and displayed, the N/SePC-900 (having a surface area of 562.01 m2/g and total pore volume of 0.2351 cm3 g-1) has the best performance. The morphology, structure, and physicochemical properties of N/SePC-900 were characterized using various analyses including XRD, TEM, TGA, FE-SEM, EDX, FT-IR, XPS, and Raman. The optimized N/SePC-900 catalyst indicated excellent catalytic performance in the oxidation of benzylalcohols to corresponding aldehydes in very mild conditions.


Subject(s)
Alcohols , Carbon , Chitosan , Deep Eutectic Solvents , Nitrogen , Oxidation-Reduction , Selenium , Chitosan/chemistry , Catalysis , Porosity , Carbon/chemistry , Nitrogen/chemistry , Alcohols/chemistry , Selenium/chemistry , Deep Eutectic Solvents/chemistry , Green Chemistry Technology , Solvents/chemistry
11.
Nature ; 631(8022): 789-795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843825

ABSTRACT

The ability to tame high-energy intermediates is important for synthetic chemistry, enabling the construction of complex molecules and propelling advances in the field of synthesis. Along these lines, carbenes and carbenoid intermediates are particularly attractive, but often unknown, high-energy intermediates1,2. Classical methods to access metal carbene intermediates exploit two-electron chemistry to form the carbon-metal bond. However, these methods are usually prohibitive because of reagent safety concerns, limiting their broad implementation in synthesis3-6. Mechanistically, an alternative approach to carbene intermediates that could circumvent these pitfalls would involve two single-electron steps: radical addition to metal to forge the initial carbon-metal bond followed by redox-promoted α-elimination to yield the desired metal carbene intermediate. Here we realize this strategy through a metallaphotoredox platform that exploits iron carbene reactivity using readily available chemical feedstocks as radical sources and α-elimination from six classes of previously underexploited leaving groups. These discoveries permit cyclopropanation and σ-bond insertion into N-H, S-H and P-H bonds from abundant and bench-stable carboxylic acids, amino acids and alcohols, thereby providing a general solution to the challenge of carbene-mediated chemical diversification.


Subject(s)
Methane , Oxidation-Reduction , Methane/analogs & derivatives , Methane/chemistry , Carboxylic Acids/chemistry , Alcohols/chemistry , Iron/chemistry , Catalysis , Amino Acids/chemistry , Cyclopropanes/chemistry , Cyclopropanes/chemical synthesis , Carbon/chemistry
12.
Int J Biol Macromol ; 274(Pt 1): 133264, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901517

ABSTRACT

Chiral alcohols are essential building blocks of numerous pharmaceuticals and fine chemicals. Aldo-keto reductases (AKRs) constitute a superfamily of oxidoreductases that catalyze the reduction of aldehydes and ketones to their corresponding alcohols using NAD(P)H as a coenzyme. Knowledge about the crucial roles of AKRs immobilization in the biocatalytic synthesis of chiral alcohols is expanding. Herein, we reviewed the characteristics of various AKRs immobilization approaches, the applications of different immobilization materials, and the prospects of continuous flow bioreactor construction by employing these immobilized biocatalysts for synthesizing chiral alcohols. Finally, the opportunities and ongoing challenges for AKR immobilization are discussed and the outlook for this emerging area is analyzed.


Subject(s)
Alcohols , Aldo-Keto Reductases , Biocatalysis , Enzymes, Immobilized , Aldo-Keto Reductases/metabolism , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/chemistry , Alcohols/chemistry , Alcohols/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Stereoisomerism , Bioreactors
13.
Food Chem ; 451: 139427, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692237

ABSTRACT

Here, we report a monomer planarity modulation strategy for room-temperature constructing molecularly imprinted-covalent organic frameworks (MI-COFs) for selective extraction of ochratoxin A (OTA). 2,4,6-triformylphloroglucinol (Tp) was used as basic building block, while three amino monomers with different planarity were employed as modulators to explore the effect of planarity on the selectivity of MI-COFs. The MI-TpTapa constructed from Tp and the lowest planarity of monomer Tapa gave the highest selectivity for OTA, and was further used as the adsorbent for dispersed-solid phase extraction (DSPE) of OTA in alcohol samples. Coupling MI-TpTapa based DSPE with high-performance liquid chromatography allowed the matrix-effect free determination of OTA in alcohol samples with the limit of detection of 0.023 µg kg-1 and the recoveries of 91.4-97.6%. The relative standard deviation (RSD, n = 6) of intra and inter day was <3.2%. This work provides a new way to construct MI-COFs for selective extraction of hazardous targets.


Subject(s)
Food Contamination , Molecular Imprinting , Ochratoxins , Solid Phase Extraction , Ochratoxins/analysis , Ochratoxins/isolation & purification , Ochratoxins/chemistry , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Chromatography, High Pressure Liquid , Food Contamination/analysis , Adsorption , Alcohols/chemistry , Alcohols/isolation & purification , Metal-Organic Frameworks/chemistry
14.
Int J Biol Macromol ; 270(Pt 2): 132238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729463

ABSTRACT

Alcohol dehydrogenases (ADHs) mediated biocatalytic asymmetric reduction of ketones have been widely applied in the synthesis of optically active secondary alcohols with highly reactive hydroxyl groups ligated to the stereogenic carbon and divided into (R)- and (S)-configurations. Stereocomplementary ADHs could be applied in the synthesis of both enantiomers and are increasingly accepted as the "first of choice" in green chemistry due to the high atomic economy, low environmental factor, 100 % theoretical yield, and high environmentally friendliness. Due to the equal importance of complementary alcohols, development of stereocomplementary ADHs draws increasing attention. This review is committed to summarize recent advance in discovery of naturally evolved and tailor-made stereocomplementary ADHs, unveil the molecular mechanism of stereoselective catalysis in views of classification and functional basis, and provide guidance for further engineering the stereoselectivity of ADHs for the industrial biosynthesis of chiral secondary alcohol of industrial relevance.


Subject(s)
Alcohol Dehydrogenase , Alcohols , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Alcohols/chemistry , Alcohols/metabolism , Stereoisomerism , Biocatalysis
15.
J Food Sci ; 89(6): 3540-3553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720570

ABSTRACT

Starch and alcohol serve as pivotal indicators in assessing the quality of lees fermentation. In this paper, two hyperspectral imaging (HSI) techniques (visible-near-infrared (Vis-NIR) and NIR) were utilized to acquire separate HSI data, which were then fused and analyzed toforecast the starch and alcohol contents during the fermentation of lees. Five preprocessing methods were first used to preprocess the Vis-NIR, NIR, and the fused Vis-NIR and NIR data, after which partial least squares regression models were established to determine the best preprocessing method. Following, competitive adaptive reweighted sampling, successive projection algorithm, and principal component analysis algorithms were used to extract the characteristic wavelengths to accurately predict the starch and alcohol levels. Finally, support vector machine (SVM)-AdaBoost and XGBoost models were built based on the low-level fusion (LLF) and intermediate-level fusion (ILF) of single Vis-NIR and NIR as well as the fused data. The results showed that the SVM-AdaBoost model built using the LLF data afterpreprocessing by standard normalized variable was most accurate for predicting the starch content, with an R P 2 $\ R_P^2$ of 0.9976 and a root mean square error of prediction (RMSEP) of 0.0992. The XGBoost model built using ILF data was most accurate for predicting the alcohol content, with an R P 2 $R_P^2$ of 0.9969 and an RMSEP of 0.0605. In conclusion, the analysis of fused data from distinct HSI technologies facilitates rapid and precise determination of the starch and alcohol contents in fermented grains.


Subject(s)
Fermentation , Hyperspectral Imaging , Spectroscopy, Near-Infrared , Starch , Support Vector Machine , Starch/analysis , Hyperspectral Imaging/methods , Spectroscopy, Near-Infrared/methods , Edible Grain/chemistry , Fermented Foods/analysis , Alcohols/analysis , Principal Component Analysis , Algorithms , Least-Squares Analysis
16.
J Sci Food Agric ; 104(11): 6875-6883, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38690688

ABSTRACT

BACKGROUND: Higher alcohol acetates (HAAs) are potent aroma-active esters that impart desirable fruity and floral aromas. However, the conversion of higher alcohol precursors into HAAs is extremely low in winemaking. To investigate the underlying yeast-yeast interaction on targeted improvement of aromatic HAAs, we evaluated fermentation activity, cell viability, amino acid consumption and HAA production when Pichia kluyveri and Saccharomyces cerevisiae were inoculated concurrently or sequentially. RESULTS: Pichia kluyveri PK-21 possessed the ability to survive and increased HAA level up to 5.2-fold in mixed fermentation. Such an increment may benefit from the efficient conversion of higher alcohol precursors into HAAs (>27-fold higher than S. cerevisiae). During mixed fermentation, the two yeasts exhibited crucial interactions regarding cell growth and amino acid competition. Saccharomyces cerevisiae dominated over the co-inoculated P. kluyveri by efficient uptake of amino acids and biomass production. However, this dominance decreased in sequential fermentation, where P. kluyveri growth increased due to the consumption of preferred amino acids prior to S. cerevisiae. Pearson correlation analysis indicated that phenylalanine and aspartic acid may act as positive amino acids in boosting P. kluyveri growth and HAA production. Laboratory-scale winemaking validated the fermentation performance of P. kluyveri in sequential inoculum, resulting in a balanced aroma profile with enhanced floral and tropical fruity characteristics in the final wines. CONCLUSION: This study proposes a microbial, non-genetically engineered approach for targeted increase of HAA production in winemaking and the findings provide new insights into yeast-yeast interactions. © 2024 Society of Chemical Industry.


Subject(s)
Acetates , Amino Acids , Fermentation , Pichia , Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/metabolism , Wine/analysis , Wine/microbiology , Amino Acids/metabolism , Pichia/metabolism , Pichia/growth & development , Acetates/metabolism , Alcohols/metabolism , Odorants/analysis
17.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611800

ABSTRACT

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Subject(s)
Alcohols , Chlamydia trachomatis , Protease Inhibitors , Protease Inhibitors/pharmacology , Enzyme Therapy , Isocoumarins , Serine Endopeptidases , Serine Proteases
18.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673827

ABSTRACT

We report a study on the hydrogen bonding mechanisms of three aliphatic alcohols (2-propanol, methanol, and ethanol) and one diol (ethylene glycol) in water solution using a time-domain ellipsometer in the THz region. The dielectric response of the pure liquids is nicely modeled by the generalized Debye-Lorentz equation. For binary mixtures, we analyze the data using a modified effective Debye model, which considers H-bond rupture and reformation dynamics and the motion of the alkyl chains and of the OH groups. We focus on the properties of the water-rich region, finding anomalous behavior in the absorption properties at very low solute molar concentrations. These results, first observed in the THz region, are in line with previous findings from different experiments and can be explained by taking into account the amphiphilic nature of the alcohol molecules.


Subject(s)
Alcohols , Hydrogen Bonding , Water , Water/chemistry , Alcohols/chemistry , Terahertz Spectroscopy/methods , Ethanol/chemistry , 2-Propanol/chemistry
19.
Pharm Res ; 41(5): 983-1006, 2024 May.
Article in English | MEDLINE | ID: mdl-38561580

ABSTRACT

OBJECTIVE: This research aims to elucidate critical impurities in process validation batches of tacrolimus injection formulations, focusing on identification and characterization of previously unreported impurity at RRT 0.42, identified as the tacrolimus alcohol adduct. The potential root causes for the formation of new impurity was determined using structured risk assessment by cause and effect fishbone diagram. The primary objective was to propose mitigation plan and demonstrate the control of impurities with 6 month accelerated stability results in development batches. METHODS: The investigation utilizes method validation and characterization studies to affirm the accuracy of quantifying the tacrolimus alcohol adduct. The research methodology employed different characterization techniques like rotational rheometer, ICP‒MS, MALDI-MS, 1H NMR, 13C NMR, and DEPT-135 NMR for structural elucidation. Additionally, the exact mass of the impurity is validated using electrospray ionization mass spectra. RESULTS: Results indicate successful identification and characterization of the tacrolimus alcohol adduct. The study further explores the transformation of Tacrolimus monohydrate under various conditions, unveiling the formation of Tacrolimus hydroxy acid and proposing the existence of a novel degradation product, the Tacrolimus alcohol adduct. Six-month data from development lots utilizing Manufacturing Process II demonstrate significantly lower levels of alcohol adducts. CONCLUSIONS: Manufacturing Process II, selectively locates Tacrolimus within the micellar core of HCO-60, this prevent direct contact of ethanol with Tacrolimus which minimizes impurity alcohol adduct formation. This research contributes to the understanding of tacrolimus formulations, offering ways to safeguard product integrity and stability during manufacturing and storage.


Subject(s)
Drug Contamination , Immunosuppressive Agents , Tacrolimus , Drug Contamination/prevention & control , Tacrolimus/chemistry , Tacrolimus/analysis , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/analysis , Drug Stability , Alcohols/chemistry , Alcohols/analysis , Drug Compounding/methods , Magnetic Resonance Spectroscopy/methods
20.
J Phys Chem B ; 128(17): 4076-4086, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38642057

ABSTRACT

In aqueous binary solvents with fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and aliphatic alcohols, ethanol (EtOH) and 2-propanol (2-PrOH), the denaturation of hen egg white lysozyme (HEWL) with increasing alcohol mole fraction xA has been investigated in a wide view from the molecular vibration to the secondary and ternary structures. Circular dichroism (CD) measurement showed that the secondary structure of α-helix content of HEWL increases on adding a small amount of the fluorinated alcohol to the aqueous solution, while the ß-sheet content decreases. On the contrary, the secondary structure does not significantly change by the addition of the aliphatic alcohols. Correspondingly, the infrared (IR) spectroscopic measurements revealed that the amide I band red-shifts on the addition of the fluorinated alcohol. However, the band remains unchanged in the aliphatic alcohol systems with increasing alcohol content. To observe the ternary structure of HEWL, small-angle neutron scattering (SANS) experiments with H/D substitution technique have been applied to the HEWL solutions. The SANS experiments were successful in revealing the details of how the geometry of the HEWL changes as a function of xA. The SANS profiles indicated the spherical structure of HEWL in all of the alcohol systems in the xA range examined. The mean radius of HEWL in the two fluorinated alcohol systems increases from ∼16 to ∼18 Å during the change in the secondary structure against the increase in the fluorinated alcohol content. On contrast, the radius does not significantly change in both aliphatic alcohol systems below xA = 0.3 but expands to ∼19 Å as the alcohol content is close to the limitation of the HEWL solubility. According to the present results, together with our knowledge of the alcohol cluster formation and the interaction of the trifluoromethyl (CF3) groups with the hydrophobic moieties of biomolecules, the effects of alcohols on the denaturation of the protein have been discussed on a molecular scale.


Subject(s)
Circular Dichroism , Muramidase , Protein Denaturation , Scattering, Small Angle , Muramidase/chemistry , Muramidase/metabolism , Animals , Neutron Diffraction , Spectrophotometry, Infrared , Chickens , Alcohols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL