Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.570
Filter
1.
Sci Rep ; 14(1): 18946, 2024 08 15.
Article in English | MEDLINE | ID: mdl-39147799

ABSTRACT

This study used the dip-coating method to develop a new biocompatible coating composed of polylactide (PLA) and casein for ZnMg1.2 wt% alloy implants. It evaluated its impact on the alloy's degradation in a simulated body fluid. After 168 h of immersion in Ringer's solution, surface morphology analysis showed that the PLA-casein coatings demonstrated uniform degradation, with the corrosion current density measured at 48 µA/cm2. Contact angle measurements indicated that the average contact angles for the PLA-casein-coated samples were below 80°, signifying a hydrophilic nature that promotes cell adhesion. Fourier-transform infrared spectroscopy (FTIR) revealed no presence of lactic acid on PLA-casein coatings after immersion, in contrast to pure PLA coatings. Pull-off adhesion tests showed tensile strength values of 7.6 MPa for pure PLA coatings and 5 MPa for PLA-casein coatings. Electrochemical tests further supported the favorable corrosion resistance of the PLA-casein coatings, highlighting their potential to reduce tissue inflammation and improve the biocompatibility of ZnMg1.2 wt% alloy implants.


Subject(s)
Alloys , Caseins , Coated Materials, Biocompatible , Polyesters , Alloys/chemistry , Caseins/chemistry , Coated Materials, Biocompatible/chemistry , Polyesters/chemistry , Corrosion , Materials Testing , Surface Properties , Spectroscopy, Fourier Transform Infrared , Tensile Strength
2.
PLoS One ; 19(8): e0300270, 2024.
Article in English | MEDLINE | ID: mdl-39106270

ABSTRACT

Total hip arthroplasty (THA) is one of the most successful orthopaedic interventions globally, with over 450,000 procedures annually in the U.S. alone. However, issues like aseptic loosening, dislocation, infection and stress shielding persist, necessitating complex, costly revision surgeries. This highlights the need for continued biomaterials innovation to enhance primary implant integrity and longevity. Implant materials play a pivotal role in determining long-term outcomes, with titanium alloys being the prominent choice. However, emerging evidence indicates scope for optimized materials. The nickel-free ß titanium alloy Ti-27Nb shows promise with excellent biocompatibility and mechanical properties. Using finite element analysis (FEA), this study investigated the biomechanical performance and safety factors of a hip bone implant made of nickel-free titanium alloy (Ti-27Nb) under actual loading during routine day life activities for different body weights. The FEA modelled physiological loads during walking, jogging, stair ascent/descent, knee bend, standing up, sitting down and cycling for 75 kg and 100 kg body weights. Comparative analyses were conducted between untreated versus 816-hour simulated body fluid (SBF) treated implant conditions to determine in vivo degradation effects. The FEA predicted elevated von Mises stresses in the implant neck for all activities, especially stair climbing, due to its smaller cross-section. Stresses increased substantially with a higher 100 kg body weight compared to 75 kg, implying risks for heavier patients. Safety factors were reduced by up to 58% between body weights, although remaining above the desired minimum value of 1. Negligible variations were observed between untreated and SBF-treated responses, attributed to Ti-27Nb's excellent biocorrosion resistance. This comprehensive FEA provided clinically relevant insights into the biomechanical behaviour and integrity of the Ti-27Nb hip implant under complex loading scenarios. The results can guide shape and material optimization to improve robustness against repetitive stresses over long-term use. Identifying damage accumulation and failure risks is crucial for hip implants encountering real-world variable conditions. The negligible SBF effects validate Ti-27Nb's resistance to physiological degradation. Overall, the study significantly advances understanding of Ti-27Nb's suitability for reliable, durable hip arthroplasties with low revision rates.


Subject(s)
Alloys , Finite Element Analysis , Hip Prosthesis , Stress, Mechanical , Titanium , Hip Prosthesis/adverse effects , Humans , Alloys/chemistry , Arthroplasty, Replacement, Hip/adverse effects , Weight-Bearing , Niobium/chemistry , Biomechanical Phenomena , Materials Testing , Prosthesis Design
3.
BMC Oral Health ; 24(1): 902, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107737

ABSTRACT

BACKGROUND: Long-term success of implant restoration depends on many factors one of them is the sufficient implant stability which is lowered in compromised bone density sites such as the maxilla as it is categorized as type III & IV bone, so searching for a new innovation and updates in implant material and features is very mandatory. So, the aim of this study was to compare between two implant materials (roxolid and traditional titanium) on the primary and secondary stability of implant retained maxillary overdenture. METHODS: Eighteen completely edentulous patients were selected. All patients received maxillary implant-retained overdentures and lower complete dentures; patients were divided equally into two groups according to the type of implant materials. Group A received a total number of 36 implants made of roxolid material and Group B received a total number of 36 implants made of traditional titanium alloys. Implant stability was assessed using ostell device, the primary implant stability was measured at the day of implant installation however, secondary implant stability was measured after six weeks of implant placement. Paired t-test was used to compare between primary and secondary stability in the same group and an independent t-test was used to compare between the two groups with a significant level < 0.05. RESULTS: Independent t-test revealed a significant difference between the two groups with p -value = 0.0141 regarding primary stability and p-value < 0.001 regarding secondary stability, as roxolid implant group was statistically higher stability than titanium group in both. Paired t- test showed a statistically significant difference in roxolid implant group with p-value = 0.0122 however, there was non-statistically significant difference in titanium group with p-value = 0.636. Mann Whitney test showed a significant difference between the two groups regarding amount of change in stability with p value = 0.191. roxolid implant group showed a higher amount of change in stability than the titanium implant group. CONCLUSION: Within the limitation of this study, it could be concluded that: Roxolid implants showed promising results regarding primary and secondary stability compared to conventional Titanium implants and can be a better alternative in implant retained maxillary overdentures. TRIAL REGISTRATION: Retrospectively NCT06334770 at 26-3-2024.


Subject(s)
Dental Prosthesis, Implant-Supported , Denture, Overlay , Maxilla , Titanium , Humans , Male , Female , Maxilla/surgery , Middle Aged , Dental Implants , Dental Alloys/chemistry , Aged , Zirconium , Denture Retention , Dental Materials/chemistry , Alloys
4.
ACS Biomater Sci Eng ; 10(8): 5300-5312, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39087496

ABSTRACT

The development of well-adherent, amorphous, and bioactive glass coatings for metallic implants remains a critical challenge in biomedical engineering. Traditional bioactive glasses are susceptible to crystallization and exhibit a thermal expansion mismatch with implant materials. This study introduces a novel approach to overcome these limitations by employing systematic Na2O substitution with CaO in borosilicate glasses. In-depth structural analysis (MD simulations, Raman spectroscopy, and NMR) reveals a denser network with smaller silicate rings, enhancing thermal stability, reducing thermal expansion, and influencing dissolution kinetics. This tailored composition exhibited optimal bioactivity (in vitro formation of bone-like apatite within 3 days) and a coefficient of thermal expansion closely matching Ti-6Al-4V, a widely used implant material. Furthermore, a consolidation process, meticulously designed with insights from crystallization kinetics and the viscosity-temperature relationship, yielded a crack-free, amorphous coating on Ti-6Al-4V substrates. This novel coating demonstrates excellent cytocompatibility and strong antibacterial action, suggesting superior clinical potential compared with existing technologies.


Subject(s)
Coated Materials, Biocompatible , Glass , Titanium , Glass/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Titanium/chemistry , Prostheses and Implants , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing , Surface Properties , Alloys/chemistry , Humans
5.
Langmuir ; 40(32): 16791-16803, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39086155

ABSTRACT

Orthopedic and dental implants made from Ti6Al4V are widely used due to their excellent mechanical properties and biocompatibility. However, the long-term performance of these implants can be compromised by bacterial infections. This study explores the development of hierarchically textured surfaces with enhanced bactericidal properties to address such challenges. Hierarchical surface structures were developed by combining microscale features produced by a microsecond laser and superimposed submicron features produced using a femtosecond laser. Microscale patterns were produced by the pulsed laser surface melting process, whereas submicrometer laser-induced periodic surface structures were created on top of them by femtosecond laser processing. Escherichia coli bacterial cells were cultured on the textured surface. After 24 h, a staining analysis was performed using SYTO9 and PI dyes to investigate the samples with a confocal microscope for live dead assays. Results showed bacterial colony formation onto the microscale surface textures with live bacterial cells, whereas the hierarchical surface textures display segregated and physically damaged bacterial cell attachments on surfaces. The hierarchical surface textures showed ∼98% dead bacterial cells due to the combined effect of its multiscale surface features and oxide formation during the laser processing steps. The efficacy of hierarchical surface textures in enhancing the antibacterial behavior of Ti6Al4V implants is evident from the conducted research. Such laser-based surface treatments can find potential applications in different industrial sectors.


Subject(s)
Alloys , Anti-Bacterial Agents , Escherichia coli , Lasers , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Alloys/chemistry , Alloys/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
J Orthop Surg Res ; 19(1): 499, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175032

ABSTRACT

BACKGROUND: Unicompartmental knee arthroplasty (UKA) has been proved to be a successful treatment for osteoarthritis patients. However, the stress shielding caused by mismatch in mechanical properties between human bones and artificial implants remains as a challenging issue. This study aimed to properly design a bionic porous tibial implant and evaluate its biomechanical effect in reconstructing stress transfer pathway after UKA surgery. METHODS: Voronoi structures with different strut sizes and porosities were designed and manufactured with Ti6Al4V through additive manufacturing and subjected to quasi-static compression tests. The Gibson-Ashby model was used to relate mechanical properties with design parameters. Subsequently, finite element models were developed for porous UKA, conventional UKA, and native knee to evaluate the biomechanical effect of tibial implant with designed structures during the stance phase. RESULTS: The internal stress distribution on the tibia plateau in the medial compartment of the porous UKA knee was found to closely resemble that of the native knee. Furthermore, the mean stress values in the medial regions of the tibial plateau of the porous UKA knee were at least 44.7% higher than that of the conventional UKA knee for all subjects during the most loading conditions. The strain shielding reduction effect of the porous UKA knee model was significant under the implant and near the load contact sites. For subject 1 to 3, the average percentages of nodes in bone preserving and building region (strain values range from 400 to 3000 µm/m) of the porous UKA knee model, ranging from 68.7 to 80.5%, were higher than that of the conventional UKA knee model, ranging from 61.6 to 68.6%. CONCLUSIONS: The comparison results indicated that the tibial implant with designed Voronoi structure offered better biomechanical functionality on the tibial plateau after UKA. Additionally, the model and associated analysis provide a well-defined design process and dependable selection criteria for design parameters of UKA implants with Voronoi structures.


Subject(s)
Arthroplasty, Replacement, Knee , Finite Element Analysis , Knee Prosthesis , Prosthesis Design , Stress, Mechanical , Arthroplasty, Replacement, Knee/methods , Humans , Porosity , Tibia/surgery , Biomechanical Phenomena , Titanium , Alloys
7.
J Orthop Surg Res ; 19(1): 501, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175072

ABSTRACT

New technologies in additive manufacturing and patient-specific CT-based custom implant designs make it possible for previously unimaginable salvage and limb-sparing operations a practical reality. This study presents the design and fabrication of a lattice-structured implant for talus replacement surgery. Our primary case involved a young adult patient who had sustained severe damage to the talus, resulting in avascular necrosis and subsequent bone collapse. This condition caused persistent and debilitating pain, leading the medical team to consider amputation of the left foot at the ankle level as a last resort. Instead, we proposed a Ti6Al4V-based patient-specific implant with lattice structure specifically designed for pan-talar fusion. Finite element simulation is conducted to estimate its performance. To ensure its mechanical integrity, uniaxial compression experiments were conducted. The implant was produced using selective laser melting technology, which allowed for precise and accurate construction of the unique lattice structure. The patient underwent regular monitoring for a period of 24 months. At 2-years follow-up the patient successfully returned to activities without complication. The patient's functional status was improved, limb shortening was minimized.


Subject(s)
Osteonecrosis , Prosthesis Design , Talus , Humans , Talus/surgery , Talus/injuries , Talus/diagnostic imaging , Osteonecrosis/surgery , Osteonecrosis/etiology , Osteonecrosis/diagnostic imaging , Male , Adult , Alloys , Titanium , Prostheses and Implants , Young Adult , Finite Element Analysis , Tomography, X-Ray Computed
8.
J Mater Sci Mater Med ; 35(1): 52, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177838

ABSTRACT

Because nickel-titanium (NiTi) alloys have unique functions, such as superelasticity, shape memory, and hysteresis similar to bone in the loading-unloading cycles of their recoverable deformations. They likely offer good bone integration, a low loosening rate, individual customization, and ease of insertion. Due to the poor processability of NITI, traditional methods cannot manufacture NiTi products with complex shapes. Orthopedic NiTi implants need to show an adequate fracture elongation of at least 8%. Additive manufacturing can be used to prepare NiTi implants with complex structures and tunable porosity. However, as previously reported, additively manufactured NiTi alloys could only exhibit a maximum tensile fracture strain of 7%. In new reports, a selective laser melting (SLM)-NiTi alloy has shown greater tensile strain (15.6%). Nevertheless, due to the unique microstructure of additive manufacturing NiTi that differs from traditional NITI, the biocompatibility of SLM-NITI manufactured by this new process requires further evaluation In this study, the effects of the improved NiTi alloy on bone marrow mesenchymal stem cell (BMSC) proliferation, adhesion, and cell viability were investigated via in vitro studies. A commercial Ti-6Al-4V alloy was studied side-by-side for comparison. Like the Ti-6Al-4V alloy, the SLM-NiTi alloy exhibited low cytotoxicity toward BMSCs and similar effect on cell adhesion or cell viability. This study demonstrates that the new SLM-NiTi alloy, which has exhibited improved mechanical properties, also displays excellent biocompatibility. Therefore, this alloy may be a superior implant material in biomedical implantation.


Subject(s)
Alloys , Biocompatible Materials , Cell Adhesion , Cell Proliferation , Cell Survival , Materials Testing , Mesenchymal Stem Cells , Nickel , Tensile Strength , Titanium , Titanium/chemistry , Biocompatible Materials/chemistry , Alloys/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Nickel/chemistry , Cell Survival/drug effects , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Animals , Lasers , Prostheses and Implants , Stress, Mechanical , Surface Properties
9.
Langmuir ; 40(33): 17301-17310, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39106975

ABSTRACT

This paper deals with the combined effects of immune response and osseointegration because of the lack of comprehensive studies on this topic. An antibacterial Ti surface was considered because of the high risk of infection for titanium bone implants. A chemically treated Ti6Al4 V alloy [Ti64(Sr-Ag)] with a microporous and Sr-Ag doped surface was compared to a polished version (Ti64) regarding protein adsorption (albumin and fibronectin) and osteoimmunomodulation. Characterization via fluorescence microscopy and zeta potential showed a continuous fibronectin layer on Ti64(Sr-Ag), even with preadsorbed albumin, while it remained filamentous on Ti64. Macrophages (differentiated from THP-1 monocytes) were cultured on both surfaces, with viability and cytokine release analyzed. Differently from Ti64, Ti64(Sr-Ag) promoted early anti-inflammatory responses and significant downregulation of VEGF. Ti64(Sr-Ag) also enhanced human bone marrow mesenchymal cell differentiation toward osteoblasts, when a macrophage-conditioned medium was used, influencing ALP production. Surface properties in relation to protein adsorption and osteoimmunomodulation were discussed.


Subject(s)
Alloys , Macrophages , Surface Properties , Titanium , Titanium/chemistry , Alloys/chemistry , Alloys/pharmacology , Adsorption , Humans , Macrophages/drug effects , Macrophages/immunology , Cell Differentiation/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology
10.
Int J Biol Macromol ; 277(Pt 2): 134349, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094857

ABSTRACT

This study evaluated the effect of solvent acids on the structure and corrosion resistance performance of chitosan (CS) film on MAO-treated AZ31B magnesium (Mg) alloy. Initially, CS solutions were prepared in four solvent acids: acetic acid (HAc), lactic acid (LA), hydrochloric acid (HCl), and citric acid (CA). The CS films were subsequently deposited on MAO-treated AZ31B Mg alloy via a dip-coating technique. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), contact angle measurement, and atomic force microscopy (AFM) were employed to characterize the surface and cross-sectional morphology as well as chemical composition. Furthermore, the samples were subjected to potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests to assess their resistance against corrosion in simulated body fluid (SBF). These results indicated that the CS film prepared with LA exhibited the lowest surface roughness (Ra = 31.2 nm), the largest contact angle (CA = 98.50°), and the thickest coating (36 µm). Additionally, it demonstrated superior corrosion protection performance, with the lowest corrosion current density (Icorr = 3.343 × 10-7 A/cm2), highest corrosion potential (Ecorr = -1.49 V), and highest polarization resistance (Rp = 5.914 × 104 Ω·cm2) in SBF. These results indicated that solvent acid types significantly influenced their interactions with CS. Thus, the structure and corrosion protection performance of CS films can be optimized by selecting an appropriate solvent acid.


Subject(s)
Alloys , Chitosan , Solvents , Chitosan/chemistry , Corrosion , Alloys/chemistry , Solvents/chemistry , Magnesium/chemistry , Spectroscopy, Fourier Transform Infrared , Acids/chemistry , Surface Properties , X-Ray Diffraction
11.
Stomatologiia (Mosk) ; 103(4): 10-19, 2024.
Article in Russian | MEDLINE | ID: mdl-39171338

ABSTRACT

THE AIM OF THE STUDY: To develop and implement a comprehensive algorithm for the rehabilitation of patients after partial resection of the mandible using a titanium «growing¼ endoprosthesis. MATERIAL AND METHODS: The study included 16 patients aged 2 to 7 years, with benign (6 cases) and malignant (10 cases) tumors of the mandible. The patients were divided into 2 groups depending on the time of fixation of the endoprosthesis. Group 1 included patients with simultaneous installation of a prosthesis (7 people). Group 2 included patients with delayed installation of an endoprosthesis (9 people). For the reconstruction of the mandible, «growing¼ titanium endoprostheses made of Ti6Al4V alloy of various designs were used. Removable orthodontic devices of mechanical and functional type of action, standard elastic mouthguards were used in the process of dental treatment. RESULTS: A comprehensive algorithm has been developed for the rehabilitation of children after partial resection of the mandible, depending on the time of fixation of the prosthesis and the volume of surgical intervention. CONCLUSION: The developed algorithm of complex rehabilitation using a «growing¼ endoprosthesis and dental support at the pre and postoperative stages allows to reduce the volume of secondary deformation of facial structures and dentition.


Subject(s)
Mandible , Mandibular Neoplasms , Titanium , Humans , Child , Child, Preschool , Mandibular Neoplasms/surgery , Male , Female , Mandible/surgery , Alloys , Algorithms , Mandibular Reconstruction/methods , Mandibular Reconstruction/instrumentation
12.
BMC Musculoskelet Disord ; 25(1): 650, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160506

ABSTRACT

PURPOSE: Implanted devices used in metastatic spine tumor surgery (MSTS) include pedicle screws, fixation plates, fixation rods, and interbody devices. A material to be used to fabricate any of these devices should possess an array of properties, which include biocompatibility, no toxicity, bioactivity, low wear rate, low to moderate incidence of artifacts during imaging, tensile strength and modulus that are comparable to those of cortical bone, high fatigue strength/long fatigue life, minimal or no negative impact on radiotherapy (RT) planning and delivery, and high capability for fusion to the contiguous bone. The shortcomings of Ti6Al4V alloy for these applications with respect to these desirable properties are well recognized, opening the field for an investigation about novel biomaterials that could replace the current gold standard. Previously published reviews on this topic have exhibited significant shortcomings in the studies they included, such as a small, heterogenous sample size and the lack of a cost-benefit analysis, extremely useful to understand the practical possibility of applying a novel material on a large scale. Therefore, this review aims to collect information about the clinical performance of these biomaterials from the most recent literature, with the objective of deliberating which could potentially be better than titanium in the future, with particular attention to safety, artifact production and radiotherapy planning interference. The significant promise showed by analyzing the clinical performance of these devices warrants further research through prospective studies with a larger sample size also taking into account each aspect of the production and use of such materials. METHODS: The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. The search was performed from March 2022 to September 2023. RESULTS: At the end of the screening process, 20 articles were considered eligible for this study. Polyetheretherketone (PEEK), Carbon-fibre reinforced polyetheretherketone (CFR-PEEK), long carbon fiber reinforced polymer (LCFRP), Polymethylmethacrylate (PMMA), and carbon screw and rods were used in the included studies. CONCLUSION: CFR-PEEK displays a noninferior safety and efficacy profile to titanium implanted devices. However, it also has other advantages. By decreasing artifact production, it is able to increase detection of local tumor recurrence and decrease radiotherapy dose perturbation, ultimately bettering prognosis for patients necessitating adjuvant treatment. Nonetheless, its drawbacks have not been explored fully and still require further investigation in future studies. This does not exclude the fact that CFR-PEEK could be a valid alternative to titanium in the near future.


Subject(s)
Spinal Neoplasms , Titanium , Humans , Spinal Neoplasms/surgery , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , Alloys , Biocompatible Materials , Polymers , Treatment Outcome , Ketones , Benzophenones , Spinal Fusion/instrumentation , Spinal Fusion/methods , Pedicle Screws
13.
PLoS One ; 19(7): e0305744, 2024.
Article in English | MEDLINE | ID: mdl-39074090

ABSTRACT

Using a cutting-edge net-shape manufacturing technique called Additive Layer Manufacturing (ALM), highly complex components that are not achievable with conventional wrought and cast methods can be produced. As a result, the aerospace sector is paying closer attention to using this technology to fabricate superalloys based on nickel to develop the holistic gas turbine. Because of this, there is an increasing need for the mechanical characterisation of such material. Conventional mechanical testing is hampered by the limited availability of material that has been processed, especially given the large number of process factors that need to be assessed. Thus, the present study focuses on manufacturing CM247LC Ni-based superalloy with exceptional mechanical characteristics by laser powder bed fusion (L-PBF). This study evaluates the effect of input process variables such as laser power, scan speed, hatch distance and volumetric energy density on the mechanical performance of the LPBF CM247LC superalloy. The maximum value of as-built tensile strength obtained in the study is 997.81 MPa. Plotting Pearson's heatmap and the Feature importance (F-test) was used in the data analysis to examine the impact of input parameters on tensile strength. The accuracy of the tensile strength data classification by machine learning algorithms, such as k-nearest neighbours, Naïve Baiyes, Support vector machine, XGBoost, AdaBoost, Decision tree, Random forest, and logistic regression algorithms, was 92.5%, 83.75%, 83%, 85%, 87.5%, 90%, 91.25%, and 77.5%, respectively.


Subject(s)
Alloys , Machine Learning , Tensile Strength , Alloys/chemistry , Materials Testing/methods , Nickel/chemistry , Algorithms
14.
PLoS One ; 19(7): e0306613, 2024.
Article in English | MEDLINE | ID: mdl-38980854

ABSTRACT

Platinum and platinum-based alloys are used as the electrode material in cochlear implants because of the biocompatibility and the favorable electrochemical properties. Still, these implants can fail over time. The present study was conducted to shed light on the effects of microstructure on the electrochemical degradation of platinum. After three days of stimulation with a square wave signal, corrosive attack appeared on the platinum surface. The influence of mechanical deformation, in particular rolling, on the corrosion resistance of platinum was also prominent. The cyclic voltammetry showed a clear dependence on the electrolyte used, which was interpreted as an influence of the buffer in the artificial perilymph used. In addition, the polarization curves showed a shift with grain size that was not expected. This could be attributed to the defects present on the surface. These findings are crucial for the manufacture of cochlear implants to ensure their long-term functionality.


Subject(s)
Cochlear Implants , Platinum , Platinum/chemistry , Materials Testing , Corrosion , Humans , Alloys/chemistry , Surface Properties , Biocompatible Materials/chemistry
16.
BMC Microbiol ; 24(1): 270, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033146

ABSTRACT

BACKGROUND: The bacterial persistence, responsible for therapeutic failures, can arise from the biofilm formation, which possesses a high tolerance to antibiotics. This threat often occurs when a bone and joint infection is diagnosed after a prosthesis implantation. Understanding the biofilm mechanism is pivotal to enhance prosthesis joint infection (PJI) treatment and prevention. However, little is known on the characteristics of Cutibacterium acnes biofilm formation, whereas this species is frequently involved in prosthesis infections. METHODS: In this study, we compared the biofilm formation of C. acnes PJI-related strains and non-PJI-related strains on plastic support and textured titanium alloy by (i) counting adherent and viable bacteria, (ii) confocal scanning electronic microscopy observations after biofilm matrix labeling and (iii) RT-qPCR experiments. RESULTS: We highlighted material- and strain-dependent modifications of C. acnes biofilm. Non-PJI-related strains formed aggregates on both types of support but with different matrix compositions. While the proportion of polysaccharides signal was higher on plastic, the proportions of polysaccharides and proteins signals were more similar on titanium. The changes in biofilm composition for PJI-related strains was less noticeable. For all tested strains, biofilm formation-related genes were more expressed in biofilm formed on plastic that one formed on titanium. Moreover, the impact of C. acnes internalization in osteoblasts prior to biofilm development was also investigated. After internalization, one of the non-PJI-related strains biofilm characteristics were affected: (i) a lower quantity of adhered bacteria (80.3-fold decrease), (ii) an increase of polysaccharides signal in biofilm and (iii) an activation of biofilm gene expressions on textured titanium disk. CONCLUSION: Taken together, these results evidenced the versatility of C. acnes biofilm, depending on the support used, the bone environment and the strain.


Subject(s)
Biofilms , Prosthesis-Related Infections , Titanium , Biofilms/growth & development , Prosthesis-Related Infections/microbiology , Humans , Bacterial Adhesion , Propionibacteriaceae/physiology , Propionibacteriaceae/genetics , Propionibacteriaceae/drug effects , Prostheses and Implants/microbiology , Bone and Bones/microbiology , Plastics , Alloys , Surface Properties
17.
J Biomed Mater Res B Appl Biomater ; 112(8): e35452, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39042645

ABSTRACT

In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr). These metals were compared to a reference biostable cobaltchromium (CoCr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.


Subject(s)
Absorbable Implants , Materials Testing , Stents , X-Ray Microtomography , Zinc , Zinc/chemistry , Alloys/chemistry , Iron/chemistry , Corrosion
18.
Chem Commun (Camb) ; 60(60): 7729-7732, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38973292

ABSTRACT

Implant infections are a major challenge for the healthcare system. Biofilm formation and increasing antibiotic resistance of common bacteria cause implant infections, leading to an urgent need for alternative antibacterial agents. In this study, the antibiofilm behaviour of a coating consisting of a silver (Ag)/gold (Au) nanoalloy is investigated. This alloy is crucial to reduce uncontrolled potentially toxic Ag+ ion release. In neutral pH environments this release is minimal, but the Ag+ ion release increases in acidic microenvironments caused by bacterial biofilms. We perform a detailed physicochemical characterization of the nanoalloys and compare their Ag+ ion release with that of pure Ag nanoparticles. Despite a lower released Ag+ ion concentration at pH 7.4, the antibiofilm activity against Escherichia coli (a bacterium known to produce acidic pH environments) is comparable to a pure nanosilver sample with a similar Ag-content. Finally, biocompatibility studies with mouse pre-osteoblasts reveal a decreased cytotoxicity for the alloy coatings and nanoparticles.


Subject(s)
Alloys , Anti-Bacterial Agents , Biofilms , Escherichia coli , Gold , Metal Nanoparticles , Silver , Silver/chemistry , Silver/pharmacology , Biofilms/drug effects , Gold/chemistry , Gold/pharmacology , Hydrogen-Ion Concentration , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Alloys/chemistry , Alloys/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Ions/chemistry , Ions/pharmacology , Prostheses and Implants , Cell Survival/drug effects
19.
J Mech Behav Biomed Mater ; 157: 106650, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018917

ABSTRACT

The assessment of stent fatigue in Transcatheter Aortic Valve Replacement (TAVR) systems is critical for the design of next-generation devices, both in vitro and in vivo. The mechanical properties of the bioprosthetic heart valves (BHVs) have a significant impact on the fatigue life of the metallic stent and thus must be taken into consideration when evaluating new TAVR device designs. This study aims to investigate the relationship between BHV anisotropic behaviour and the asymmetric deflections of the stent frame observed during in vitro testing. An explicit dynamics finite element model of the nitinol stent with attached bioprosthetic valve leaflets was developed to evaluate the deflections of the TAVR device under haemodynamic loading. Our results demonstrate that pericardium behaviour plays a dominant role in determining stent frame deflection. The anisotropic behaviour of the leaflets, resulting from collagen fibre orientation, affects the extent of deflection encountered by each commissure of the frame. This leads to asymmetric variation in frame deflection that can influence the overall fatigue life of the nitinol stent. This study highlights the importance of considering both the flexible nature of the metallic stent as well as the leaflet anisotropic behaviour in the design and fatigue assessment of TAVR systems.


Subject(s)
Bioprosthesis , Stents , Transcatheter Aortic Valve Replacement , Transcatheter Aortic Valve Replacement/instrumentation , Anisotropy , Finite Element Analysis , Heart Valve Prosthesis , Alloys/chemistry , Materials Testing , Mechanical Phenomena , Prosthesis Design , Aortic Valve/surgery
20.
J Nanobiotechnology ; 22(1): 422, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014416

ABSTRACT

Vascularization plays a significant role in promoting the expedited process of bone regeneration while also enhancing the stability and viability of artificial bone implants. Although titanium alloy scaffolds were designed to mimic the porous structure of human bone tissues to facilitate vascularization in bone repair, their biological inertness restricted their broader utilization. The unique attribute of Metal-organic framework (MOF) MIL-53(Fe), known as "breathing", can facilitate the efficient adsorption of extracellular matrix proteins and thus provide the possibility for efficient interaction between scaffolds and cell adhesion molecules, which helps improve the bioactivity of the titanium alloy scaffolds. In this study, MIL-53(Fe) was synthesized in situ on the scaffold after hydrothermal treatment. The MIL-53(Fe) endowed the scaffold with superior protein absorption ability and preferable biocompatibility. The scaffolds have been shown to possess favorable osteogenesis and angiogenesis inducibility. It was indicated that MIL-53(Fe) modulated the mechanotransduction process of endothelial cells and induced increased cell stiffness by promoting the adsorption of adhesion-mediating extracellular matrix proteins to the scaffold, such as laminin, fibronectin, and perlecan et al., which contributed to the activation of the endothelial tip cell phenotype at sprouting angiogenesis. Therefore, this study effectively leveraged the intrinsic "breathing" properties of MIL-53 (Fe) to enhance the interaction between titanium alloy scaffolds and vascular endothelial cells, thereby facilitating the vascularization inducibility of the scaffold, particularly during the sprouting angiogenesis phase. This study indicates that MIL-53(Fe) coating represents a promising strategy to facilitate accelerated and sufficient vascularization and uncovers the scaffold-vessel interaction from a biomechanical perspective.


Subject(s)
Neovascularization, Physiologic , Tissue Scaffolds , Titanium , Titanium/chemistry , Humans , Tissue Scaffolds/chemistry , Neovascularization, Physiologic/drug effects , Endothelial Cells/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Osteogenesis/drug effects , Alloys/chemistry , Human Umbilical Vein Endothelial Cells , Prostheses and Implants , Mechanotransduction, Cellular , Cell Adhesion/drug effects , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL