Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.092
1.
Food Res Int ; 186: 114372, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729730

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Gas Chromatography-Mass Spectrometry , Hot Temperature , Oxidation-Reduction , Aldehydes/chemistry , Aldehydes/analysis , Palmitates/chemistry , Palmitic Acid/chemistry , Ketones/chemistry , Carboxylic Acids/chemistry
2.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713233

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Molecular Docking Simulation , Mutagenesis, Site-Directed , Ergot Alkaloids/biosynthesis , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Aldehydes/metabolism , Aldehydes/chemistry , Oxidation-Reduction , Catalytic Domain , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry
3.
Food Res Int ; 187: 114330, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763633

Processing technology plays a crucial role in the formation of tea aroma. The dynamic variations in volatile metabolites across different processing stages of fresh scent green tea (FSGT) were meticulously tracked utilizing advanced analytical techniques such as GC-E-Nose, GC-MS, and GC × GC-TOFMS. A total of 244 volatile metabolites were identified by GC-MS and GC × GC-TOFMS, among which 37 volatile compounds were concurrently detected by both methods. Spreading and fixation stages were deemed as pivotal processes for shaping the volatile profiles in FSGT. Notably, linalool, heptanal, 2-pentylfuran, nonanal, ß-myrcene, hexanal, 2-heptanone, pentanal, 1-octen-3-ol, and 1-octanol were highlighted as primary contributors to the aroma profiles of FSGT by combining odor activity value assessment. Furthermore, lipid degradation and glycoside hydrolysis were the main pathways for aroma formation of FSGT. The results not only elucidate the intricate variations in volatile metabolites but also offer valuable insights into enhancing the processing techniques for improved aroma quality of green tea.


Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Tea , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Tea/chemistry , Food Handling/methods , Electronic Nose , Aldehydes/analysis , Aldehydes/metabolism , Acyclic Monoterpenes/metabolism , Acyclic Monoterpenes/analysis , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Ketones/analysis , Ketones/metabolism , Octanols
4.
Food Res Int ; 187: 114323, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763630

The balance regulation between characteristic aroma and hazards in high-temperature processed fish is a hot spot. This study was aimed to explore the interactive relationship between the nutritional value, microstructures, aroma, and harmful substances of hairtail under different frying methods including traditional frying (TF), air frying (AF), and vacuum frying (VF) via chemical pattern recognition. The results indicated that VF-prepared hairtail could form a crunchy mouthfeel and retain the highest content of protein (645.53 mg/g) and the lowest content of fat (242.03 mg/g). Vacuum frying reduced lipid oxidation in hairtail, resulting in the POV reaching 0.02 mg/g, significantly lower than that of TF (0.05 mg/g) and AF (0.21 mg/g), and TBARS reached 0.83 mg/g, significantly lower than that of AF (1.96 mg/g) (P < 0.05), respectively. Notable variations were observedin the aroma profileof hairtail preparedfrom different frying methods. Vacuum frying of hairtail resulted in higher levels of pyrazines and alcohols, whereas traditional frying and air frying were associated with the formation of aldehydes and ketones, respectively. Air frying was not a healthy way to cook hairtail which produced the highest concentration of harmful substances (up to 190.63 ng/g), significantly higher than VF (5.72 ng/g) and TF (52.78 ng/g) (P < 0.05), especially norharman (122.57 ng/g), significantly higher than VF (4.50 ng/g) and TF (32.63 ng/g) (P < 0.05). Norharman and acrylamide were the key harmful substances in hairtail treated with traditional frying. The vacuum frying method was an excellent alternative for deep-fried hairtail as a snack food with fewer harmful substances and a fine aroma, providing a theoretic guidance for preparing healthy hairtail food with high nutrition and superior sensory attraction.


Cooking , Hot Temperature , Odorants , Animals , Cooking/methods , Odorants/analysis , Aldehydes/analysis , Nutritive Value , Perciformes , Volatile Organic Compounds/analysis , Pyrazines/analysis , Pyrazines/chemistry , Seafood/analysis
5.
Food Res Int ; 187: 114357, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763641

The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.


Aldehydes , Linoleic Acid , Oxidation-Reduction , Tandem Mass Spectrometry , Aldehydes/metabolism , Animals , Linoleic Acid/chemistry , Linoleic Acid/metabolism , Chromatography, Liquid/methods , Fish Proteins/metabolism , Muscle Proteins/metabolism , Fishes , Hydrophobic and Hydrophilic Interactions , Lipoxygenase/metabolism , Liquid Chromatography-Mass Spectrometry
6.
Food Res Int ; 187: 114398, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763656

Nowadays, it is important to monitor the freshness of meat during storage to protect consumers' health. Volatile organic compounds (VOCs) are responsible for odour and taste of food, and they give an indication about meat quality and freshness. This study had the aim to seek and select potential new markers of meat spoilage through a semi-quantitative analysis in five types of meat (beef, raw and baked ham, pork sausage and chicken) and then to develop a new quantitative analytical method to detect and quantify potential markers on five types of meat simultaneously. Firstly, a new headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method was developed to evaluate the volatile profile of five types of meat, preserved at 4 °C for 5 days. Among the 40 compounds identified, 15 were chosen and selected as potential shelf-life markers on the basis of their presence in most of meat samples or/and for their constant increasing/decreasing trend within the sample. Afterwards, a quantitative HS-SPME-GC-MS analytical method was developed to confirm which VOCs can be considered markers of shelf-life for these meat products, stored at 4 °C for 12 days. Some of the compounds analyzed attracted attention as they can be considered markers of shelf-life for at least 4 types of meat: 1-butanol, 3-methylbutanol, 1-hexanol, 2-nonanone, nonanal, 1-octen-3-ol and linalool. In conclusion, in this study a new quantitative HS-SPME-GC-MS analytical method to quantity 15 VOCs in five types of meat was developed and it was demonstrated that some of the compounds quantified can be considered markers of shelf-life for some of the meat products analyzed.


Food Storage , Gas Chromatography-Mass Spectrometry , Meat Products , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Meat Products/analysis , Animals , Swine , Odorants/analysis , Cattle , Aldehydes/analysis , Chickens , Ketones/analysis , Pentanols/analysis , Acyclic Monoterpenes/analysis , Octanols
7.
Sci Rep ; 14(1): 10905, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740939

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.


Epithelial Cells , NF-E2-Related Factor 2 , Oxidative Stress , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Aldehydes/metabolism , Glutathione/metabolism , Cell Survival/drug effects , Cell Line , CRISPR-Cas Systems , Lipid Peroxidation/drug effects
8.
Food Res Int ; 183: 114183, 2024 May.
Article En | MEDLINE | ID: mdl-38760123

A large number of volatile compounds are formed during the baking of foods by reactions such as caramelization and Maillard reactions. Elucidating the reaction mechanisms may be useful to predict and control food quality. Ten reaction volatile markers were extracted during baking of solid model cakes implemented with known amounts of precursors (glucose with or without leucine) and then quantified by Thermal desorption-Gas chromatography-Mass spectrometry. The kinetic data showed that the level of air convection in the oven had no significant influence on the reaction rates. In contrast, increasing baking temperatures had a nonlinear accelerating impact on the generation of newly formed volatile compounds with a bell-shaped kinetic curve found for most of the markers at 200 °C. The presence of leucine triggered the activation of the Maillard and Strecker routes with a specific and very rapid formation of 3-Methylbutanal and pyrazines. A dynamic model was developed, combining evaporation flow rate and kinetic formation and consumption of reaction markers. It can be used to describe, for two furanic compounds of different volatilities, the vapor concentrations in the oven from the concentrations measured in the model cakes.


Cooking , Gas Chromatography-Mass Spectrometry , Glucose , Hot Temperature , Leucine , Maillard Reaction , Volatile Organic Compounds , Kinetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Cooking/methods , Glucose/chemistry , Glucose/analysis , Leucine/chemistry , Aldehydes/analysis , Aldehydes/chemistry , Pyrazines/analysis , Pyrazines/chemistry
9.
Cells ; 13(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38727274

α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson's disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications.


Aldehydes , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Aldehydes/metabolism , Phosphorylation , Humans , Animals , Mice , Cell Line, Tumor , Parkinson Disease/metabolism , Parkinson Disease/pathology , Biophysical Phenomena
10.
J Vis Exp ; (206)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38738901

Protein carbonylation by reactive aldehydes derived from lipid peroxidation leads to cross-linking, oligomerization, and aggregation of proteins, causing intracellular damage, impaired cell functions, and, ultimately, cell death. It has been described in aging and several age-related chronic conditions. However, the basis of structural changes related to the loss of function in protein targets is still not well understood. Hence, a route to the in silico construction of new parameters for amino acids carbonylated with reactive carbonyl species derived from fatty acid oxidation is described. The Michael adducts for Cys, His, and Lys with 4-hydroxy-2-nonenal (HNE), 4-hydroxy-2-hexenal (HHE), and a furan ring form for 4-Oxo-2-nonenal (ONE), were built, while malondialdehyde (MDA) was directly attached to each residue. The protocol describes details for the construction, geometry optimization, assignment of charges, missing bonds, angles, dihedral angles parameters, and its validation for each modified residue structure. As a result, structural effects induced by the carbonylation with these lipid derivatives have been measured by molecular dynamics simulations on different protein systems such as the thioredoxin enzyme, bovine serum albumin and the membrane Zu-5-ankyrin domain employing root-mean-square deviation (RMSD), root mean square fluctuation (RMSF), structural secondary prediction (DSSP) and the solvent-accessible surface area analysis (SASA), among others.


Aldehydes , Amino Acids , Molecular Dynamics Simulation , Amino Acids/chemistry , Amino Acids/metabolism , Aldehydes/chemistry , Malondialdehyde/chemistry , Malondialdehyde/metabolism , Protein Carbonylation
11.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732269

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Aldehydes , Anti-Bacterial Agents , Biofilms , Cyclopentane Monoterpenes , Olive Oil , Phenols , Pseudomonas aeruginosa , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Olive Oil/chemistry , Olive Oil/pharmacology , Phenols/pharmacology , Phenols/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Bacterial Adhesion/drug effects
12.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732549

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Catechols , Cyclopentane Monoterpenes , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Tumor Necrosis Factor-alpha , Animals , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle Proteins/metabolism , Cyclopentane Monoterpenes/pharmacology , Catechols/pharmacology , Cell Line , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Muscle Development/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Autophagy/drug effects , Phenols/pharmacology , Cachexia/prevention & control , Culture Media, Conditioned/pharmacology , Aldehydes
13.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732529

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Angiogenesis Inhibitors , Olive Oil , Phenols , Phenylethyl Alcohol , Olive Oil/chemistry , Humans , Phenols/pharmacology , Angiogenesis Inhibitors/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Diet, Mediterranean , Atherosclerosis/prevention & control , Atherosclerosis/drug therapy , Cyclopentane Monoterpenes , Neoplasms/prevention & control , Neoplasms/drug therapy , Catechols/pharmacology , Aldehydes/pharmacology , Animals , Antineoplastic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology
14.
Sci Total Environ ; 931: 173024, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38719048

Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. ß-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on ß-cyclocitral levels in water. Here, we conducted a study on the ß-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), ß-cyclocitral in the water (Wcyc), ß-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, ß-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of ß-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit ß-cyclocitral, the release of ß-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of ß-cyclocitral.


Eutrophication , Odorants , Water Pollutants, Chemical , Odorants/analysis , Water Pollutants, Chemical/analysis , Aldehydes/analysis , Plants , Nutrients/analysis , Environmental Monitoring , Diterpenes
15.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791607

This work investigated the cocatalytic activity of recently prepared guanidinium salts containing an oxanorbornane subunit in an (S)-proline-catalyzed aldol reaction. The activity was interpreted by the diastereoselectivity of the reaction (anti/syn ratio) and for the most interesting polycyclic guanidinium salt, the enantioselectivity of the reaction was determined. The results indicated a negative impact on the oxanorbornane unit if present as the flexible substituent. For most of the tested aldehydes, the best cocatalysts provided enantioselectivities above 90% and above 95% at room temperature and 0 °C, respectively, culminating in >99.5% for 4-chloro- and 2-nitrobenzaldehyde as the substrate. The barriers for forming four possible enantiomers were calculated and the results for two anti-enantiomers are qualitatively consistent with the experiment. Obtained results suggest that the representatives of furfurylguanidinium and rigid polycyclic oxanorbornane-substituted guanidinium salts are good lead structures for developing new cocatalysts by tuning the chemical space around the guanidine moiety.


Guanidines , Proline , Catalysis , Proline/chemistry , Guanidines/chemistry , Stereoisomerism , Aldehydes/chemistry , Norbornanes/chemistry , Guanidine/chemistry , Molecular Structure
16.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791326

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Manganese Compounds , Manganese , Mice, Inbred C57BL , Vanadium , Animals , Mice , Manganese/toxicity , Vanadium/toxicity , Male , Olfactory Bulb/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/pathology , Dopamine/metabolism , Vanadium Compounds , Oxidative Stress/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , alpha-Synuclein/metabolism , Chlorides/toxicity , Chlorides/metabolism , Tyrosine 3-Monooxygenase/metabolism , Aldehydes/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Disease Models, Animal , 3,4-Dihydroxyphenylacetic Acid/metabolism
17.
Proc Natl Acad Sci U S A ; 121(21): e2317616121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743627

The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.


Aldehydes , Ferroptosis , Lipid Peroxidation , Ferroptosis/drug effects , Humans , Lipid Peroxidation/drug effects , Aldehydes/pharmacology , Aldehydes/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Glutathione/metabolism
18.
J Agric Food Chem ; 72(21): 12229-12239, 2024 May 29.
Article En | MEDLINE | ID: mdl-38743679

The objective was to understand the impacts of secondary lipid oxidation products on calpain-2 activity and autolysis and, subsequently, to determine the quantity and localization of modification sites. 2-Hexenal and 4-hydroxynonenal incubation significantly decreased calpain-2 activity and slowed the progression of autolysis, while malondialdehyde had minimal impact on calpain-2 activity and autolysis. Specific modification sites were determined with LC-MS/MS, including distinct malondialdehyde modification sites on the calpain-2 catalytic and regulatory subunits. 2-Hexenal modification sites were observed on the calpain-2 catalytic subunit. Intact protein mass analysis with MALDI-MS revealed that a significant number of modifications on the calpain-2 catalytic and regulatory subunits are likely to exist. These observations confirm that specific lipid oxidation products modify calpain-2 and may affect the calpain-2 functionality. The results of these novel experiments have implications for healthy tissue metabolism, skeletal muscle growth, and post-mortem meat tenderness development.


Calpain , Oxidation-Reduction , Calpain/metabolism , Calpain/chemistry , Animals , Aldehydes/metabolism , Aldehydes/chemistry , Tandem Mass Spectrometry , Malondialdehyde/metabolism , Malondialdehyde/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Meat/analysis , Swine
19.
Int J Biol Macromol ; 268(Pt 2): 131911, 2024 May.
Article En | MEDLINE | ID: mdl-38679263

Starch is a common ingredient to improve gel property of freshwater fish surimi, but the function of natural starch to mask fishy odor compounds in surimi products has not been investigated systematacially. Therefore, this study aimed to determine which natural starch could effectively mask fishy odor compounds and clarify their interaction by GC-MS, FT-IR spectroscopy, raman spectroscopy, X-ray diffraction, scanning electron microscopy and 13C nuclear magnetic resonance. The results showed that when the concentration, crystal type, amylose content, and dispersion degree of starch was 1 %, type C, 48 % (w/v), and 200 mesh with 0.88 span, the starch had the strongest masking effect on typical fishy odor compounds, namely hexanal, 1-Octen-3-ol, (E,E)-2,4-Heptadienal and (E)-2-Octenal. It indicated that complexation and hydrogen bonding both occurred between the fishy odor compounds and starch.


Odorants , Starch , Odorants/analysis , Starch/chemistry , Animals , Fishes , Amylose/chemistry , Amylose/analysis , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Aldehydes/chemistry
20.
J Hazard Mater ; 470: 134212, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583205

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Aldo-Keto Reductases , Cadmium , Oryza , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/metabolism , Aldehydes/metabolism , Catalase/metabolism , Catalase/genetics , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Malondialdehyde/metabolism , Stress, Physiological , Pyruvaldehyde/metabolism , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Inactivation, Metabolic
...