Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.768
Filter
1.
BMC Genom Data ; 25(1): 55, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851674

ABSTRACT

OBJECTIVES: The oak processionary moth (OPM) (Thaumetopoea processionea) is a species of moth (order: Lepidoptera) native to parts of central Europe. However, in recent years, it has become an invasive species in various countries, particularly in the United Kingdom and the Netherlands. The larvae of the OPM are covered with urticating barbed hairs (setae) causing irritating and allergic reactions at the three last larval stages (L3-L5). The aim of our study was to generate a de novo transcriptomic assembly for OPM larvae by including one non-allergenic stage (L2) and two allergenic stages (L4 and L5). A transcriptomic assembly will help identify potential allergenic peptides produced by OPM larvae, providing valuable information for developing novel therapeutic strategies and allergic immunodiagnostic assays. DATA: Transcriptomes of three larval stages of the OPM were de novo assembled and annotated using Trinity and Trinotate, respectively. A total of 145,251 transcripts from 99,868 genes were identified. Bench-marking universal single-copy orthologues analysis indicated high completeness of the assembly. About 19,600 genes are differentially expressed between the non-allergenic and allergenic larval stages. The data provided here contribute to the characterization of OPM, which is both an invasive species and a health hazard.


Subject(s)
Larva , Moths , Transcriptome , Animals , Moths/genetics , Moths/immunology , Larva/genetics , Larva/metabolism , Larva/immunology , Gene Expression Profiling , Allergens/immunology , Allergens/genetics
2.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891986

ABSTRACT

Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.


Subject(s)
Actinidia , Allergens , Cross Reactions , Food Hypersensitivity , Immunoglobulin E , Latex , Musa , Humans , Cross Reactions/immunology , Food Hypersensitivity/immunology , Allergens/immunology , Allergens/genetics , Musa/immunology , Musa/genetics , Immunoglobulin E/immunology , Actinidia/immunology , Female , Latex/immunology , Male , Plant Proteins/immunology , Plant Proteins/genetics , Adult , Antigens, Plant/immunology , Antigens, Plant/genetics , Amino Acid Sequence , Epitopes, T-Lymphocyte/immunology , Middle Aged , Adolescent , Child , Young Adult
3.
Front Immunol ; 15: 1379833, 2024.
Article in English | MEDLINE | ID: mdl-38911871

ABSTRACT

Pollen from Salsola kali, i.e., saltwort, Russian thistle, is a major allergen source in the coastal regions of southern Europe, in Turkey, Central Asia, and Iran. S. kali-allergic patients mainly suffer from hay-fever (i.e., rhinitis and conjunctivitis), asthma, and allergic skin symptoms. The aim of this study was to investigate the importance of individual S. kali allergen molecules. Sal k 1, Sal k 2, Sal k 3, Sal k 4, Sal k 5, and Sal k 6 were expressed in Escherichia coli as recombinant proteins containing a C-terminal hexahistidine tag and purified by nickel affinity chromatography. The purity of the recombinant allergens was analyzed by SDS-PAGE. Their molecular weight was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and their fold and secondary structure were studied by circular dichroism (CD) spectroscopy. Sera from clinically well-characterized S. kali-allergic patients were used for IgE reactivity and basophil activation experiments. S. kali allergen-specific IgE levels and IgE levels specific for the highly IgE cross-reactive profilin and the calcium-binding allergen from timothy grass pollen, Phl p 12 and Phl p 7, respectively, were measured by ImmunoCAP. The allergenic activity of natural S. kali pollen allergens was studied in basophil activation experiments. Recombinant S. kali allergens were folded when studied by CD analysis. The sum of recombinant allergen-specific IgE levels and allergen-extract-specific IgE levels was highly correlated. Sal k 1 and profilin, reactive with IgE from 64% and 49% of patients, respectively, were the most important allergens, whereas the other S. kali allergens were less frequently recognized. Specific IgE levels were highest for profilin. Of note, 37% of patients who were negative for Sal k 1 showed IgE reactivity to Phl p 12, emphasizing the importance of the ubiquitous cytoskeletal actin-binding protein, profilin, for the diagnosis of IgE sensitization in S. kali-allergic patients. rPhl p 12 and rSal k 4 showed equivalent IgE reactivity, and the clinical importance of profilin was underlined by the fact that profilin-monosensitized patients suffered from symptoms of respiratory allergy to saltwort. Accordingly, profilin should be included in the panel of allergen molecules for diagnosis and in molecular allergy vaccines for the treatment and prevention of S. kali allergy.


Subject(s)
Allergens , Cross Reactions , Immunoglobulin E , Pollen , Profilins , Salsola , Humans , Profilins/immunology , Profilins/chemistry , Immunoglobulin E/immunology , Allergens/immunology , Allergens/genetics , Salsola/immunology , Female , Pollen/immunology , Male , Cross Reactions/immunology , Adult , Recombinant Proteins/immunology , Rhinitis, Allergic, Seasonal/immunology , Middle Aged , Basophils/immunology , Basophils/metabolism , Antigens, Plant/immunology , Antigens, Plant/genetics , Young Adult , Adolescent , Plant Proteins/immunology , Plant Proteins/genetics
4.
J Agric Food Chem ; 72(23): 13402-13414, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38821040

ABSTRACT

Scy p 8 (triosephosphate isomerase) as a crab allergen in inducing distinct T-helper (Th) cell differentiation and a linear epitope associated with allergenicity remain elusive. In this study, mice sensitized with Scy p 8 exhibited significantly upregulated levels of IgE, IgG1, and IL-4 release, inducing a Th2 immune response. Moreover, the release of IFN-γ (Th1) and the levels of Treg cells were downregulated, while IL-17A (Th17) was upregulated, indicating that Scy p 8 disrupted the Th1/Th2 balance and Th17/Treg balance in mice. Furthermore, bioinformatics prediction and serum samples from crab-allergic patients and mice enabled the discovery of 8 linear epitopes of Scy p 8. Meanwhile, the analysis of peptide similarity and tertiary superposition revealed that 8 epitopes of Scy p 8 exhibited conservation across various species, potentially resulting in cross-reactivity. These findings possess the potential to enhance the comprehension of crab allergens, thereby establishing a foundation for investigating cross-reactivity.


Subject(s)
Allergens , Brachyura , Epitopes , Mice, Inbred BALB C , Animals , Brachyura/immunology , Brachyura/genetics , Brachyura/chemistry , Allergens/immunology , Allergens/chemistry , Allergens/genetics , Humans , Epitopes/immunology , Epitopes/chemistry , Mice , Female , Shellfish Hypersensitivity/immunology , Immunoglobulin E/immunology , Arthropod Proteins/immunology , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/blood , Th2 Cells/immunology , Cross Reactions , Male , Interleukin-4/immunology , Interleukin-4/genetics , Adult , Th1 Cells/immunology , Interferon-gamma/immunology , Interferon-gamma/genetics
5.
J Agric Food Chem ; 72(22): 12788-12797, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778779

ABSTRACT

Fish from the pike (Esox) genus are valued in gastronomy for their superior meat quality. However, they can cause allergic reactions in sensitive consumers. This work aimed to fill the gap in the detection of pike allergens using molecular-biological techniques. New, fast, and accurate loop-mediated isothermal amplification (LAMP) and real-time PCR (qPCR) assays were designed to detect pike DNA using the parvalbumin gene as a marker. LAMP was assessed by electrophoresis, SYBR green optical detection, and real-time fluorescence detection. The latter was the most sensitive, detecting as little as 0.78 ng of pike DNA; the qPCR detection limit was 0.1 ng. The LAMP analysis took 20-70 min, which is significantly faster than qPCR. The study provides reliable detection and quantification of the parvalbumin gene in both fresh and processed samples and further highlights the versatility of the use of the parvalbumin gene for the authentication of food products and consumer protection via refined allergen risk assessment that is independent of the type of tissue or food processing method used.


Subject(s)
Allergens , Esocidae , Food Hypersensitivity , Parvalbumins , Parvalbumins/genetics , Parvalbumins/immunology , Parvalbumins/analysis , Allergens/genetics , Allergens/analysis , Allergens/immunology , Animals , Food Hypersensitivity/immunology , Esocidae/genetics , Esocidae/immunology , Risk Assessment , Fish Proteins/genetics , Fish Proteins/immunology , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Humans , Food Contamination/analysis , Biomarkers/analysis , Molecular Diagnostic Techniques
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791214

ABSTRACT

Common ragweed pollen allergy has become a health burden worldwide. One of the major allergens in ragweed allergy is Amb a 1, which is responsible for over 90% of the IgE response in ragweed-allergic patients. The major allergen isoform Amb a 1.01 is the most allergenic isoform in ragweed pollen. So far, no recombinant Amb a 1.01 with similar allergenic properties to its natural counterpart (nAmb a 1.01) has been produced. Hence, this study aimed to produce a recombinant Amb a 1.01 with similar properties to the natural isoform for improved ragweed allergy management. Amb a 1.01 was expressed in insect cells using a codon-optimized DNA construct with a removable N-terminal His-Tag (rAmb a 1.01). The recombinant protein was purified by affinity chromatography and physicochemically characterized. The rAmb a 1.01 was compared to nAmb a 1.01 in terms of the IgE binding (enzyme-linked immunosorbent assay (ELISA), immunoblot) and allergenic activity (mediator release assay) in well-characterized ragweed-allergic patients. The rAmb a 1.01 exhibited similar IgE reactivity to nAmb a 1.01 in different IgE-binding assays (i.e., IgE immunoblot, ELISA, quantitative ImmunoCAP inhibition measurements). Furthermore, the rAmb a 1.01 showed comparable dose-dependent allergenic activity to nAmb a 1.01 regarding basophil activation. Overall, the results showed the successful expression of an rAmb a 1.01 with comparable characteristics to the corresponding natural isoform. Our findings provide the basis for an improvement in ragweed allergy research, diagnosis, and immunotherapy.


Subject(s)
Allergens , Ambrosia , Antigens, Plant , Immunoglobulin E , Recombinant Proteins , Humans , Antigens, Plant/immunology , Antigens, Plant/genetics , Antigens, Plant/chemistry , Immunoglobulin E/immunology , Animals , Allergens/immunology , Allergens/genetics , Ambrosia/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Female , Adult , Plant Proteins/immunology , Plant Proteins/genetics , Plant Proteins/chemistry , Rhinitis, Allergic, Seasonal/immunology , Male , Middle Aged , Plant Extracts/chemistry
7.
Plant Genome ; 17(2): e20442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481294

ABSTRACT

Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype-a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.


Subject(s)
Allergens , Ambrosia , Genome, Plant , Herbicide Resistance , Ambrosia/genetics , Allergens/genetics , Herbicide Resistance/genetics , Humans , Karyotype , Herbicides/pharmacology , Chromosomes, Plant
8.
J Allergy Clin Immunol ; 154(1): 51-58, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555980

ABSTRACT

Gene editing technology has emerged as a powerful tool in all aspects of health research and continues to advance our understanding of critical and essential elements in disease pathophysiology. The clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology has been used with precision to generate gene knockouts, alter genes, and identify genes that cause disease. The full spectrum of allergic/atopic diseases, in part because of shared pathophysiology, is ripe for studies with this technology. In this way, novel culprit genes are being identified and allow for manipulation of triggering allergens to reduce allergenicity and disease. Notwithstanding current limitations on precision and potential off-target effects, newer approaches are rapidly being introduced to more fully understand specific gene functions as well as the consequences of genetic manipulation. In this review, we examine the impact of editing technologies of novel genes relevant to peanut allergy and asthma as well as how gene modification of common allergens may lead to the deletion of allergenic proteins.


Subject(s)
Allergens , CRISPR-Cas Systems , Gene Editing , Humans , Allergens/immunology , Allergens/genetics , Animals , Hypersensitivity/genetics , Hypersensitivity/immunology , Gene Deletion , Asthma/genetics , Asthma/immunology , Peanut Hypersensitivity/genetics , Peanut Hypersensitivity/immunology
9.
Sci Rep ; 14(1): 6696, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509156

ABSTRACT

Direct exposure to the fungal species Alternaria alternata is a major risk factor for the development of asthma, allergic rhinitis, and inflammation. As of November 23rd 2020, the NCBI protein database showed 11,227 proteins from A. alternata genome as hypothetical proteins (HPs). Allergens are the main causative of several life-threatening diseases, especially in fungal infections. Therefore, the main aim of the study is to identify the potentially allergenic inducible proteins from the HPs in A. alternata and their associated functional assignment for the complete understanding of the complex biological systems at the molecular level. AlgPred and Structural Database of Allergenic Proteins (SDAP) were used for the prediction of potential allergens from the HPs of A. alternata. While analyzing the proteome data, 29 potential allergens were predicted by AlgPred and further screening in SDAP confirmed the allergic response of 10 proteins. Extensive bioinformatics tools including protein family classification, sequence-function relationship, protein motif discovery, pathway interactions, and intrinsic features from the amino acid sequence were used to successfully predict the probable functions of the 10 HPs. The functions of the HPs are characterized as chitin-binding, ribosomal protein P1, thaumatin, glycosyl hydrolase, and NOB1 proteins. The subcellular localization and signal peptide prediction of these 10 proteins has further provided additional information on localization and function. The allergens prediction and functional annotation of the 10 proteins may facilitate a better understanding of the allergenic mechanism of A. alternata in asthma and other diseases. The functional domain level insights and predicted structural features of the allergenic proteins help to understand the pathogenesis and host immune tolerance. The outcomes of the study would aid in the development of specific drugs to combat A. alternata infections.


Subject(s)
Asthma , Hypersensitivity , Allergens/genetics , Alternaria/genetics
10.
J Agric Food Chem ; 72(14): 8189-8199, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551197

ABSTRACT

Protein from Sichuan peppers can elicit mild to severe allergic reactions. However, little is known about their allergenic proteins. We aimed to isolate, identify, clone, and characterize Sichuan pepper allergens and to determine its allergenicity and cross-reactivities. Sichuan pepper seed proteins were extracted and then analyzed by SDS-PAGE. Western blotting was performed with sera from Sichuan pepper-allergic individuals. Proteins of interest were purified using hydrophobic interaction chromatography and gel filtration and further analyzed by analytical ultracentrifugation, circular dichroism spectroscopy, and mass spectrometry (MS). Their coding region was amplified in the genome. IgE reactivity and cross-reactivity of allergens were evaluated by dot blot, enzyme-linked immunosorbent assay (ELISA), and competitive ELISA. Western blot showed IgE binding to a 55 kDa protein. This protein was homologous to the citrus proteins and has high stability and a sheet structure. Four DNA sequences were cloned. Six patients' sera (60%) showed specific IgE reactivity to this purified 11S protein, which was proved to have cross-reactivation with extracts of cashew nuts, pistachios, and citrus seeds. A novel allergen in Sichuan pepper seeds, Zan b 2, which belongs to the 11S globulin family, was isolated and identified. Its cross-reactivity with cashew nuts, pistachios, and citrus seeds was demonstrated.


Subject(s)
Allergens , Nut Hypersensitivity , Humans , Allergens/genetics , Allergens/chemistry , Legumins , Plant Proteins/genetics , Plant Proteins/chemistry , Cross Reactions , Cloning, Molecular , Immunoglobulin E/metabolism
11.
PLoS Negl Trop Dis ; 18(2): e0011972, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38354188

ABSTRACT

BACKGROUND: Tropical pulmonary eosinophilia (TPE) is a chronic respiratory syndrome associated with Lymphatic Filariasis (LF), a tropical parasitic infection of the human, transmitted by mosquitoes. The larval form of LF (microfilariae) are trapped in the lungs of TPE subjects have a major role in initiating the TPE syndrome. To date, there are no reports on the potential allergen that is responsible for generating parasite-specific IgE in TPE. METHODOLOGY/PRINCIPAL FINDINGS: In this project, we screened a cDNA expression library of the microfilarial stages of Wuchereria bancrofti with monoclonal IgE antibodies prepared from subjects with clinical filarial infections. Our studies identified a novel molecule that showed significant sequence similarity to an allergen. A blast analysis showed the presence of similar proteins in a number of nematodes parasites. Thus, we named this molecule as Nematode Pan Allergen (NPA). Subsequent functional analysis showed that NPA is a potent allergen that can cause release of histamine from mast cells, induce secretion of proinflammatory cytokines from alveolar macrophages and promote accumulation of eosinophils in the tissue, all of which occur in TPE lungs. CONCLUSIONS/SIGNIFICANCE: Based on our results, we conclude that the NPA protein secreted by the microfilariae of W. bancrofti may play a significant role in the pathology of TPE syndrome in LF infected individuals. Further studies on this molecule can help design an approach to neutralize the NPA in an attempt to reduce the pathology associated with TPE in LF infected subjects.


Subject(s)
Elephantiasis, Filarial , Pulmonary Eosinophilia , Animals , Humans , Wuchereria bancrofti/genetics , Pulmonary Eosinophilia/parasitology , Allergens/genetics , Microfilariae , Immunoglobulin E
12.
Food Chem ; 444: 138650, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38330611

ABSTRACT

Sesame (Sesamum indicum L.) is an important allergenic food whose presence can be the cause of severe allergic reactions in sensitised individuals. In this work, nanoplate digital PCR (ndPCR) was used to develop two methods to detect trace amounts of sesame in processed foods and compared with previously proposed real-time PCR assays. Two independent ndPCR approaches were successfully advanced, achieving sensitivities of 5 and 0.1 mg/kg of sesame in dough/biscuits, targeting the CO6b-1 and ITS regions, respectively. The sensitivity using both targets was improved by one order of magnitude comparing with real-time PCR and was not affected by food processing. CO6b-1 system was not influenced by food matrix, exhibiting similar performance regardless the use of complex matrix extracts or serial diluted DNA. Herein, ndPCR was proposed for the first time for the detection of allergenic foods with the advantage of providing better performance than real-time PCR regarding sensitivity and robustness.


Subject(s)
Food Hypersensitivity , Sesamum , Humans , Sesamum/genetics , Food Analysis/methods , Real-Time Polymerase Chain Reaction , DNA, Plant/genetics , DNA, Plant/analysis , Allergens/genetics , Allergens/analysis
13.
Int Immunopharmacol ; 129: 111607, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38330798

ABSTRACT

Novel allergen immunotherapy (AIT) approaches necessitate the use of more effective and safe therapeutics, which can be accomplished by employing novel adjuvants for improved innate immune cell activation, as well as hypoallergenic allergen forms. In this study, we investigate the immunomodulatory effects of a chimera rBet v 1a-BanLecwt (rBv1a-BLwt; Cwt) composed of the major birch pollen allergen Bet v 1a and banana lectin (BanLecwt; BLwt) and two novel chimeras, rBv1l-BLH84T (rBet v 1l-BanLecH84T; C1) and rBLH84T-Bv1l (rBanLecH84T-Bet v 1l; C2), both composed of BLH84T and hypoallergenic birch pollen allergen Bv1l in the co-culture model Caco-2/THP-1, and PBMCs from donors with birch pollen allergy. The chimeric molecules rBv1l-BLH84T (C1) and rBLH84T-Bv1l (C2) were created in silico and then produced in E. coli using recombinant DNA technology. Real-time PCR analysis of gene expression following compound treatment in the co-culture model revealed that all three chimeras have the potential to induce the anti-inflammatory cytokine IL-10 gene expression in Caco-2 cells and IFN-γ gene expression in THP-1 cells. Sandwich ELISA revealed that Cwt increased IL-10 secretion and IFN-/IL-4 levels in PBMCs from birch pollen allergic donors, whereas C1 and C2 were less effective. The findings suggest that Cwt should be analyzed further due to its potential benefit in AIT.


Subject(s)
Betula , Hypersensitivity , Humans , Betula/genetics , Caco-2 Cells , Interleukin-4/genetics , Pollen , Interleukin-10/genetics , Coculture Techniques , Up-Regulation , Escherichia coli/genetics , Plant Proteins/genetics , Antigens, Plant/genetics , Allergens/genetics , Gene Expression , Recombinant Proteins
14.
Braz J Biol ; 83: e274260, 2024.
Article in English | MEDLINE | ID: mdl-38422259

ABSTRACT

Several studies have been carried out to expand the use of Ricinus communis L. castor bean (Ricinus communis L castor bean.). This oilseed finds appropriate conditions for its development in Brazil, with more than 700 applications. The main allergens of this plant are Ric c1 and Ric c3, that cross-react with various aeroallergens and food allergens such as peanuts, soybeans, corn, and wheat. This study aimed to determine the effect of mutations in Ric c3 amino acid residues known to affect IgE binding and allergy challenges. Based on the Ric c3 structure, B-cell epitopes, and amino acid involved in IgE binding, we produce recombinant mutant protein, mrRic c3, secreted from E. coli. Strategic glutamic acid residues in IgE-biding regions were changed by Leucine. The allergenicity of mrRic c3 was evaluated by determination of IgE, IgG1, and total IgG in immunized Balb/c mice and by degranulation assays of mast cells isolated from Wistar rats. The mrRic c3 presented a percentage of mast cell degranulation close to that seen in the negative control, and the immunization of mice with mrRic c3 presented lower levels of IgE and IgG1 than the group treated with the protein without mutations. The mutant mrRic c3 had an altered structure and reduced ability to stimulate pro-inflammatory responses and bind IgE but retained its ability to induce blocking antibodies. Thus, producing a hypoallergenic mutant allergen (mrRic c3) may be essential in developing new AIT strategies.


Subject(s)
Allergens , Escherichia coli , Rats , Mice , Animals , Allergens/chemistry , Allergens/genetics , Escherichia coli/genetics , Immunoglobulin E , Rats, Wistar , Recombinant Proteins , Immunoglobulin G , Amino Acids
15.
Food Chem ; 445: 138761, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38367561

ABSTRACT

The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.


Subject(s)
Bombyx , Hypersensitivity , Animals , Humans , Bombyx/genetics , Bombyx/chemistry , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid , Real-Time Polymerase Chain Reaction , Allergens/genetics
16.
Int J Biol Macromol ; 259(Pt 2): 129232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191104

ABSTRACT

Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.


Subject(s)
Ambrosia , Hypersensitivity , Ambrosia/genetics , Antigens, Plant/genetics , Ecosystem , Allergens/genetics , Allergens/chemistry , Pollen/genetics , Chromosomes
18.
Genes (Basel) ; 14(12)2023 11 27.
Article in English | MEDLINE | ID: mdl-38136967

ABSTRACT

Allergy to shellfishes, including mollusks and crustaceans, is a growing health concern worldwide. Crustacean shellfish is one of the "Big Eight" allergens designated by the U.S. Food and Drug Administration and is the major cause of food-induced anaphylaxis. Shrimp is one of the most consumed crustaceans triggering immunoglobulin E (IgE)-mediated allergic reactions. Over the past decades, the allergen repertoire of shrimp has been unveiled based on conventional immunodetection methods. With the availability of genomic data for penaeid shrimp and other technological advancements like transcriptomic approaches, new shrimp allergens have been identified and directed new insights into their expression levels, cross-reactivity, and functional impact. In this review paper, we summarize the current knowledge on shrimp allergens, as well as allergens from other crustaceans and mollusks. Specific emphasis is put on the genomic information of the shrimp allergens, their protein characteristics, and cross-reactivity among shrimp and other organisms.


Subject(s)
Hypersensitivity , Penaeidae , United States , Animals , Humans , Allergens/genetics , Shellfish , Mollusca , Penaeidae/genetics , Genomics
19.
Int Immunopharmacol ; 125(Pt A): 111160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948987

ABSTRACT

BACKGROUND: Platanus acerifolia is recognized as a source of allergenic pollen worldwide. Currently, five Platanus acerifolia pollen allergens belonging to different protein families have been identified, in which profilin and enolase were characterized by our group recently. Besides, we also screened and identified a novel allergen candidate as triosephosphate isomerase, which was different from already known types of pollen allergens. However, the role of this novel allergen group in Platanus acerifolia pollen allergy was unclear. Therefore, we further investigated the allergenicity and clarify its clinical relevance in this study. METHODS: The natural triosephosphate isomerase from Platanus acerifolia pollen was purified by three steps of chromatography and identified by mass spectrometry. The cDNA sequence of this protein was matched from in-house transcripts based on internal peptide sequences, which was further confirmed by PCR cloning. The recombinant triosephosphate isomerase was expressed and purified from E. coli. Allergenicity analysis of this protein was carried out by enzyme linked immunosorbent assay, immunoblot, and basophil activation test. RESULTS: A novel allergen group belonging to triosephosphate isomerase was firstly identified in Platanus acerifolia pollen and named as Pla a 7. The cDNA of Pla a 7 contained an open reading frame of 762 bp encoding 253 amino acids. The natural Pla a 7 displayed 41.4% IgE reactivity with the patients' sera by ELISA, in which the absorbance value showed correlation to the serum sIgE against Platanus acerifolia pollen extract. Inhibition of IgE-binding to pollen extracts reached 26%-94% in different Pla a 7-positive sera. The recombinant Pla a 7 exhibited weaker IgE-reactivity in ELISA than its natural form, but showed comparable activity in immunoblot. The allergenicity was further confirmed by basophil activation test. CONCLUSIONS: Triosephosphate isomerase (Pla a 7) was first recognized as pollen allergen in Platanus acerifolia pollen, which is a completely different type of pollen allergen from those previously reported. This finding is essential to enrich information on allergen components and pave the way for molecular diagnosis or treatment strategies for Platanus acerifolia pollen allergy.


Subject(s)
Rhinitis, Allergic, Seasonal , Humans , Rhinitis, Allergic, Seasonal/diagnosis , Escherichia coli/genetics , DNA, Complementary , Triose-Phosphate Isomerase/genetics , Antigens, Plant/chemistry , Allergens/genetics , Allergens/chemistry , Pollen , Immunoglobulin E
20.
Food Chem Toxicol ; 182: 114094, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925014

ABSTRACT

Recent advancements in the generation of high-throughput multi-omics data have provided a vast array of candidate genes for the genetic engineering of plants. However, as part of their safety assessment, newly expressed proteins in genetically modified crops must be evaluated for potential cross-reactivity with known allergens. In this study, we developed transgenic canola plants expressing the Arabidopsis thaliana PAP17 gene and a novel selectable marker composed of the ptxD gene from Pseudomonas stutzeri. To evaluate the potential allergenic cross-reactivity of the AtPAP17 and PTXD proteins expressed in transgenic canola, we applied a comprehensive approach utilizing sequence-based, motif-based, and 3D structure-based analyses. Our results demonstrate that the risk of conferring cross-reactivity with known allergens is negligible, indicating that the expression of these proteins in transgenic canola poses a low allergenic risk.


Subject(s)
Oxidoreductases , Phosphites , Plants, Genetically Modified/metabolism , Phosphites/metabolism , NAD , Allergens/genetics , Crops, Agricultural/genetics , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL