Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.937
Filter
1.
Food Res Int ; 190: 114658, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945590

ABSTRACT

Egg proteins, notably ovalbumin (OVA), contribute to a prevalent form of food allergy, particularly in children. This study aims to investigate the impact of high hydrostatic pressure (HHP) treatment at varying levels (300, 400, 500, and 600 MPa) on the molecular structure and allergenicity of OVA. The structure of HHP-treated OVA was assessed through fluorescence spectroscopy, circular dichroism spectroscopy, and molecular dynamics (MD) simulation. HHP treatment (600 MPa) altered OVA structures, such as α-helix content decreased from 28.07 % to 19.47 %, and exogenous fluorescence intensity increased by 8.8 times compared to that of the native OVA. The free sulfhydryl groups and zeta potential value were also increased with HHP treatment (600 MPa). ELISA analysis and MD simulation unveiled a noteworthy reduction in the allergenicity of OVA when subjected to 600 MPa for 10 min. Overall, this study suggests that the conformational changes in HHP-treated OVA contribute to its altered allergenicity.


Subject(s)
Allergens , Hydrostatic Pressure , Ovalbumin , Ovalbumin/immunology , Ovalbumin/chemistry , Allergens/chemistry , Allergens/immunology , Molecular Dynamics Simulation , Circular Dichroism , Spectrometry, Fluorescence , Animals , Egg Hypersensitivity/immunology , Food Hypersensitivity/immunology , Humans , Food Handling/methods , Protein Conformation
2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928222

ABSTRACT

The avoidance of allergen intake is crucial for persons affected by peanut allergy; however, the cross-contamination of food is common and leads to unpredictable consequences after the consumption of supposedly "safe" food. The aim of the present study was to eliminate harmful traces of peanut allergens from food using purified clinoptilolite-tuff (PCT)-a specially processed zeolite material. Analyses were performed using a peanut ELISA and a Coomassie blue (Bradford) assay. Mimicking conditions of the human gastrointestinal tract demonstrated a higher efficacy of PCT in the intestine (pH 6.8) than in the stomach (pH 1.5). Adsorption rates were fast (<2 min) and indicated high capacities (23 µg and 40 µg per 1 mg of PCT at pH 1.5 and pH 6.8, respectively). Allergenically relevant peanut protein concentrations were sorbed in artificial fluids (32 µg/mL by 4 mg/mL of PCT at pH 1.5 and 80.8 µg/mL by 0.25 mg/mL of PCT at pH 6.8) when imitating a daily dose of 2 g of PCT in an average stomach volume of 500 mL. Experiments focusing on the bioavailability of peanut protein attached to PCT revealed sustained sorption at pH 1.5 and only minor desorption at pH 6.8. Accompanied by gluten, peanut proteins showed competing binding characteristics with PCT. This study therefore demonstrates the potential of PCT in binding relevant quantities of peanut allergens during the digestion of peanut-contaminated food.


Subject(s)
Allergens , Arachis , Zeolites , Zeolites/chemistry , Arachis/chemistry , Arachis/immunology , Allergens/chemistry , Adsorption , Humans , Hydrogen-Ion Concentration , Peanut Hypersensitivity/prevention & control , Peanut Hypersensitivity/immunology , Plant Proteins/chemistry
3.
J Agric Food Chem ; 72(26): 14922-14940, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885638

ABSTRACT

As a key component of cell-cultured fish, fish skin gelatin (FSG)-based cell scaffold provides support structures for cell growth, proliferation, and differentiation. However, there are potential allergenicity risks contained in FSG-based scaffolds. In this study, 3D edible scaffolds were prepared by phase separation method and showed a contact angle of less than 90°, which indicated that the scaffolds were favorable for cell adhesion. Besides, the swelling ratio was greater than 200%, implying a great potential to support cell growth. The sequence homology analysis indicated that FSG was prone to cross-reaction with collagen analogues. Additionally, a food allergic model was constructed and represented that mice gavaged with cod FSG exhibited higher levels of specific antibodies, mast cell degranulation, vascular permeability, and intestinal barrier impairment than those gavaged with pangasius and tilapias FSG. Its higher allergenicity might be attributed to a higher number of digestion-resistant linear epitopes. Moreover, the higher hydrolysis degree linked to the exposure of linear epitopes to promote the combination with IgE, which was also responsible for maintaining the higher allergenicity of cod FSG. This study clarifies allergenic risks in cell-cultured fish and further study will focus on the allergenicity reduction of FSG-based cell scaffolds.


Subject(s)
Allergens , Digestion , Epitopes , Fish Proteins , Food Hypersensitivity , Gelatin , Skin , Tissue Scaffolds , Animals , Gelatin/chemistry , Gelatin/immunology , Epitopes/immunology , Epitopes/chemistry , Mice , Food Hypersensitivity/immunology , Allergens/immunology , Allergens/chemistry , Tissue Scaffolds/chemistry , Skin/immunology , Fish Proteins/immunology , Fish Proteins/chemistry , Humans , Immunoglobulin E/immunology , Fishes/immunology , Mice, Inbred BALB C , Mast Cells/immunology , Meat/analysis , Gadiformes/immunology , In Vitro Meat
4.
Int J Biol Macromol ; 273(Pt 2): 133085, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871100

ABSTRACT

Allergy is a hypersensitive condition in which individuals develop objective symptoms when exposed to harmless substances at a dose that would cause no harm to a "normal" person. Most current computational methods for allergen identification rely on homology or conventional machine learning using limited set of feature descriptors or validation on specific datasets, making them inefficient and inaccurate. Here, we propose SEP-AlgPro for the accurate identification of allergen protein from sequence information. We analyzed 10 conventional protein-based features and 14 different features derived from protein language models to gauge their effectiveness in differentiating allergens from non-allergens using 15 different classifiers. However, the final optimized model employs top 10 feature descriptors with top seven machine learning classifiers. Results show that the features derived from protein language models exhibit superior discriminative capabilities compared to traditional feature sets. This enabled us to select the most discriminatory baseline models, whose predicted outputs were aggregated and used as input to a deep neural network for the final allergen prediction. Extensive case studies showed that SEP-AlgPro outperforms state-of-the-art predictors in accurately identifying allergens. A user-friendly web server was developed and made freely available at https://balalab-skku.org/SEP-AlgPro/, making it a powerful tool for identifying potential allergens.


Subject(s)
Allergens , Deep Learning , Machine Learning , Allergens/immunology , Allergens/chemistry , Software , Computational Biology/methods , Humans , Neural Networks, Computer
5.
Food Chem Toxicol ; 189: 114766, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810945

ABSTRACT

The growing world population, changing dietary habits, and increasing pressure on agricultural resources are drivers for the development of novel foods (including new protein sources as well as existing protein sources that are produced or used in an alternative way or in a different concentration). These changes, coupled with consumer inclination to adopt new dietary trends, may heighten the intake of unfamiliar proteins, or escalate consumption of specific ones, potentially amplifying the prevalence of known and undiscovered food allergies. Assessing the allergenicity of novel or modified protein-based foods encounters several challenges, including uncertainty surrounding acceptable risks and assessment criteria for determining safety. Moreover, the available methodological tools for gathering supportive data exhibit significant gaps. This paper synthesises these challenges, addressing the varied interpretations of "safe" across jurisdictions and societal attitudes towards allergenic risk. It proposes a comprehensive two-part framework for allergenicity assessment: the first part emphasises systematic consideration of knowledge and data requirements, while the second part proposes the application of a generic assessment approach, integrating a Threshold of Allergological Concern. This combined framework highlights areas that require attention to bridge knowledge and data gaps, and it delineates research priorities for its development and implementation.


Subject(s)
Allergens , Food Hypersensitivity , Humans , Food Hypersensitivity/immunology , Allergens/immunology , Allergens/chemistry , Dietary Proteins/immunology , Risk Assessment , Animals , Food, Genetically Modified , Food Ingredients/analysis
6.
J Agric Food Chem ; 72(23): 13402-13414, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38821040

ABSTRACT

Scy p 8 (triosephosphate isomerase) as a crab allergen in inducing distinct T-helper (Th) cell differentiation and a linear epitope associated with allergenicity remain elusive. In this study, mice sensitized with Scy p 8 exhibited significantly upregulated levels of IgE, IgG1, and IL-4 release, inducing a Th2 immune response. Moreover, the release of IFN-γ (Th1) and the levels of Treg cells were downregulated, while IL-17A (Th17) was upregulated, indicating that Scy p 8 disrupted the Th1/Th2 balance and Th17/Treg balance in mice. Furthermore, bioinformatics prediction and serum samples from crab-allergic patients and mice enabled the discovery of 8 linear epitopes of Scy p 8. Meanwhile, the analysis of peptide similarity and tertiary superposition revealed that 8 epitopes of Scy p 8 exhibited conservation across various species, potentially resulting in cross-reactivity. These findings possess the potential to enhance the comprehension of crab allergens, thereby establishing a foundation for investigating cross-reactivity.


Subject(s)
Allergens , Brachyura , Epitopes , Mice, Inbred BALB C , Animals , Brachyura/immunology , Brachyura/genetics , Brachyura/chemistry , Allergens/immunology , Allergens/chemistry , Allergens/genetics , Humans , Epitopes/immunology , Epitopes/chemistry , Mice , Female , Shellfish Hypersensitivity/immunology , Immunoglobulin E/immunology , Arthropod Proteins/immunology , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/blood , Th2 Cells/immunology , Cross Reactions , Male , Interleukin-4/immunology , Interleukin-4/genetics , Adult , Th1 Cells/immunology , Interferon-gamma/immunology , Interferon-gamma/genetics
7.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732184

ABSTRACT

Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system. The current investigation is aimed at the further study of the allergenic and structural features of Aln g 1. By using qPCR, we showed that Aln g 1 was able to upregulate alarmins in epithelial cells, playing an important role in sensitization. With the use of CD-spectroscopy and ELISA assays with the sera of allergic patients, we demonstrated that Aln g 1 did not completely restore its structure after thermal denaturation, which led to a decrease in its IgE-binding capacity. Using site-directed mutagenesis, we revealed that the replacement of two residues (Asp27 and Leu30) in the structure of Aln g 1 led to a decrease in its ability to bind to both IgE from sera of allergic patients and lipid ligands. The obtained data open a prospect for the development of hypoallergenic variants of the major alder allergen Aln g 1 for allergen-specific immunotherapy.


Subject(s)
Allergens , Antigens, Plant , Immunoglobulin E , Plant Proteins , Pollen , Humans , Pollen/immunology , Pollen/chemistry , Allergens/immunology , Allergens/chemistry , Antigens, Plant/immunology , Antigens, Plant/chemistry , Immunoglobulin E/immunology , Plant Proteins/immunology , Plant Proteins/chemistry , Alnus/immunology , Alnus/chemistry
8.
J Vet Med Sci ; 86(6): 689-699, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38692886

ABSTRACT

Many emerging and re-emerging infectious diseases are prevalent, and the number of patients with allergies is increasing. Therefore, the importance of purifying the living environment is increasing. Photocatalysts undergo extreme redox reactions and decompose organic matter upon exposure to the excitation light. In contrast to ultraviolet light and disinfectants, which are standard methods for inactivating viruses and eliminating microorganisms, photocatalysts can decompose toxic substances, such as endotoxins and allergens, rendering them harmless to the human body. Photocatalysts have attracted significant attention as potential antiviral and antimicrobial agents. This review outlines the antiviral, antimicrobial, and anti-allergenic effects of photocatalysts. Especially, we have discussed the inactivation of SARS-CoV-2 in liquids and aerosols, elimination of Legionella pneumophila in liquids, decomposition of its endotoxin, decomposition of cat and dog allergens, and elimination of their allergenicity using photocatalysts. Furthermore, we discuss future perspectives on how photocatalysts can purify living environments, and how photocatalytic technology can be applied to companion animals and the livestock industry.


Subject(s)
Allergens , Allergens/immunology , Allergens/chemistry , Animals , Humans , SARS-CoV-2/immunology , SARS-CoV-2/radiation effects , Catalysis/radiation effects , Disinfection/methods , Photochemical Processes , Legionella pneumophila/immunology , Legionella pneumophila/radiation effects
9.
J Agric Food Chem ; 72(22): 12398-12414, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38797944

ABSTRACT

Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.


Subject(s)
Food Safety , Peptides , Plant Proteins , Peptides/chemistry , Plant Proteins/chemistry , Plant Proteins/immunology , Humans , Animals , Allergens/chemistry , Allergens/immunology , Food Handling , Functional Food
10.
Food Funct ; 15(10): 5539-5553, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38712538

ABSTRACT

A novel processing method combining short-time ozone pretreatment with hydrolysis has been developed to reduce whey protein allergenicity. The results showed that ozone treatment altered the whey protein spatial structure, initially increasing the surface hydrophobicity index, and then decreasing due to polymer formation as the time increased. Under the optimized conditions of alkaline protease-mediated hydrolysis, a 10-second pre-exposure to ozone significantly promoted the reduction in the IgE binding capacity of whey protein without compromising the hydrolysis efficiency. Compared with whey protein, the degranulation of KU812 cells stimulated by this hydrolysate decreased by 20.54%, 17.99%, and 22.80% for IL-6, ß-hexosaminidase, and histamine, respectively. In vitro simulated gastrointestinal digestion confirmed increased digestibility and reduced allergenicity. Peptidomics identification revealed that short-time ozonation exposed allergen epitopes, allowing alkaline protease to target these epitopes more effectively, particularly those associated with α-lactalbumin. These findings suggest the promising application of this processing method in mitigating the allergenicity of whey protein.


Subject(s)
Allergens , Epitopes , Ozone , Whey Proteins , Whey Proteins/chemistry , Whey Proteins/pharmacology , Ozone/chemistry , Ozone/pharmacology , Allergens/chemistry , Allergens/immunology , Humans , Epitopes/chemistry , Epitopes/immunology , Immunoglobulin E/immunology , Hydrolysis , Endopeptidases/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology
11.
Food Chem ; 452: 139462, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723563

ABSTRACT

The presence of various components in the food matrix makes allergen detection difficult and inaccurate, and pretreatment is an innovative breakthrough point. Food matrices were categorised based on their composition. Subsequently, a pretreatment method was established using a combination of ultrasound-assisted n-hexane degreasing and weakly alkaline extraction systems to enhance the detection accuracy of bovine milk allergens. Results showed that more allergens were obtained with less structural destruction, as demonstrated using immunological quantification and spectral analysis. Concurrently, allergenicity preservation was confirmed through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, a KU812 cell degranulation model, and western blotting. The method exhibited good accuracy (bias, 8.47%), repeatability (RSDr, 1.52%), and stability (RSDR, 5.65%). In foods with high lipid content, such as chocolate, the allergen content was 2.29-fold higher than that of commercial kits. Laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) analyses revealed a significant decrease in fat content after post-pretreatment using our method. In addition, colloidal stability surpassed that achieved using commercial kits, as indicated through the PSA and zeta potential results. The results demonstrated the superiority of the extractability and allergenicity maintenance of lipid matrix-specific pretreatment methods for improving the accuracy of ELISA based allergen detection in real food.


Subject(s)
Allergens , Enzyme-Linked Immunosorbent Assay , Lipids , Milk , Animals , Allergens/immunology , Allergens/chemistry , Allergens/analysis , Cattle , Lipids/chemistry , Lipids/immunology , Milk/chemistry , Tandem Mass Spectrometry , Milk Hypersensitivity/immunology , Humans , Milk Proteins/chemistry , Milk Proteins/immunology
12.
Food Chem ; 452: 139522, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723568

ABSTRACT

ß-lactoglobulin (ß-Lg) is a major food allergen, there is an urgent need to develop a rapid method for detecting ß-Lg in order to avoid contact or ingestion by allergic patients. Peptide aptamers have high affinity, specificity, and stability, and have broad prospects in the field of rapid detection. Using ß-Lg as the target, this study screened 11 peptides (P1-11) from a phage display library. Using molecular docking technology to predict binding energy and binding mode of proteins and peptides. Select the peptides with the best binding ability to ß-Lg (P5, P7, P8) through ELISA. Combining them with whey protein, casein, and bovine serum protein, it was found that P7 has the best specificity for ß-Lg, with an inhibition rate of 87.99%. Verified by molecular dynamics that P7 binds well with ß-Lg. Therefore, this peptide can be used for the recognition of ß-Lg, becoming a new recognition element for detecting ß-Lg.


Subject(s)
Lactoglobulins , Molecular Docking Simulation , Peptides , Lactoglobulins/chemistry , Peptides/chemistry , Animals , Protein Binding , Peptide Library , Cattle , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay , Allergens/chemistry , Allergens/immunology , Humans
13.
J Agric Food Chem ; 72(21): 12270-12280, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743450

ABSTRACT

Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity. Hence, the effects of covalent (C-I, periodate oxidation method) and noncovalent interactions (NC-I) of 7S with CHA in different concentrations (0.3, 0.5, and 1.0 mM) on lowering 7S allergenicity were investigated in this study. The results demonstrated that C-I led to higher binding efficiency (C-0.3:28.51 ± 2.13%) than NC-I (N-0.3:22.66 ± 1.75%). The C-I decreased the α-helix content (C-1:21.06%), while the NC-I increased the random coil content (N-1:24.39%). The covalent 7S-CHA complexes of different concentrations had lower IgE binding capacity (C-0.3:37.38 ± 0.61; C-0.5:34.89 ± 0.80; C-1:35.69 ± 0.61%) compared with that of natural 7S (100%), while the noncovalent 7S-CHA complexes showed concentration-dependent inhibition of IgE binding capacity (N-0.3:57.89 ± 1.23; N-0.5:46.91 ± 1.57; N-1:40.79 ± 0.22%). Both interactions produced binding to known linear epitopes. This study provides the theoretical basis for the CHA application in soybean products to lower soybean allergenicity.


Subject(s)
Antigens, Plant , Chlorogenic Acid , Glycine max , Immunoglobulin E , Soybean Proteins , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Glycine max/chemistry , Glycine max/immunology , Immunoglobulin E/immunology , Soybean Proteins/chemistry , Soybean Proteins/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Humans , Food Hypersensitivity/immunology , Allergens/chemistry , Allergens/immunology , Protein Binding , Seed Storage Proteins/chemistry , Seed Storage Proteins/immunology
14.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691423

ABSTRACT

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Subject(s)
Allergens , Arachis , Peptides , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Arachis/chemistry , Arachis/immunology , Peptides/chemistry , Peptides/immunology , Allergens/analysis , Allergens/immunology , Allergens/chemistry , Biofouling/prevention & control , Food Contamination/analysis , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Adsorption
15.
J Agric Food Chem ; 72(20): 11672-11681, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38713521

ABSTRACT

Crustacean shellfish are major allergens in East Asia. In the present study, a major allergic protein in crustaceans, tropomyosin, was detected accurately using multiple reaction monitoring mode-based mass spectrometry, with shared signature peptides identified through proteomic analysis. The peptides were deliberately screened through thermal stability and enzymatic digestion efficiency to improve the suitability and accuracy of the developed method. Finally, the proposed method demonstrated a linear range of 0.15 to 30 mgTM/kgfood (R2 > 0.99), with a limit of detection of 0.15 mgTM/kg food and a limit of quantification of 0.5mgTM/kgfood and successfully applied to commercially processed foods, such as potato chips, biscuits, surimi, and hot pot seasonings, which evidenced the applicability of proteomics-based methodology for food allergen analysis.


Subject(s)
Allergens , Crustacea , Mass Spectrometry , Peptides , Proteomics , Shellfish , Tropomyosin , Tropomyosin/chemistry , Tropomyosin/immunology , Tropomyosin/analysis , Animals , Proteomics/methods , Allergens/chemistry , Allergens/analysis , Peptides/chemistry , Shellfish/analysis , Mass Spectrometry/methods , Crustacea/chemistry , Arthropod Proteins/chemistry , Arthropod Proteins/immunology , Shellfish Hypersensitivity/immunology , Food Hypersensitivity/immunology , Food, Processed
16.
J Agric Food Chem ; 72(20): 11746-11758, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718253

ABSTRACT

A novel strategy combining ferulic acid and glucose was proposed to reduce ß-lactoglobulin (BLG) allergenicity and investigate whether the reduction in allergenicity was associated with gut microbiome and serum metabolism. As a result, the multistructure of BLG changed, and the modified BLG decreased significantly the contents of IgE, IgG, IgG1, and mMCP-1 in serum, improved the diversity and structural composition of gut microbiota, and increased the content of short-chain fatty acids (SCFAs) in allergic mice. Meanwhile, allergic mice induced by BLG affected arachidonic acid, tryptophan, and other metabolic pathways in serum, the modified BLG inhibited the production of metabolites in arachidonic acid metabolism pathway and significantly increased tryptophan metabolites, and this contribution helps in reducing BLG allergenicity. Overall, reduced allergenicity of BLG after ferulic acid was combined with glucose modification by regulating gut microbiota, the metabolic pathways of arachidonic acid and tryptophan. The results may offer new thoughts alleviating the allergy risk of allergenic proteins.


Subject(s)
Allergens , Coumaric Acids , Gastrointestinal Microbiome , Glucose , Lactoglobulins , Coumaric Acids/metabolism , Coumaric Acids/chemistry , Animals , Lactoglobulins/immunology , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Mice , Humans , Allergens/immunology , Allergens/chemistry , Allergens/metabolism , Glucose/metabolism , Female , Bacteria/immunology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Mice, Inbred BALB C , Immunoglobulin E/immunology , Immunoglobulin E/blood , Fatty Acids, Volatile/metabolism , Cattle , Immunoglobulin G/immunology , Immunoglobulin G/blood , Milk Hypersensitivity/immunology
17.
Compr Rev Food Sci Food Saf ; 23(3): e13340, 2024 May.
Article in English | MEDLINE | ID: mdl-38778570

ABSTRACT

Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.


Subject(s)
Allergens , Epitopes , Food Hypersensitivity , Immunoglobulin E , Allergens/chemistry , Allergens/immunology , Food Hypersensitivity/immunology , Epitopes/chemistry , Epitopes/immunology , Animals , Crystallography, X-Ray , Humans , Immunoglobulin E/immunology , Immunoglobulin E/chemistry , Cross Reactions , Protein Conformation
18.
Food Chem ; 451: 139433, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692238

ABSTRACT

Hazelnut, pistachio and cashew are tree nuts with health benefits but also with allergenic properties being prevalent food allergens in Europe. The allergic characteristics of these tree nuts after processing combining heat, pressure and enzymatic digestion were analyzed through in vitro (Western blot and ELISA) and in vivo test (Prick-Prick). In the analyzed population, the patients sensitized to Cor a 8 (nsLTP) were predominant over those sensitized against hazelnut seed storage proteins (Sprot, Cor a 9 and 14), which displayed higher IgE reactivity. The protease E5 effectively hydrolyzed proteins from hazelnut and pistachio, while E7 was efficient for cashew protein hydrolysis. When combined with pressured heating (autoclave and Controlled Instantaneous Depressurization (DIC)), these proteases notably reduced the allergenic reactivity. The combination of DIC treatment before enzymatic digestion resulted in the most effective methodology to drastically reduce or indeed eliminate the allergenic capacity of tree nuts.


Subject(s)
Allergens , Corylus , Nut Hypersensitivity , Nuts , Humans , Nut Hypersensitivity/immunology , Hydrolysis , Nuts/chemistry , Nuts/immunology , Allergens/immunology , Allergens/chemistry , Corylus/chemistry , Corylus/immunology , Hot Temperature , Pistacia/chemistry , Pistacia/immunology , Anacardium/chemistry , Anacardium/immunology , Immunoglobulin E/immunology , Female , Adult , Male , Young Adult , Food Handling , Plant Proteins/immunology , Plant Proteins/chemistry , Peptide Hydrolases/chemistry , Peptide Hydrolases/immunology , Child
19.
J Agric Food Chem ; 72(18): 10627-10639, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38664940

ABSTRACT

Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and ß-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from ß-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.


Subject(s)
Allergens , Soy Milk , Subtilisins , Humans , Allergens/chemistry , Allergens/immunology , Allergens/metabolism , Food Hypersensitivity/prevention & control , Food Hypersensitivity/immunology , Globulins/chemistry , Globulins/immunology , Hydrolysis , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Powders/chemistry , Soy Milk/chemistry , Soybean Proteins/chemistry , Soybean Proteins/immunology , Soybean Proteins/metabolism , Structure-Activity Relationship , Subtilisins/metabolism
20.
Food Funct ; 15(10): 5397-5413, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38639426

ABSTRACT

Limited research has been conducted on the differences in allergenicity among Alectryonella plicatula tropomyosin (ATM), Haliotis discus hannai tropomyosin (HTM), and Mimachlamys nobilis tropomyosin (MTM) in molluscs. Our study aimed to comprehensively analyze and compare their immunoreactivity, sensitization, and allergenicity while simultaneously elucidating the underlying molecular mechanisms involved. We assessed the immune binding activity of TM utilizing 86 sera from allergic patients and evaluated sensitization and allergenicity through two different types of mouse models. The dot-blot and basophil activation test assays revealed strong immunoreactivity for HTM, ATM, and MTM, with HTM exhibiting significantly lower levels compared to ATM. In the BALB/c mouse sensitization model, all TM groups stimulated the production of specific antibodies, elicited IgE-mediated immediate hypersensitivity responses, and caused an imbalance in the IL-4/IFN-γ ratio. Similarly, in the BALB/c mouse model of food allergy, all TM variants induced IgE-mediated type I hypersensitivity responses, leading to the development of food allergies characterized by clinical symptoms and an imbalance in the IL-4/IFN-γ ratio. The stimulation ability of sensitization and the severity of food allergies consistently ranked as ATM > MTM > HTM. Through an in-depth analysis of non-polar amino acid frequency and polar hydrogen bonds, HTM exhibited higher frequencies of non-polar amino acids in its amino acid sequence and IgE epitopes, in comparison with ATM and MTM. Furthermore, HTM demonstrated a lower number of polar hydrogen bonds in IgE epitopes. Overall, HTM exhibited the lowest allergenic potential in both allergic patients and mouse models, likely due to its lower polarity in the amino acid sequence and IgE epitopes.


Subject(s)
Allergens , Epitopes , Immunoglobulin E , Mice, Inbred BALB C , Tropomyosin , Animals , Tropomyosin/immunology , Tropomyosin/chemistry , Immunoglobulin E/immunology , Mice , Humans , Epitopes/immunology , Allergens/immunology , Allergens/chemistry , Female , Male , Adult , Amino Acids , Mollusca/immunology , Food Hypersensitivity/immunology , Young Adult , Child , Adolescent , Middle Aged , Child, Preschool , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL
...