Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.851
1.
Environ Sci Technol ; 58(22): 9669-9678, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38771965

In subsurface environments, Fe(II)-bearing clay minerals can serve as crucial electron sources for O2 activation, leading to the sequential production of O2•-, H2O2, and •OH. However, the observed •OH yields are notably low, and the underlying mechanism remains unclear. In this study, we investigated the production of oxidants from oxygenation of reduced Fe-rich nontronite NAu-2 and Fe-poor montmorillonite SWy-3. Our results indicated that the •OH yields are dependent on mineral Fe(II) species, with edge-surface Fe(II) exhibiting significantly lower •OH yields compared to those of interior Fe(II). Evidence from in situ Raman and Mössbauer spectra and chemical probe experiments substantiated the formation of structural Fe(IV). Modeling results elucidate that the pathways of Fe(IV) and •OH formation respectively consume 85.9-97.0 and 14.1-3.0% of electrons for H2O2 decomposition during oxygenation, with the Fe(II)edge/Fe(II)total ratio varying from 10 to 90%. Consequently, these findings provide novel insights into the low •OH yields of different Fe(II)-bearing clay minerals. Since Fe(IV) can selectively degrade contaminants (e.g., phenol), the generation of mineral Fe(IV) and •OH should be taken into consideration carefully when assessing the natural attenuation of contaminants in redox-fluctuating environments.


Hydroxyl Radical , Minerals , Hydroxyl Radical/chemistry , Minerals/chemistry , Iron/chemistry , Clay/chemistry , Oxygen/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Aluminum Silicates/chemistry , Bentonite/chemistry
2.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38770704

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Ceramics , Dental Bonding , Materials Testing , Resin Cements , Shear Strength , Silicon Dioxide , Silicon Dioxide/chemistry , Ceramics/chemistry , Time Factors , Resin Cements/chemistry , Computer-Aided Design , Surface Properties , Dental Stress Analysis , Cementation/methods , Dental Porcelain/chemistry , Humans , Composite Resins/chemistry , Dental Cements/chemistry , Potassium Compounds/chemistry , Aluminum Silicates/chemistry , Temperature
3.
PLoS One ; 19(5): e0301581, 2024.
Article En | MEDLINE | ID: mdl-38768168

Research is ongoing to find solutions to the problem of Consolidation and seepage in saturated clay in enclosure space. Firstly, the boundary of non-zero-constant values is established, considering the seepage boundary of the clay is affected by pumping water or lowering boundary pressure on the site. Secondly, the differential equation is established to reflect the spatial and temporal variations of excess pore water pressure dissipation in the clay in enclosure space, and the solution is derived using variable separation methods. Finally, based on results of the solution derived, contour maps of the water pressure are drawn corresponding with the different inhomogeneous boundary conditions.


Clay , Clay/chemistry , Water/chemistry , Pressure , Models, Theoretical , Aluminum Silicates/chemistry , Solutions
4.
ACS Sens ; 9(5): 2529-2539, 2024 May 24.
Article En | MEDLINE | ID: mdl-38723609

Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.


Aluminum Silicates , Hydrogen , Metal Nanoparticles , Palladium , Palladium/chemistry , Hydrogen/chemistry , Catalysis , Metal Nanoparticles/chemistry , Aluminum Silicates/chemistry , Temperature , Surface Properties
5.
BMC Oral Health ; 24(1): 620, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807109

BACKGROUND: The mechanical properties of fully crystallized lithium aluminosilicate ceramics may be influenced by intraoral temperature variations and postmilling surface treatment. The purpose of this study is to explore the interplay among glazing, thermocycling, and the mechanical characteristics (namely, fracture toughness and hardness) of fully crystallized lithium aluminosilicate ceramics. METHODS: Bending bars (n = 40) cut from LisiCAD blocks (GC, Japan) were randomly assigned to glazed or unglazed groups (n = 20) and subjected to the single edge v-notch beam method to create notches. A glazing firing cycle was applied to the glazed group, while the unglazed group was not subjected to glazing. Half of the specimens (n = 10) from both groups underwent thermocycling before fracture toughness testing. The fracture toughness (KIC) was evaluated at 23 ± 1 °C using a universal testing machine configured for three-point bending, and the crack length was measured via light microscopy. Seven specimens per group were selected for the hardness test. Hardness was assessed using a Vickers microhardness tester with a 1 kg load for 20 s, and each specimen underwent five indentations following ISO 14705:2016. The Shapiro-Wilk and Kolmogorov-Smirnov tests were used to evaluate the normality of the data and a two-way ANOVA was utilized for statistical analysis. The significance level was set at (α = 0.05). RESULTS: Regardless of the thermocycling conditions, the glazed specimens exhibited significantly greater fracture toughness than did their unglazed counterparts (P < 0.001). Thermocycling had no significant impact on the fracture toughness of either the glazed or unglazed specimens. Furthermore, statistical analysis revealed no significant effects on hardness with thermocycling in either group, and glazing alone did not substantially affect hardness. CONCLUSIONS: The impact of glazing on the fracture toughness of LiSiCAD restorations is noteworthy, but it has no significant influence on their hardness. Furthermore, within the parameters of this study, thermocycling was found to exert negligible effects on both fracture toughness and hardness.


Aluminum Silicates , Ceramics , Computer-Aided Design , Hardness , Materials Testing , Ceramics/chemistry , Aluminum Silicates/chemistry , Dental Stress Analysis , Surface Properties , Crystallization
6.
J Hazard Mater ; 472: 134495, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38714053

Nanopore sequencing is extremely promising for the high-throughput detection of pathogenic bacteria in natural water; these bacteria may be transmitted to humans and cause waterborne infectious diseases. However, the concentration of pathogenic bacteria in natural water is too low to be detected directly by nanopore sequencing. Herein, we developed a mica filter to enrich over 85% of bacteria from > 10 L of natural water in 100 min, which led to a 102-fold improvement in the assay limits of the MinION sequencer for assessing pathogenic bacteria. Correspondingly, the sequencing time of S. Typhi detection at a concentration as low as 105 CFU/L was reduced from traditional 48 h to 3 h. The bacterial adsorption followed pseudo-first-order kinetics and the successful adsorption of bacteria to the mica filter was confirmed by scanning electron microscopy and Fourier infrared spectroscopy et al. The mica filter remained applicable to a range of water samples whose quality parameters were within the EPA standard limits for freshwater water. The mica filter is thus an effective tool for the sensitive and rapid monitoring of pathogenic bacteria by nanopore sequencing, which can provide timely alerts for waterborne transmission events.


Water Microbiology , Aluminum Silicates/chemistry , Filtration/instrumentation , Nanopore Sequencing/methods , Bacteria/genetics , Bacteria/isolation & purification , Adsorption , Environmental Monitoring/methods , Nanopores
7.
Harmful Algae ; 134: 102609, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705612

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Aluminum Hydroxide , Dinoflagellida , Harmful Algal Bloom , Marine Toxins , Animals , Dinoflagellida/drug effects , Dinoflagellida/physiology , Dinoflagellida/chemistry , Clay/chemistry , Bivalvia/physiology , Bivalvia/drug effects , Sea Urchins/physiology , Sea Urchins/drug effects , Florida , Brachyura/physiology , Brachyura/drug effects , Mercenaria/drug effects , Mercenaria/physiology , Aluminum Silicates/pharmacology , Aluminum Silicates/chemistry
8.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38588505

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Clay , Metals, Rare Earth , Minerals , Adsorption , Metals, Rare Earth/chemistry , Clay/chemistry , Minerals/chemistry , Hydrogen-Ion Concentration , Aluminum Silicates/chemistry
9.
Toxins (Basel) ; 16(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38668593

The aim of this in vivo study was to investigate the effects of a novel mycotoxin detoxifier whose formulation includes clay (bentonite and sepiolite), phytogenic feed additives (curcumin and silymarin) and postbiotics (yeast products) on the health, performance and redox status of weaned piglets under the dietary challenge of fumonisins (FUMs). The study was conducted in duplicate in the course of two independent trials on two different farms. One hundred and fifty (150) weaned piglets per trial farm were allocated into two separate groups: (a) T1 (control group): 75 weaned piglets received FUM-contaminated feed and (b) T2 (experimental group): 75 weaned piglets received FUM-contaminated feed with the mycotoxin-detoxifying agent from the day of weaning (28 days) until 70 days of age. Thiobarbituric acid reactive substances (TBARSs), protein carbonyls (CARBs) and the overall antioxidant capacity (TAC) were assessed in plasma as indicators of redox status at 45 and 70 days of age. Furthermore, mortality and performance parameters were recorded at 28, 45 and 70 days of age, while histopathological examination was performed at the end of the trial period (day 70). The results of the present study reveal the beneficial effects of supplementing a novel mycotoxin detoxifier in the diets of weaners, including improved redox status, potential hepatoprotective properties and enhanced growth performance.


Animal Feed , Curcumin , Oxidation-Reduction , Weaning , Animals , Curcumin/pharmacology , Animal Feed/analysis , Swine , Fumonisins/toxicity , Antioxidants/pharmacology , Bentonite/pharmacology , Bentonite/chemistry , Aluminum Silicates/chemistry , Aluminum Silicates/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism , Food Contamination/prevention & control , Protein Carbonylation/drug effects , Liver/drug effects , Liver/metabolism , Male , Mycotoxins/toxicity
10.
Environ Res ; 252(Pt 2): 118927, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38631467

Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications. Clay minerals are identified as a one of the potential nanocarrier for the drug delivery. Owing to their biocompatibility and very low cytotoxicity, clay minerals showing effective therapeutic applications. In the present investigation, clay mineral, i.e., Halloysite nano tubes are utilized as a nanocarrier for the delivery of antibiotic cefixime (CFX), a third-generation cephalosporin. The HNT was first functionalized with the sulfuric acid and then further treated with the 3-(aminopropyl)triethoxysilane (APTES). The drug is loaded on three different classifications of HNTs, i.e., Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT and their comparative analysis is established. Different characterization techniques such as X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), Transmission electron microscopy TEM), Brunauer-Emmett-Teller (BET), adsorption studies, and Thermogravimetric analysis (TGA) were performed to evaluate their chemical, structural, morphological, and thermal properties. TGA confirmed the encapsulation efficiency of Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT as 42.65, 52.19, and 53.43%, respectively. Disk diffusion and MTT assay confirmed that the drug loaded HNTs have potential antibacterial activities and less cytotoxicity. The adsorption capacity of CFX with different HNTs are evaluated and Different adsorption and kinetic models have been discussed. Drug release studies shows that APTES-CFX-HNT showing sustained release of cefixime as compared to Bare-CFX-HNT and Acid-CFX-HNT.


Anti-Bacterial Agents , Cefixime , Clay , Cefixime/chemistry , Anti-Bacterial Agents/chemistry , Clay/chemistry , Drug Carriers/chemistry , Aluminum Silicates/chemistry , Nanoparticles/chemistry , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , Propylamines
11.
Astrobiology ; 24(5): 518-537, 2024 May.
Article En | MEDLINE | ID: mdl-38669050

Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.


Aluminum Silicates , Exobiology , Mars , Phenylalanine , Ultraviolet Rays , Phenylalanine/chemistry , Exobiology/methods , Aluminum Silicates/chemistry , Extraterrestrial Environment/chemistry , Photolysis , Fatty Acids/chemistry , Fatty Acids/analysis
12.
Environ Pollut ; 351: 124007, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38677461

The effects of metal oxides and clays on the transport of zinc oxide nanoparticles (ZnO-NPs) in saturated porous media were investigated under different ionic strength (IS) conditions. We studied the transport and retention behavior of ZnO-NPs for different types of porous media (untreated, acid treated, and acid-salt treated sand). The selected untreated sand was used as a representative sand, coated with both metal oxide and clay. The acid treated and acid-salt-treated sands were used and compared to investigate the effects of clays on the surface of the sand. In addition, the effects of clay particles in bulk solutions on the mobility and retention of ZnO-NPs were observed using bentonite as a representative clay particle. We found that the increased mobility of positively charged ZnO-NPs can be attributed to increasing charge heterogeneity of silica sand with metal oxides (mainly, iron oxide) and clays in untreated sand. No breakthrough of ZnO-NP was observed for acid-treated (presence of clays and absence of metal oxides) and acid-salt-treated sand (absence of both metal oxide and clays). Most of the injected ZnO-NPs were deposited on the surface of the sand near the column inlet. The transport of bentonite-facilitated ZnO-NPs was improved at the lowest IS (0.1 mM) (∼20%), whereas there was no difference in the mobility of ZnO-NPs at high IS solutions (1 mM and 10 mM). In particular, the breakthrough amount improved with increasing bentonite concentration. Classical Derjaguin-Landau-Verwey-Overbeek interactions help explain observed interactions between ZnO-NPs and sand as well as bentonite and sand.


Clay , Zinc Oxide , Zinc Oxide/chemistry , Clay/chemistry , Porosity , Metal Nanoparticles/chemistry , Oxides/chemistry , Bentonite/chemistry , Aluminum Silicates/chemistry , Sand/chemistry , Nanoparticles/chemistry
13.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Article En | MEDLINE | ID: mdl-38472574

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Bentonite , Cesium , Clay , Cesium/chemistry , Adsorption , Sodium Chloride , Minerals/chemistry , Cations, Monovalent , Aluminum Silicates/chemistry
14.
Int J Biol Macromol ; 266(Pt 1): 130963, 2024 May.
Article En | MEDLINE | ID: mdl-38508561

The effects of various hydrocolloids (guar gum, xanthan gum, and carboxymethyl cellulose) on the texture, rheology, and microstructural properties of modeling clay prepared with cassava starch were investigated. Notably, incorporation of 3 % guar gum and 4 % xanthan gum into starch-based modeling clay resulted in enhancements of 94.12 % and 77.47 % in cohesiveness, and 64.70 % and 66.20 % in extensibility, respectively. For starch-based modeling clay with added guar gum and xanthan gum, compared to formulations without hydrocolloids, the linear viscoelastic range exceeded 0.04 %, and the frequency dependence of both maximum creep compliance (Jmax) and storage modulus (G') was significantly reduced. This indicates a more stable network structure and enhanced resistance to deformation. Results from Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that the physical interactions between starch and various hydrocolloids, along with the addition of these hydrocolloids, inhibited the degradation effect of thermomechanical processing on the crystalline structure of starch. With the addition of guar gum, it is observed that a continuous and dense network structure forms within the starch-based modeling clay, and starch particles are distributed uniformly. In conclusion, hydrocolloids enhances the properties of starch-based modeling clay, introducing an innovative solution to the modeling clay sector.


Clay , Colloids , Elasticity , Galactans , Mannans , Plant Gums , Polysaccharides, Bacterial , Starch , Starch/chemistry , Colloids/chemistry , Clay/chemistry , Plant Gums/chemistry , Viscosity , Galactans/chemistry , Mannans/chemistry , Polysaccharides, Bacterial/chemistry , Rheology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Aluminum Silicates/chemistry
15.
Expert Opin Drug Deliv ; 21(3): 457-477, 2024 Mar.
Article En | MEDLINE | ID: mdl-38467560

INTRODUCTION: Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED: This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION: Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.


Clay , Hemostasis , Hemostatics , Hydrogels , Wound Healing , Hydrogels/chemistry , Humans , Wound Healing/drug effects , Hemostasis/drug effects , Animals , Hemostatics/pharmacology , Hemostatics/administration & dosage , Hemostatics/therapeutic use , Hemostatics/chemistry , Clay/chemistry , Hemorrhage/drug therapy , Aluminum Silicates/chemistry
16.
Environ Res ; 251(Pt 1): 118590, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38437900

Estuaries are fragile environment that are most affected by climate change. One of the major consequences of climate change on estuarine processes is the enhancement in salt intrusion leading to higher salinity values. This has several implications on the estuarine sediment dynamics. Of the various factors that affect the flocculation of cohesive sediments, salinity and turbulence have been recognized as to have great significance. Many of the estuaries are contaminated with heavy metals, of which, the concentration of Iron (Fe (II)) are generally on the higher range. However, the influence of Fe (II) on the flocculation of cohesive sediments at various estuarine mixing conditions is not well known. The present study investigated the influence of Fe (II) on the flocculation of kaolin at various concentration of Fe (II), salinity and turbulence shear. The results indicated that Fe (II) and salinity have a positive influence on kaolin flocculation. The increase in turbulence shear caused an initial increase and then a decrease in floc size. In case of sand-clay mixtures, that are observed in mixed sediment estuarine environments, a reduction in the floc size was observed, which is attributed to the breakage of flocs induced by the shear of sand. Breakage coefficient, which is a measure of break-up of flocs, is generally adopted as 0.5 assuming binary breakage. The present study revealed that the breakage coefficient can take values from 0 to 1 and is a direct function of Fe (II) and salinity and an inverse function of turbulence and sand concentration. Thus, a new model for breakage coefficient with the influencing parameters has been proposed, which is an improvement of existing model that is expressed in terms of turbulence alone. Sensitivity analysis showed that the proposed model can very well predict the breakage coefficient of Fe (II) - kaolin flocs. Thus, the model can quantify the breakage coefficient of flocs in estuaries contaminated with Fe (II) that is a vital parameter for population balance models.


Clay , Estuaries , Flocculation , Geologic Sediments , Kaolin , Kaolin/chemistry , Clay/chemistry , Geologic Sediments/chemistry , Geologic Sediments/analysis , Sand/chemistry , Aluminum Silicates/chemistry , Salinity , Iron/chemistry , Ferrous Compounds/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
17.
J Esthet Restor Dent ; 36(6): 901-910, 2024 Jun.
Article En | MEDLINE | ID: mdl-38348937

To assess the physical properties and topographical aspect of dental enamel's surface microhardness (KHN), surface roughness (Ra), and color parameters CIELAB (∆Eab*), CIEDE 2000 (∆E00), and whiteness index for dentistry (∆WID) after toothbrushing with experimental toothpaste formulations with the following mineral clay types: kaolin, Sparclay SGY, and Tersil CGY used as abrasive component. Scanning electron microscopy (SEM) was performed for topographical analyses purposes. A total of 96 bovine incisors were used in the experiment. They were divided into eight experimental groups (n = 12), namely: NC-negative control (no treatment), CT12-Colgate Total 12®, CMP-Colgate® Máxima Proteção Anticáries, K-kaolin experimental toothpaste, SGY-Sparclay SGY experimental toothpaste; CGY-Tersil CGY experimental toothpaste, SD-SiO2 experimental toothpaste, and CC-CaCO3 experimental toothpaste. All samples were subjected to mechanical brushing protocol with 5000 cycles and kept in artificial saliva with daily exchanges. KHN was analyzed through the mixed linear model for repeated measures over time. Ra was analyzed through nonparametric Kruskal Wallis and Dunn tests to compare the groups. Paired Wilcoxon test was run to compare experimental times. ∆WID, ∆Eab*, and ∆E00 were analyzed through Kruskal Wallis and Dunn tests. All analyses were performed in R* software, at 5% significance level. EXP_SGY recorded higher KHN than EXP_SiO2 and EXP_CaCO3, whereas EXP_K showed increased Ra in comparison to CMP (p = 0.0229). ∆Eab and ∆E00 were significantly higher in the CT12, EXP_SiO2, and EXP_CaCO3 groups than in the NC and EXP_K (p < 0.0001). There were no significant changes in ∆WID (p = 0.0852). According to SEM results, toothbrushing with experimental toothpastes added with mineral clay types did not have significant impact on enamel's polishing and smoothness. CLINICAL RELEVANCE: Mineral clays have a broad application in the cosmetic industry, and recently, they have been used in the formulation of vegan toothpaste.


Aluminum Silicates , Clay , Dental Enamel , Hardness , Toothbrushing , Toothpastes , Toothpastes/chemistry , Animals , Cattle , Clay/chemistry , Aluminum Silicates/chemistry , Surface Properties , Microscopy, Electron, Scanning
18.
Environ Res ; 242: 117536, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38000635

Clay-based adsorbents have applications in environmental remediation, particularly in the removal of emerging pollutants such as antibiotics. Taking that into account, we studied the adsorption/desorption process of tetracycline (TC) using three raw and acid- or base-activated clays (AM, HJ1 and HJ2) collected, respectively, from Aleg (Mazzouna), El Haria (Jebess, Maknessy), and Chouabine (Jebess, Maknessy) formations, located in the Maknessy-Mazzouna basin, center-western of Tunisia. The main physicochemical properties of the clays were determined using standard procedures, where the studied clays presented a basic pH (8.39-9.08) and a high electrical conductivity (446-495 dS m-1). Their organic matter contents were also high (14-20%), as well as the values of the effective cation exchange capacity (80.65-97.45 cmolckg-1). In the exchange complex, the predominant cations were Na and Ca, in the case of clays HJ1 and AM, while Mg and Ca were dominant in the HJ2 clay. The sorption experimental setup consisted in performing batch tests, using 0.5 g of each clay sample, adding the selected TC concentrations, then carrying out quantification of the antibiotic by means of HPL-UV equipment. Raw clays showed high adsorption potential for TC (close to 100%) and very low desorption (generally less than 5%). This high adsorption capacity was also present in the clays after being activated with acid or base, allowing them to adsorb TC in a rather irreversible way for a wide range of pH (3.3-10) and electrical conductivity values (3.03-495 dS m-1). Adsorption experimental data were studied as regards their fitting to the Freundlich, Langmuir, Linear and Sips isotherms, being the Sips model the most appropriate to explain the adsorption of TC in these clays (natural or activated). These results could help to improve the overall knowledge on the application of new low-cost methods, using clay based adsorbents, to reduce risks due to emerging pollutants (and specifically TC) affecting the environment.


Environmental Pollutants , Tetracycline , Clay , Adsorption , Tetracycline/chemistry , Anti-Bacterial Agents , Aluminum Silicates/chemistry
19.
Biophys J ; 123(4): 451-463, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-37924206

One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.


Bentonite , RNA , Rosaniline Dyes , Bentonite/chemistry , RNA/chemistry , Clay , Aluminum Silicates/chemistry , Adsorption , Minerals/chemistry
20.
Sci Total Environ ; 905: 167005, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37717773

The sorption of antibiotics on soil minerals and their cotransport have been widely studied for the past few years; however, these processes in concentrated salt solutions (estuary-like conditions) are not fully understood. This study aims to determine the possible sorption of oxytetracycline (OTC) on various natural and synthesized microsized minerals (including haematite, goethite, kaolinite, bentonite, lateritic, kaolinitic and illitic soil clays) under conditions mimicking pure, fresh, brackish and sea waters. The sorption of OTC was found to decrease in surface charge (herein zeta potential), hence altering the colloidal properties of the materials used. The sorption capacities of soil clays for OTC follow the inequality illitic soil clay > kaolinitic soil clay > lateritic soil clay, and the sorption capacities were found to decrease at higher salt concentrations. Seawater can intensify the release of the sorbed OTC from soil clay surfaces while favouring the coaggregation of the remaining OTC with soil clays. This implies that the long-range transport of OTC or other similar antibiotics can be governed by the mineralogical composition/properties of the suspended particles. More importantly, increasing salt concentrations in estuaries may form a chemical barrier at which limited amounts of OTC/antibiotics can pass through, while the remaining OTC/antibiotics can be favoured to aggregate simultaneously with suspended mineral particles.


Oxytetracycline , Oxytetracycline/analysis , Anti-Bacterial Agents/chemistry , Clay , Aluminum Silicates/chemistry , Kaolin/chemistry , Soil/chemistry , Minerals/chemistry , Sodium Chloride , Colloids , Oceans and Seas , Adsorption
...