Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.193
Filter
2.
J Environ Sci (China) ; 146: 226-236, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969450

ABSTRACT

Defluoridation of coal mining water is of great significance for sustainable development of coal industry in western China. A novel one-step mechanochemical method was developed to prepare polymeric aluminum modified powder activated carbon (PAC) for effective fluoride removal from coal mining water. Aluminum was stably loaded on the PAC through facile solid-phase reaction between polymeric aluminum (polyaluminum chloride (PACl) or polyaluminum ferric chloride (PAFC)) and PAC (1:15 W/W). Fluoride adsorption on PACl and PAFC modified PAC (C-PACl and C-PAFC) all reached equilibrium within 5 min, at rate of 2.56 g mg-1 sec-1 and 1.31 g mg-1 sec-1 respectively. Larger increase of binding energy of Al on C-PACl (AlF bond: 76.64 eV and AlFOH bond: 77.70 eV) relative to that of Al on C-PAFC (AlF bond: 76.52 eV) explained higher fluoride uptake capacity of C-PACl. Less chloride was released from C-PACl than that from C-PAFC due to its higher proportion of covalent chlorine and lower proportion of ionic chlorine. The elements mapping and atomic composition proved the stability of Al loaded on the PAC as well as the enrichment of fluoride on both C-PACl and C-PAFC. The Bader charge, formation energy and bond length obtained from DFT computational results explained the fluoride adsorption mechanism further. The carbon emission was 7.73 kg CO2-eq/kg adsorbent prepared through mechanochemical process, which was as low as 1:82.3 to 1:8.07 × 104 compared with the ones prepared by conventional hydrothermal methods.


Subject(s)
Charcoal , Coal Mining , Fluorides , Water Pollutants, Chemical , Fluorides/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Adsorption , Aluminum/chemistry , Polymers/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods
3.
Water Environ Res ; 96(7): e11076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965745

ABSTRACT

Knowledge on natural background levels (NBLs) of aluminum (Al) in groundwater can accurately assess groundwater Al contamination at a regional scale. However, it has received little attention. This study used a combination of preselection and statistic methods consisting of the oxidation capacity and the boxplot iteration methods to evaluate the NBL of shallow groundwater Al in four groundwater units of the Pearl River Delta (PRD) via eliminating anthropogenic-impacted groundwaters and to discuss driving factors controlling high NBLs of Al in groundwater in this area. A total of 280 water samples were collected, and 18 physico-chemical parameters including Redox potential, dissolved oxygen, pH, total dissolved solids, HCO3 -, NH4 +, NO3 -, SO4 2-, Cl-, NO2 -, F-, K+, Na+, Ca2+, Mg2+, Fe, Mn, and Al were analyzed. Results showed that groundwater Al NBLs in groundwater units A-D were 0.11, 0.16, 0.15, and 0.08 mg/L, respectively. The used method in this study is acceptable for the assessment of groundwater Al NBLs in the PRD, because groundwater Al concentrations in various groundwater units in residual datasets were independent of land-use types, but they were opposite in the original datasets. The dissolution of Al-rich minerals in sediments/rocks was the major source for groundwater Al NBLs in the PRD, and the interaction with Al-rich river water was secondary one. The high groundwater Al NBL in groundwater unit B was mainly attributed to the acid precipitation and the organic matter mineralization inducing the release of Al in Quaternary sediments. By contrast, the high groundwater Al NBL in groundwater unit C mainly was ascribed to the release of Al complexes such as fluoroaluminate from rocks/soils into groundwater induced by acid precipitation, but it was limited by the dissolution of Mg minerals (e.g., dolomite) in aquifers. This study provides not only useful groundwater Al NBLs for the evaluation of groundwater Al contamination but also a reference for understanding the natural geochemical factors controlling groundwater Al in urbanized deltas such as the PRD. PRACTITIONER POINTS: The natural background level (NBL) of groundwater aluminum in the Pearl River Delta (PRD) was evaluated. The dissolution of aluminum-rich minerals in sediments/rocks was the major source for groundwater aluminum NBLs in the PRD. The acid precipitation and organic matter mineralization contribute to high groundwater Al NBL in the groundwater unit B. The acid precipitation contributes to high groundwater Al NBL in the groundwater unit C, while dissolution of magnesium minerals limits it.


Subject(s)
Aluminum , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/analysis , Aluminum/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Rivers/chemistry , China , Urbanization
4.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062966

ABSTRACT

Membrane-based pervaporation (PV) for organic solvent dehydration is of great significance in the chemical and petrochemical industries. In this work, high-aluminum ZSM-5 zeolite membranes were synthesized by a fluoride-assisted secondary growth on α-alumina tubular supports using mordenite framework inverted (MFI) nanoseeds (~110 nm) and a template-free synthesis solution with a low Si/Al ratio of 10. Characterization by XRD, EDX, and SEM revealed that the prepared membrane was a pure-phase ZSM-5 zeolite membrane with a Si/Al ratio of 3.8 and a thickness of 2.8 µm. Subsequently, two categories of PV performance parameters (i.e., flux versus separation factor and permeance versus selectivity) were used to systematically examine the effects of operating conditions on the PV dehydration performance of different organic solvents (methanol, ethanol, n-propanol, and isopropanol), and their PV mechanisms were explored. Employing permeance and selectivity effectively disentangles the influence of operating conditions on PV performance, thereby elucidating the inherent contribution of membranes to separation performance. The results show that the mass transfer during PV dehydration of organic solvents was mainly dominated by the adsorption-diffusion mechanism. Furthermore, the diffusion of highly polar water and methanol molecules within membrane pores had a strong mutual slowing-down effect, resulting in significantly lower permeance than other binary systems. However, the mass transfer process for water/low-polar organic solvent (ethanol, n-propanol, and isopropanol) mixtures was mainly controlled by competitive adsorption caused by affinity differences. In addition, the high-aluminum ZSM-5 zeolite membrane exhibited superior PV dehydration performance for water/isopropanol mixtures.


Subject(s)
Membranes, Artificial , Solvents , Zeolites , Zeolites/chemistry , Solvents/chemistry , Water/chemistry , 2-Propanol/chemistry , Aluminum/chemistry , Ethanol/chemistry
5.
Anal Methods ; 16(29): 5022-5031, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38979779

ABSTRACT

In this study, an easily synthesizable Schiff base probe TQSB having a quinoline fluorophore is demonstrated as a fluorescent and colorimetric turn-on sensor for Al3+ ions in a semi-aqueous medium (CH3CN/water; 4 : 1; v/v). Absorption, emission and colorimetric studies clearly indicated that TQSB exhibited a high selectivity toward Al3+, as observed from its excellent binding constant (Kb = 3.8 × 106 M-1) and detection limit (7.0 nM) values. TQSB alone was almost non-fluorescent in nature; however, addition of Al3+ induced intense fluorescence at 414 nm most probably due to combined CHEF (chelation-enhanced fluorescence) and restricted PET effects. The sensing mechanism was established via Job's plot, NMR spectroscopy, ESI-mass spectrometry, and density functional theory (DFT) analyses. Furthermore, to evaluate the applied potential of probe TQSB, its sensing ability was studied in real samples such as soil samples and Al3+-containing Digene gastric tablets as well as on low-cost filter paper strips. Fluorescence microscopy imaging experiments further revealed that TQSB can be used as an effective probe to detect intracellular Al3+ in live cells with no cytotoxicity.


Subject(s)
Aluminum , Fluorescent Dyes , Quinolines , Quinolines/chemistry , Aluminum/analysis , Aluminum/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Microscopy, Fluorescence/methods , Schiff Bases/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection
6.
Environ Sci Pollut Res Int ; 31(32): 45295-45309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963623

ABSTRACT

Manganese oxide is a potential agent in the field of energy storage owing to its changeable redox characteristics, high theoretical specific capacitance and valence shells for charge transfer. On the other hand, due to huge surface area, affordability, customisable composition, layered structure and high theoretical specific capacitance, layered double hydroxides, or LDHs, have drawn a lot of interest. This study employs a three-electrode setup to investigate the supercapacitive performance of λ-manganese dioxide/Cu-Al LDH composite at different compositional ratios. To enhance the adhesive and conductivity capabilities, 10% of CNT additive and PVDF binder are added for the composites. Out of all the composites, the one with the greatest weight percentage of λ-manganese dioxide shows the best electrode performance with a superior specific capacitance of 164 F/g at a scan rate of 10 mV/s. Additionally, using a symmetrical two-electrode setup, the best-performing electrode is examined. The result shows an exceptional potential window of 2.7 V in a basic electrolyte, a power density of 4.04 kW/kg at 3 A/g, an energy density of 20.32 Wh/kg at 1 A/g, and a specific capacitance of 37 F/g.


Subject(s)
Copper , Electric Capacitance , Electrodes , Hydroxides , Manganese Compounds , Oxidation-Reduction , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , Hydroxides/chemistry , Copper/chemistry , Aluminum/chemistry
7.
Toxicology ; 506: 153874, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955312

ABSTRACT

During the manufacture and use of aluminium (aluminum), inhalation exposure may occur. We reviewed the pulmonary toxicity of this metal including its toxicokinetics. The normal serum/plasma level based on 17 studies was 5.7 ± 7.7 µg Al/L (mean ± SD). The normal urine level based on 15 studies was 7.7 ± 5.3 µg/L. Bodily fluid and tissue levels during occupational exposure are also provided, and the urine level was increased in aluminium welders (43 ± 33 µg/L) based on 7 studies. Some studies demonstrated that aluminium from occupational exposure can remain in the body for years. Excretion pathways include urine and faeces. Toxicity studies were mostly on aluminium flakes, aluminium oxide and aluminium chlorohydrate as well as on mixed exposure, e.g. in aluminium smelters. Endpoints affected by pulmonary aluminium exposure include body weight, lung function, lung fibrosis, pulmonary inflammation and neurotoxicity. In men exposed to aluminium oxide particles (3.2 µm) for two hours, lowest observed adverse effect concentration (LOAEC) was 4 mg Al2O3/m3 (= 2.1 mg Al/m3), based on increased neutrophils in sputum. With the note that a similar but not statistically significant increase was seen during control exposure. In animal studies LOAECs start at 0.3 mg Al/m3. In intratracheal instillation studies, all done with aluminium oxide and mainly nanomaterials, lowest observed adverse effect levels (LOAELs) started at 1.3 mg Al/kg body weight (bw) (except one study with a LOAEL of ∼0.1 mg Al/kg bw). The collected data provide information regarding hazard identification and characterisation of pulmonary exposure to aluminium.


Subject(s)
Aluminum , Inhalation Exposure , Lung , Occupational Exposure , Humans , Aluminum/toxicity , Aluminum/pharmacokinetics , Animals , Inhalation Exposure/adverse effects , Occupational Exposure/adverse effects , Lung/drug effects , Lung/metabolism , Toxicokinetics , Air Pollutants, Occupational/toxicity , Air Pollutants, Occupational/pharmacokinetics
8.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999141

ABSTRACT

Gemcitabine is a widely used antimetabolite drug of pyrimidine structure, which can exist as a free-base molecular form (Gem). The encapsulated forms of medicinal drugs are of interest for delayed and local drug release. We utilized, for the first time, a novel approach of mechano-chemistry by liquid-assisted grinding (LAG) to encapsulate Gem on a "matrix" of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (compound 2). The chemical bonding of Gem to compound 2 was studied by ATR-FTIR spectroscopy and powder XRD. The interaction involves the C=O group of Gem molecules, which indicates the formation of the encapsulation complex in the obtained composite. Further, the delayed release of Gem from the composite was studied to phosphate buffered saline (PBS) at 37 °C using an automated drug dissolution apparatus equipped with an autosampler. The concentration of the released drug was determined by HPLC-UV analysis. The composite shows delayed release of Gem due to the bonded form and constant concentration thereafter, while pure Gem shows quick dissolution in less than 45 min. Delayed release of Gem drug from the composite follows the kinetic pseudo-first-order rate law. Further, for the first time, the mechanism of delayed release of Gem was assessed by the variable stirring speed of drug release media, and kinetic rate constant k was found to decrease when stirring speed is decreased (diffusion control). Finally, the prolonged time scale of toxicity of Gem to pancreatic cancer PANC-1 cells was studied by continuous measurements of proliferation (growth) for 6 days, using the xCELLigence real-time cell analyzer (RTCA), for the composite vs. pure drug, and their differences indicate delayed drug release. Aluminum metal-organic frameworks are new and promising materials for the encapsulation of gemcitabine and related small-molecule antimetabolites for controlled delayed drug release and potential use in drug-eluting implants.


Subject(s)
Aluminum , Delayed-Action Preparations , Deoxycytidine , Drug Liberation , Gemcitabine , Metal-Organic Frameworks , Pancreatic Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Metal-Organic Frameworks/chemistry , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Aluminum/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/chemistry
9.
Radiat Prot Dosimetry ; 200(11-12): 1143-1152, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016510

ABSTRACT

Electromagnetic shielding parameters are crucial to investigate unexplored nanoparticles and their nanocomposites. Herein, calcium-iron-aluminium (Ca: Fe: Al) nanocomposites are synthesised using the simple solution combustion technique. The as-synthesised nanocomposites with various doping concentrations of Al nanoparticles are characterised to study the structural and surface parameters and to confirm the successful formation. Further, the procured Ca: Fe: Al nanocomposites along with various doping concentrations are utilised for electromagnetic shielding applications, and various shielding parameters are calculated. It was confirmed that Ca: Fe: Al nanocomposites are suitable for electromagnetic shielding applications.


Subject(s)
Aluminum , Calcium , Iron , Nanocomposites , Radiation Protection , Iron/chemistry , Aluminum/chemistry , Nanocomposites/chemistry , Nanocomposites/radiation effects , Calcium/chemistry , Radiation Protection/methods , Humans , Electromagnetic Fields , Electromagnetic Radiation
10.
Radiat Prot Dosimetry ; 200(11-12): 1216-1219, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016518

ABSTRACT

Latent fingerprint developed at the site of crime is considered as crucial physical evidence in forensic investigation. The mixed metal oxides (MXOY, M = Ba, Zn, Al, Ce) nanophosphor was synthesised by irradiating the precursor solution with 60Co gamma radiation followed by solution combustion method. The structural, morphological, optical characteristics and fingerprint imaging were studied using X-ray diffraction (XRD), scanning electron microscopy, UV-visible spectroscopy and powder dusting method, respectively. The XRD results revealed that the average crystallite size is found to be 30 nm with the estimated bandgap of 3.18 eV. The broadband UV exited luminescence of the phosphors was observed at λMax = 330 nm. The PL spectrum shows three emission bands at 432, 444 and 460 nm that corresponds to blue regions, suggesting that the synthesised nanophosphor is a potential luminous material for latent fingerprinting and luminescent devices.


Subject(s)
Dermatoglyphics , Oxides , Oxides/chemistry , Humans , Cerium/chemistry , Gamma Rays , X-Ray Diffraction , Zinc/chemistry , Aluminum/chemistry , Metal Nanoparticles/chemistry , Cobalt Radioisotopes/analysis , Microscopy, Electron, Scanning
11.
Neurochem Int ; 178: 105799, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950625

ABSTRACT

Alumunium usage and toxicity has been a global concern especially an increased use of nanoparticulated aluminum (Al-NPs) products from the environment and the workplace. Al degrades in to nanoparticulate form in the environment due to the routine process of bioremediation in human body. Al-NPs toxicity plays key role in the pathophysiology of neurodegeneration which is characterised by the development of neurofibrillary tangles and neuritic plaques which correlates to the Alzheimer's disease. This study evaluated the Al-NPs induced neurodegeneration and causative behavioral alterations due to oxidative stress, inflammation, DNA damage, ß-amyloid aggregation, and histopathological changes in mice. Furthermore, the preventive effect of naringenin (NAR) as a potent neuroprotective flavonoid against Al-NPs induced neurodegeneration was assessed. Al-NPs were synthesized and examined using FTIR, XRD, TEM, and particle size analyzer. Mice were orally administered with Al-NPs (6 mg/kg b.w.) followed by NAR treatment (10 mg/kg b.w. per day) for 66 days. The spatial working memory was determined by novel object recognition, T-maze, Y-maze, and Morris Water Maze tests. We measured nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, oxidised glutathione, and acetylcholine esterase, as well as cytokines analysis, immunohistochemistry, and DNA damage. Al-NPs significantly reduced the learning memory power, increased oxidative stress, reduced antioxidant enzymatic activity, increased DNA damage, altered the levels of cytokines, and increased ß-amyloid aggregation in the cortex and hippocampus regions of the mice brain. These neurobehavioral impairments, neuronal oxidative stress, and histopathological alterations were significantly attenuated by NAR supplementation. In conclusion, Al-NPs may be potent neurotoxic upon exposure and that NAR could serve as a potential preventive measure in the treatment and management of neuronal degeneration.


Subject(s)
Aluminum , Flavanones , Hippocampus , Oxidative Stress , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Oxidative Stress/drug effects , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Aluminum/toxicity , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Down-Regulation/drug effects , Nerve Degeneration/drug therapy , Nerve Degeneration/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Metal Nanoparticles
12.
Sci Rep ; 14(1): 15897, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987627

ABSTRACT

This study aims to determine the effects of copper, copper oxide nanoparticles, aluminium, and aluminium oxide nanoparticles on the growth rate and expression of ACT-1, CDPK, LIP, NFC, P5CR, P5CS, GR, and SiZIP1 genes in five days old seedling of Setaria italica ssp. maxima, cultivated in hydroponic culture. Depending on their concentration (ranging from 0.1 to 1.8 mg L-1), all tested substances had both stimulating and inhibiting effects on the growth rate of the seedlings. Copper and copper oxide-NPs had generally a stimulating effect whereas aluminium and aluminium oxide-NPs at first had a positive effect but in higher concentrations they inhibited the growth. Treating the seedlings with 0.4 mg L-1 of each tested toxicant was mostly stimulating to the expression of the genes and reduced the differences between the transcript levels of the coleoptiles and roots. Increasing concentrations of the tested substances had both stimulating and inhibiting effects on the expression levels of the genes. The highest expression levels were usually noted at concentrations between 0.4 and 1.0 mg/L of each metal and metal nanoparticle, except for SiZIP1, which had the highest transcript amount at 1.6 mg L-1 of Cu2+ and at 0.1-0.8 mg L-1 of CuO-NPs, and LIP and GR from the seedling treated with Al2O3-NPs at concentrations of 0.1 and 1.6 mg L-1, respectively.


Subject(s)
Aluminum , Copper , Gene Expression Regulation, Plant , Metal Nanoparticles , Seedlings , Setaria Plant , Copper/pharmacology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Aluminum/toxicity , Aluminum/pharmacology , Metal Nanoparticles/chemistry , Gene Expression Regulation, Plant/drug effects , Setaria Plant/genetics , Setaria Plant/drug effects , Setaria Plant/growth & development , Setaria Plant/metabolism , Aluminum Oxide/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics
13.
Nat Commun ; 15(1): 6294, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060273

ABSTRACT

Aluminum (Al) toxicity is one of the major constraints for crop production in acid soils, Al-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-dependent malate exudation from roots is essential for Al resistance in Arabidopsis, in which the C2H2-type transcription factor SENSITIVE TO PROTONRHIZOTOXICITY1 (STOP1) play a critical role. In this study, we reveal that the RAE1-GL2-STOP1-RHD6 protein module regulated the ALMT1-mediated Al resistance. GL2, STOP1 and RHD6 directly target the promoter of ALMT1 to suppress or activate its transcriptional expression, respectively, and mutually influence their action on the promoter of ALMT1 by forming a protein complex. STOP1 mediates the expression of RHD6 and RHD6-regulated root growth inhibition, while GL2 and STOP1 suppress each other's expression at the transcriptional and translational level and regulate Al-inhibited root growth. F-box protein RAE1 degrades RHD6 via the 26S proteasome, leading to suppressed activity of the ALMT1 promoter. RHD6 inhibits the transcriptional expression of RAE1 by directly targeting its promoter. Unlike RHD6, RAE1 promotes the GL2 expression at the protein level and GL2 activates the expression of RAE1 at the transcriptional level by directly targeting its promoter. The study provides insights into the transcriptional regulation of ALMT1, revealing its significance in Al resistance and highlighting the crucial role of the STOP1-associated regulatory networks.


Subject(s)
Aluminum , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Roots , Promoter Regions, Genetic , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Aluminum/toxicity , Aluminum/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Promoter Regions, Genetic/genetics , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , F-Box Proteins/metabolism , F-Box Proteins/genetics , Plants, Genetically Modified
14.
J Environ Manage ; 366: 121680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971063

ABSTRACT

Refined magnesium slag and aluminum dross are two typical hazardous solid wastes that contain significant amounts of leachable fusing agent and aluminum droplets encapsulated by dense oxidized films, respectively. This study creatively proposes a safe and green method for the joint utilization of these two wastes. The interfacial reaction behavior revealed that the dense oxidized films of the aluminum droplets were significantly broken by the erosive action of the fusing agent, providing the necessary conditions for the movement of aluminum droplets. Consequently, the aluminum droplets successfully broke free from the oxidized films and separated together with the fusing agent from the dross under the force of supergravity. The recovery ratios of metallic aluminum and fusing agent reached 98.95 % and 98.13 %, while the aluminum and fusing agent contents in the tailings were reduced to 0.82 wt% and 3.71 wt%. The study also discusses the leaching characteristic of the tailings and the scalability for industrial applications of this method in detail. This study not only achieves valuable resource recovery but also reduces the leaching risk and alleviates the land occupation and ecosystem pressure caused by industrial wastes. The tailings can be harmlessly utilized in related fields through subsequent scientific treatment.


Subject(s)
Aluminum , Magnesium , Aluminum/chemistry , Magnesium/chemistry
15.
Environ Sci Pollut Res Int ; 31(31): 44348-44360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951394

ABSTRACT

Aluminum electrolyte is a necessity for aluminum reduction cells; however, its stock is rising every year due to several factors, resulting in the accumulation of solid waste. Currently, it has become a favorable material for the resources of lithium, potassium, and fluoride. In this study, the calcification roasting-two-stage leaching process was introduced to extract lithium and potassium separately from aluminum electrolyte wastes, and the fluoride in the form of CaF2 was recycled. The separation behaviors of lithium and potassium under different conditions were investigated systematically. XRD and SEM-EDS were used to elucidate the phase evolution of the whole process. During calcification roasting-water leaching, the extraction efficiency of potassium was 98.7% under the most suitable roasting parameters, at which the lithium extraction efficiency was 6.6%. The mechanism analysis indicates that CaO combines with fluoride to form CaF2, while Li-containing and K-containing fluorides were transformed into water-insoluble LiAlO2 phase and water-soluble KAlO2 phase, respectively, thereby achieving the separation of two elements by water leaching. In the second acid-leaching stage, the extraction efficiency of lithium was 98.8% from water-leached residue under the most suitable leaching conditions, and CaF2 was obtained with a purity of 98.1%. The present process can provide an environmentally friendly and promising method to recycle aluminum electrolyte wastes and achieve resource utilization.


Subject(s)
Aluminum , Fluorides , Lithium , Potassium , Fluorides/chemistry , Lithium/chemistry , Aluminum/chemistry , Potassium/chemistry , Electrolytes/chemistry , Recycling
16.
Physiol Plant ; 176(3): e14404, 2024.
Article in English | MEDLINE | ID: mdl-38922894

ABSTRACT

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Subject(s)
Aluminum , Genotype , Phenotype , Vicia faba , Vicia faba/genetics , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/metabolism , Aluminum/toxicity , Soil/chemistry , Hydrogen-Ion Concentration , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Proline/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Acids/metabolism
17.
Int J Biol Macromol ; 274(Pt 1): 133383, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914395

ABSTRACT

In this report, we present a dual crosslinking hydrogel fiber made from polyamine saccharides chitosan (CS), synthesized through UV polymerization. This process utilizes Irgacure 2959 and N,N'-Methylenebisacrylamide (MBAA) as initiators, followed by immersion in an aluminum chloride (AlCl3) solution. The resulting hydrogel incorporates a dual crosslinking mechanism, quantitatively studied via Nuclear Magnetic Resonance (NMR) spectroscopy. This mechanism involves chemical crosslinking through radical graft polymerization of acrylamide and acrylic acid onto CS in the presence of MBAA, and physical crosslinking through hydrogen bonding interactions between P(AAm-co-AA) and a metal coordination bond. The mechanical properties of the hydrogel fiber enable it to withstand stresses up to 656 kPa and strains exceeding 300 %. Additionally, the hydrogel fiber exhibits conductivity at 1.96 Scm-1. Serving as a multifunctional material, it acts as a strain sensor and finds utility in optics. Remarkably, it demonstrates the capability to detect human motions such as finger bending and minor deformations like vibrations of the vocal cords. Furthermore, its ability to guide dynamic light makes it promising for optical applications. Consequently, this multifunctional hydrogel fiber emerges as a highly promising candidate for diverse applications in fields such as bioengineering and electronics.


Subject(s)
Acrylamides , Aluminum , Chitosan , Hydrogels , Chitosan/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Acrylamides/chemistry , Aluminum/chemistry , Cross-Linking Reagents/chemistry , Polymerization , Ions/chemistry , Humans
18.
J Trace Elem Med Biol ; 85: 127488, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905877

ABSTRACT

BACKGROUND: Aluminum exerts neurotoxic effects through various mechanisms, mainly manifested as impaired learning and memory function. METHODS: Forty SD rats were divided into 0, 10, 20, and 40 mM maltol aluminum [Al(mal)3] groups. Cell experiments are divided into 0, 100, 200, and 400 µM Al(mal)3 dose group and control, Al(mal)3, Al(mal)3+inhibitor NC, Al(mal)3+miR-665 inhibitor intervention group. Water maze was used to detect the learning and memory function of rats, HE staining was used to observe the morphology and number of neurons in the CA1 area of the rat hippocampus, Flow cytometry was used to detect the apoptosis of PC12 cells, PCR and Western blotting were used to detect the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins. The target binding relationship between miR-665 and GNB3 was verified by double luciferase reporter gene experiment. RESULTS: In vivo experimental results showed that with the increase of Al(mal)3 concentration, the escape latency of rats was prolonged, the target quadrant dwell time was shortened, and the number of crossing platform was reduced. Moreover, the arrangement of neurons was loose and the number decreased; the expression of Caspase3 and miR-665 increased, while the expression of GNB3/PI3K/AKT proteins decreased. In vitro experiments, with the increase of Al(mal)3 concentration, apoptosis rate of PC12 cells increased, the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins were consistent with rat results. After inhibiting miR-665 in the intervention group experiment, apoptosis rate of PC12 cells in the aluminum exposure group decreased, the expression of Caspase3 and miR-665 decreased, and the expression of GNB3/PI3K/AKT proteins increased. CONCLUSION: MiR-665 plays an important role in aluminum induced neuronal apoptosis by targeting GNB3 and regulating the PI3K/AKT pathway.


Subject(s)
Aluminum , Apoptosis , MicroRNAs , Neurons , Rats, Sprague-Dawley , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Rats , Apoptosis/drug effects , Neurons/metabolism , Neurons/drug effects , Aluminum/toxicity , PC12 Cells , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Maze Learning/drug effects , Caspase 3/metabolism
19.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38913611

ABSTRACT

Tracking of soil-dwelling insects poses greater challenges compared to aboveground-dwelling animals in terrestrial systems. A metal detector system consisting of a commercially available detector and aluminum tags was developed for detecting dung beetle, Copris ochus Motschulsky (Coleoptera: Scarabaeidae). First, detection efficacy of the system was evaluated by varying volumes of aluminum tags attached on a plastic model of the insect and also by varying angles. Then, detection efficacy was evaluated by varying depths of aluminum-tagged models under soil in 2 vegetation types. Finally, the effects of tag attachment on C. ochus adults were assessed for survivorship, burrowing depth, and horizontal movement. Generally, an increase in tag volume resulted in greater detection distance in semi-field conditions. Maximum detection distance of aluminum tag increased up to 17 cm below soil surface as the tag size (0.5 × 1.0 cm [width × length]) and thickness (16 layers) were maximized, resulting in a tag weight of 31.4 mg, comprising ca. 9% of average weight of C. ochus adult. Furthermore, the detection efficacy did not vary among angles except for 90°. In the field, metal detectors successfully detected 5 aluminum-tagged models in 20 × 10 m (W × L) arena within 10 min with detection rates ≥85% for up to depth of 10 cm and 45%-60% at depth of 20 cm. Finally, aluminum tagging did not significantly affect survivorship and behaviors of C. ochus. Our study indicates the potential of metal detector system for tracking C. ochus under soil.


Subject(s)
Aluminum , Coleoptera , Animals , Aluminum/analysis , Soil/chemistry , Entomology/methods , Entomology/instrumentation , Animal Identification Systems/instrumentation
20.
BMC Plant Biol ; 24(1): 618, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937693

ABSTRACT

In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.


Subject(s)
Aluminum , Antioxidants , Gene Expression Regulation, Plant , Oryza , Aluminum/toxicity , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/physiology , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Citric Acid/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Genes, Plant
SELECTION OF CITATIONS
SEARCH DETAIL