ABSTRACT
This study explores the therapeutic benefits of tannic acid (TnA) in an experimental protocol of chronic hypermethioninemia in rats. Rats were categorized into four groups: Group I - control, Group II - TnA 30 mg/kg, Group III - methionine (Met) 0.2-0.4 g/kg + methionine sulfoxide (MS) 0.05-0.1 g/kg, Group IV - TnA/Met + MS. Saline was administered by subcutaneous pathway into groups I and II twice daily from postnatal day 6 (P6) to P28, whereas those in groups III and IV received Met + MS. From P28 to P35, groups II and IV received TnA orally. Animals from group III presented cognitive and memory impairment assessed through object recognition and Y-maze tests (p < 0.05). Elevated levels of reactive species, lipid peroxidation, and nitrites followed by a decline in sulfhydryl content, catalase activity, and superoxide dismutase activity were observed in animals treated with Met + MS (p < 0.05). However, TnA treatment reversed all these effects (p < 0.05). In group III, there was an increase in acetylcholinesterase activity and IL-6 levels, coupled with a reduction in Na+/K+-ATPase activity (p < 0.05). TnA was able to protect against these effects (p < 0.05). The gene expression of catalase, brain-derived neurotrophic factor, and nuclear factor erythroid 2-related factor 2 was decreased in the hippocampus and striatum from group III (p < 0.05). TnA reversed almost all of these alterations (p < 0.05). These findings suggest that TnA is a therapeutic target for patients with hypermethioninemia.
Subject(s)
Amino Acid Metabolism, Inborn Errors , Tannins , Animals , Tannins/pharmacology , Rats , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Male , Rats, Wistar , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Glycine N-Methyltransferase/deficiency , PolyphenolsABSTRACT
The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.
Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Glutaryl-CoA Dehydrogenase , Oligodendroglia , White Matter , Oligodendroglia/metabolism , Oligodendroglia/pathology , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Metabolism, Inborn Errors/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Animals , White Matter/pathology , White Matter/metabolism , Brain Diseases, Metabolic/pathology , Brain Diseases, Metabolic/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathologyABSTRACT
OBJECTIVES: Transcobalamin II (TC) promotes the cellular uptake of cobalamin (Cbl) through receptor-mediated endocytosis of the TC-cbl complex in peripheral tissues. TC deficiency is a rare disorder that causes intracellular Cbl depletion. It presents in early infancy with a failure to thrive, diarrhea, anemia, agammaglobulinemia, and pancytopenia. Data from five TC-deficient patients including clinical, biochemical, and molecular findings, as well as long-term outcomes, were collected. CASE PRESENTATION: Mutation analysis revealed one unreported pathogenic variant in the TCN2 gene. One patient had exocrine pancreatic insufficiency. We conducted a retrospective analysis of C3 and C3/C2 from dried blood samples, as this is implemented for newborn screening (NBS). We detected a marked increase in the C3/C2 ratio in two samples. Treatment was based on parenteral Cbl. Three patients treated before six months of age had an initial favorable outcome, whereas the two treated later or inadequately had neurological impairment. CONCLUSIONS: This is the first report of Argentinean patients with TC deficiency that detected a new variant in TCN2. NBS may be a tool for the early detection of TC deficiency. This data emphasizes that TC deficiency is a severe disorder that requires early detection and long-term, aggressive therapy. Accurate diagnosis is imperative, because early detection and treatment can be life-saving.
Subject(s)
Amino Acid Metabolism, Inborn Errors , Anemia, Macrocytic , Vitamin B 12 Deficiency , Infant, Newborn , Humans , Vitamin B 12/therapeutic use , Transcobalamins/genetics , Retrospective Studies , Vitamin B 12 Deficiency/diagnosis , Vitamin B 12 Deficiency/drug therapy , Vitamin B 12 Deficiency/genetics , Amino Acid Metabolism, Inborn Errors/drug therapy , Early DiagnosisABSTRACT
Patients with glutaric aciduria type 1 (GA1), a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) activity, commonly manifest acute encephalopathy associated with severe striatum degeneration and progressive cortical and striatal injury whose pathogenesis is still poorly known. We evaluated redox homeostasis, inflammatory response, mitochondrial biogenesis and dynamics, endoplasmic reticulum (ER)-mitochondria crosstalk, and ER stress in the brain of GCDH-deficient (Gcdh-/-) and wild-type (Gcdh+/+) mice fed a high Lys chow, which better mimics the human neuropathology mainly characterized by striatal lesions. Increased lipid peroxidation and altered antioxidant defenses, including decreased concentrations of reduced glutathione and increased activities of superoxide dismutase, catalase, and glutathione transferase, were observed in the striatum and cerebral cortex of Gcdh-/- mice. Augmented Iba-1 staining was also found in the dorsal striatum and neocortex, whereas the nuclear content of NF-κB was increased, and the cytosolic content of IκBα decreased in the striatum of the mutant animals, indicating a pro-inflammatory response. Noteworthy, in vivo treatment with the pan-PPAR agonist bezafibrate normalized these alterations. It was also observed that the ER-mitochondria crosstalk proteins VDAC1 and IP3R were reduced, whereas the ER stress protein DDIT3 was augmented in Gcdh-/- striatum, signaling disturbances of these processes. Finally, DRP1 content was elevated in the striatum of Gcdh-/- mice, indicating activated mitochondrial fission. We presume that some of these novel pathomechanisms may be involved in GA1 neuropathology and that bezafibrate should be tested as a potential adjuvant therapy for GA1.
Subject(s)
Amino Acid Metabolism, Inborn Errors , Neuroprotective Agents , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Bezafibrate/pharmacology , Brain/metabolism , Brain Diseases, Metabolic , Endoplasmic Reticulum/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Homeostasis , Humans , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Dynamics , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidation-ReductionABSTRACT
Glutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I. The aim of this study was to investigate whether QA increases seizure susceptibility and modifies brain oscillation patterns in an animal model of GA-I, the Gcdh-/- mice taking high-lysine diet (Gcdh-/- -Lys). Therefore, the characteristics of QA-induced seizures and changes in brain oscillatory patterns were evaluated by video-electroencephalography (EEG) analysis recorded in Gcdh-/- -Lys, Gcdh+/+ -Lys, and Gcdh-/- -N (normal diet) animals. We found that the number of seizures per animal was similar for all groups receiving QA, Gcdh-/- -Lys-QA, Gcdh+/+ -Lys-QA, and Gcdh-/- -N-QA. However, severe seizures were observed in the majority of Gcdh-/- -Lys-QA mice (82%), and only in 25% of Gcdh+/+ -Lys-QA and 44% of Gcdh-/- -N-QA mice. All Gcdh-/- -Lys animals developed spontaneous recurrent seizures (SRS), but Gcdh-/- -Lys-QA animals had increased number of SRS, higher mortality rate, and significant predominance of lower frequency oscillations on EEG. Our results suggest that QA plays an important role in the neurological features of GA-I, as Gcdh-/- -Lys mice exhibit increased susceptibility to intrastriatal QA-induced seizures and long-term changes in brain oscillations.
Subject(s)
Lysine , Quinolinic Acid , Amino Acid Metabolism, Inborn Errors , Animals , Brain/metabolism , Brain Diseases, Metabolic , Disease Models, Animal , Glutaryl-CoA Dehydrogenase/deficiency , Humans , Lysine/metabolism , Lysine/pharmacology , Mice , Mice, Knockout , Quinolinic Acid/toxicity , Seizures/chemically induced , Seizures/metabolismABSTRACT
Quinolinic acid (QUIN) is an agonist of the neurotransmitter glutamate (Glu) capable of binding to N-methyl-D-aspartate receptors (NMDAR) increasing glutamatergic signaling. QUIN is known for being an endogenous neurotoxin, able to induce neurodegeneration. In Caenorhabditis elegans, the mechanism by which QUIN induces behavioral and metabolic toxicity has not been fully elucidated. The effects of QUIN on behavioral and metabolic parameters in nmr-1 and nmr-2 NMDA receptors in transgenic and wild-type (WT) worms were performed to decipher the pathway by which QUIN exerts its toxicity. QUIN increased locomotion parameters such as wavelength and movement amplitude medium, as well as speed and displacement, without modifying the number of body bends in an NMDAR-dependent-manner. QUIN increased the response time to the chemical stimulant 1-octanol, which is modulated by glutamatergic neurotransmission in the ASH neuron. Brood size increased after exposure to QUIN, dependent upon nmr-2/NMDA-receptor, with no change in lifespan. Oxygen consumption, mitochondrial membrane potential, and the flow of coupled and unbound electrons to ATP production were reduced by QUIN in wild-type animals, but did not alter citrate synthase activity, altering the functionality but the mitochondrial viability. Notably, QUIN modified fine locomotor and chemosensory behavioral parameters, as well as metabolic parameters, analogous to previously reported effects in mammals. Our results indicate that QUIN can be used as a neurotoxin to elicit glutamatergic dysfunction in C. elegans in a way analogous to other animal models.
Subject(s)
Amino Acid Metabolism, Inborn Errors/chemically induced , Caenorhabditis elegans/physiology , Quinolinic Acid , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/genetics , 1-Octanol/pharmacology , Adenosine Triphosphate/biosynthesis , Animals , Animals, Genetically Modified , Citrate (si)-Synthase/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Humans , Kynurenine/metabolism , Motor Activity/drug effects , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/genetics , Signal Transduction/drug effects , Synaptic TransmissionABSTRACT
Hypermethioninemia is characterized by high plasma concentrations of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), and neurological changes, such as cerebral edema and cognitive deficits. The aim of this study was to analyze the redox status and acetylcholinesterase (AChE) activity in the hippocampus, striatum, and cerebellum of young Wistar rats subjected to an acute hypermethioninemia protocol. The animals received, by subcutaneous injection, a single dose of Met (0.4 g/kg), MetO (0.1 g/kg), and Met + MetO, and 1 or 3 hr after administration, the animals were euthanatized for brain structure obtaining. In the hippocampus, an increase in lipid peroxidation and glutathione peroxidase (GPx) activity was observed at 1 hr in the MetO and Met + MetO groups, and a reduction in the superoxide dismutase activity was found in the Met + MetO group. Met and/or MetO induced a decrease in the thiol content and GPx activity and enhanced the lipid peroxidation at 3 hr. In the striatum, a reduction in the thiol content and GPx activity, an increase in lipid peroxidation, and AChE activity were induced by Met and/or MetO at 1 or 3 hr. Additionally, in the cerebellum, an increase in the AChE in the MetO and Met + MetO groups 1 hr after administration was observed. These data help to better understand the pathophysiological mechanisms that underlie the neurological changes found in hypermethioninemia patients.
Subject(s)
Acetylcholinesterase/metabolism , Amino Acid Metabolism, Inborn Errors/metabolism , Cerebellum/metabolism , Corpus Striatum/metabolism , Glycine N-Methyltransferase/deficiency , Hippocampus/metabolism , Animals , Glycine N-Methyltransferase/metabolism , Homeostasis/physiology , Lipid Peroxidation/physiology , Oxidation-Reduction , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolismABSTRACT
BACKGROUND: Propionate inborn errors of metabolism (PIEM), including propionic (PA) and methylmalonic (MMA) acidemias, are inherited metabolic diseases characterized by toxic accumulation of propionic, 3-hydroxypropionic, methylcitric, and methylmalonic organic acids in biological fluids, causing recurrent acute metabolic acidosis events and encephalopathy, which can lead to fatal outcomes if managed inadequately. PIEM patients can develop hematological abnormalities and immunodeficiency, either as part of the initial clinical presentation or as chronic complications. The origin and characteristics of these abnormalities have been studied poorly. Thus, the aim of the present work was to evaluate and describe lymphoid, myeloid, and erythroid cell population profiles in a group of clinically stable PIEM patients. METHODS: This was a retrospective study of 11 nonrelated Mexican PIEM patients. Clinical, biochemical, nutritional, hematological, and lymphocyte subsets were analyzed. RESULTS: Despite being considered clinically stable, 91% of patients had hematological or immunological abnormalities. The absolute lymphocyte subset counts were low in all patients but one, with CD4+ T-cell lymphopenia, being the most common one. Furthermore, of the 11 studied subjects, nine presented with a low CD4/CD8 ratio. Among the observed hematological alterations, bicytopenia was the most common (82%) one, followed by anemia (27%). CONCLUSION: Our results contribute to the landscape of immunological abnormalities observed previously in PIEM patients; these abnormalities can become a life-threatening chronic complications because of the increased risk of opportunistic diseases. These findings allow us to propose the inclusion of monitoring immune biomarkers, such as subsets of lymphocytes in the follow up of PIEM patients.
Subject(s)
Amino Acid Metabolism, Inborn Errors/blood , B-Lymphocytes/pathology , Lymphocyte Subsets/pathology , T-Lymphocytes/pathology , Amino Acid Metabolism, Inborn Errors/immunology , Antigens, Differentiation/metabolism , B-Lymphocytes/metabolism , Biomarkers/blood , Child , Child, Preschool , Female , Humans , Infant , Lymphocyte Subsets/metabolism , Male , Propionic Acidemia/blood , Propionic Acidemia/immunology , Retrospective Studies , T-Lymphocytes/metabolismABSTRACT
Sulfite oxidase (SO) deficiency is a disorder caused either by isolated deficiency of SO or by defects in the synthesis of its molybdenum cofactor. It is characterized biochemically by tissue sulfite accumulation. Patients present with seizures, progressive neurological damage, and basal ganglia abnormalities, the pathogenesis of which is not fully established. Treatment is supportive and largely ineffective. To address the pathophysiology of sulfite toxicity, we examined the effects of intrastriatal administration of sulfite in rats on antioxidant defenses, energy transfer, and mitogen-activated protein kinases (MAPK) and apoptosis pathways in rat striatum. Sulfite administration decreased glutathione (GSH) concentration and glutathione peroxidase, glucose-6-phosphate dehydrogenase, glutathione S-transferase, and glutathione reductase activities in striatal tissue. Creatine kinase (CK) activity, a crucial enzyme for cell energy transfer, was also decreased by sulfite. Superoxide dismutase-1 (SOD1) and catalase (CAT) proteins were increased, while heme oxygenase-1 (HO-1) was decreased. Additionally, sulfite altered phosphorylation of MAPK by decreasing of p38 and increasing of ERK. Sulfite further augmented the content of GSK-3ß, Bok, and cleaved caspase-3, indicating increased apoptosis. JP4-039 is a mitochondrial-targeted antioxidant that reaches higher intramitochondrial levels than other traditional antioxidants. Intraperitoneal injection of JP4-039 before sulfite administration preserved activity of antioxidant enzymes and CK. It also prevented or attenuated alterations in SOD1, CAT, and HO-1 protein content, as well as changes in p38, ERK, and apoptosis markers. In sum, oxidative stress and apoptosis induced by sulfite injection are prevented by JP4-039, identifying this molecule as a promising candidate for pharmacological treatment of SO-deficient patients.
Subject(s)
Amino Acid Metabolism, Inborn Errors/prevention & control , Antioxidants/pharmacology , Corpus Striatum/metabolism , Mitochondria/metabolism , Nitrogen Oxides/pharmacokinetics , Sulfite Oxidase/deficiency , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Catalase/metabolism , Cell Death/drug effects , Corpus Striatum/drug effects , Creatine Kinase/metabolism , Energy Transfer/drug effects , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/pharmacology , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sulfites/metabolism , Superoxide Dismutase/metabolismABSTRACT
Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.
Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Mutation , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brazil , DNA Mutational Analysis , Female , Humans , Infant , Infant, Newborn , MaleABSTRACT
Los trastornos del ciclo de la urea (TCU) son enfermedades hereditarias con un posible desenlace desfavorable por hiperamoniemia grave. Se informa de una bebé con deficiencia de N-acetilglutamato sintasa (NAGS), quien tenía succión débil e hipotonicidad. Al examinarla, se observó hepatomegalia. El hemograma, los análisis y la gasometría eran normales, y las proteínas de la fase aguda, negativas. En los análisis, no se observaron cetonas en sangre, pero sí concentraciones elevadas de amoníaco. Las pruebas metabólicas no fueron concluyentes. Se inició el tratamiento de emergencia inmediatamente y recibió el alta el día 15 después del ingreso. Se confirmó deficiencia de NAGS mediante análisis de ADN. La paciente no tiene restricciones alimentarias ni toma medicamentos, excepto N-carbamil glutamato (NCG). La deficiencia de NAGS es el único TCU que puede tratarse específica y eficazmente con NCG. La detección temprana permite iniciar un tratamiento temprano y evitar los efectos devastadores de la hiperamoniemia
Urea cycle disorders (UCD), are genetically inherited diseases that may have a poor outcome due to to profound hyperammonemia. We report the case of a baby girl diagnosed as N-acetylglutamate synthase (NAGS) deficiency.The patient was evaluated due to diminished sucking and hypotonicity. Physical examination showed hepatomegaly. Complete blood count, biochemical values and blood gas analyses were normal, acute phase reactants were negative. Further laboratory analyses showed no ketones in blood and highly elevated ammonia. Metabolic tests were inconclusive. Emergency treatment was initiated immediately and she was discharged on the 15th day of admission. NAGS deficiency was confirmed by DNA-analysis. She is now without any dietary restriction or other medication, except N-carbamylglutamate (NCG).NAGS deficiency is the only UCD which can be specifically and effectively treated by NCG. Early recognition of disease will lead to early treatment that may prohibit devastating effects of hyperammonemia
Subject(s)
Humans , Female , Infant, Newborn , Acetyltransferases/deficiency , Urea Cycle Disorders, Inborn , Hyperammonemia , Amino-Acid N-Acetyltransferase , Amino Acid Metabolism, Inborn ErrorsABSTRACT
We investigated the ability of tannic acid (TA) to prevent oxidative and nitrosative damage in the brain, liver, kidney, and serum of a rat model of acute hypermethioninemia. Young Wistar rats were divided into four groups: I (control), II (TA 30 mg/kg), III (methionine (Met) 0.4 g/kg + methionine sulfoxide (MetO) 0.1 g/kg), and IV (TA/Met + MetO). Rats in groups II and IV received TA orally for seven days, and rats of groups I and III received an equal volume of water. After pretreatment with TA, rats from groups II and IV received a single subcutaneous injection of Met + MetO, and were euthanized 3 h afterwards. In specific brain structures and the kidneys, we observed that Met + MetO led to increased reactive oxygen species (ROS), nitrite, and lipid peroxidation levels, followed by a reduction in thiol content and antioxidant enzyme activity. On the other hand, pretreatment with TA prevented both oxidative and nitrosative damage. In the serum, Met + MetO caused a decrease in the activity of antioxidant enzymes, which was again prevented by TA pretreatment. In contrast, in the liver, there was a reduction in ROS levels and an increase in total thiol content, which was accompanied by a reduction in catalase and superoxide dismutase activities in the Met + MetO group, and pretreatment with TA was able to prevent only the reduction in catalase activity. Conclusively, pretreatment with TA has proven effective in preventing oxidative and nitrosative changes caused by the administration of Met + MetO, and may thus represent an adjunctive therapeutic approach for treatment of hypermethioninemia.
Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Glycine N-Methyltransferase/deficiency , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Tannins/pharmacology , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Brain/drug effects , Brain/metabolism , Glutathione Peroxidase/genetics , Glycine N-Methyltransferase/metabolism , Humans , Kidney/drug effects , Kidney/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Nitrosative Stress/genetics , Oxidation-Reduction/drug effects , Oxidative Stress/genetics , Rats , Reactive Oxygen Species/metabolism , Serum/drug effects , Serum/metabolism , Superoxide Dismutase/geneticsABSTRACT
INTRODUCTION: Various pathologies and lifestyle factors, such as nutritional factors and physical exercises, can alter the gene expression of proteins related to synthesis and degradation. AIM: We performed a systematic review of atrophy models, cancer models, burn models, sepsis models, cardiac insufficiency models, amino acid supplementation models, protein supplementation models, and miscellaneous models that have altered the gene expression of MTOR, MURF-1, or MAFBX in rats and mice. MATERIALS AND METHODS: We searched the literature in the following databases: Medline, Scielo.org, Scielo.br, Redib, Lilacs, and the Periodicos Capes. RESULTS: We selected 56 articles for this review. DISCUSSION: Several conditions can alter the gene expression of muscle proteins under conditions that stimulate muscle degradation pathways. Therefore, treatments must normalize the expression of the degradation pathways and potentiate the synthesis pathways so the muscular tissue confers an increase in functional capacity and thus, survival in diseased patients. Therefore, the reversal of the mechanisms that promote its depletion must be achieved. CONCLUSION: Identification of the atrophic mechanisms present in pathologies and other conditions of muscular disuse in the scientific literature is fundamental for the adoption of clinical strategies to prevent protein degradation and to promote the maintenance and/or increase of muscle tissue. Such strategies include physical exercise, protein supplementation, and/or pharmacological applications, aimed toward restoring the fullness of functional capacity.
Subject(s)
Gene Expression Regulation/genetics , Muscle Proteins/genetics , SKP Cullin F-Box Protein Ligases/genetics , TOR Serine-Threonine Kinases/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/pathology , Atrophy/genetics , Atrophy/pathology , Burns/genetics , Burns/pathology , Disease Models, Animal , Humans , Mice , Neoplasms/genetics , Neoplasms/pathology , Rats , Sepsis/genetics , Sepsis/pathologyABSTRACT
Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain. The present study aims to evaluate the effect of chronic administration of Met and/or MetO on phenotypic characteristics of macrophages, in addition to oxidative stress, purinergic system, and inflammatory mediators in macrophages. In this study, Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. The results revealed that Met and/or MetO induce an M1/classical activation phenotype associated with increased levels of tumor necrosis factor alpha and nitrite, and reduced arginase activity. It was also found that Met and/or MetO alter the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of thiol and reactive oxygen species in macrophages. The chronic administration of Met and/or MetO also promotes alteration in the hydrolysis of ATP and ADP, as indicated by the increased activity of ectonucleotidases. These results demonstrate that chronic administration of Met and/or MetO promotes activated pro-inflammatory profile by inducing M1/classical macrophage polarization. Thus, the changes in redox status and purinergic system upon chronic Met and/or MetO exposure may contribute towards better understanding of the alterations consistent with hypermethioninemic patients.
Subject(s)
Amino Acid Metabolism, Inborn Errors/immunology , Glycine N-Methyltransferase/deficiency , Macrophages/immunology , Methionine/analogs & derivatives , Animals , Catalase/metabolism , Cell Polarity , Glutathione Peroxidase/metabolism , Glycine N-Methyltransferase/immunology , Macrophages/drug effects , Male , Methionine/administration & dosage , Methionine/metabolism , Methionine/pharmacology , Mice , Oxidation-Reduction , Oxidative Stress , Phenotype , Superoxide Dismutase/metabolismABSTRACT
The aim of this study was to investigate the effect of the chronic administration of methionine (Met) and/or its metabolite, methionine sulfoxide (MetO), on the behavior and neurochemical parameters of young rats. Rats were treated with saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg), and/or a combination of Met + MetO, subcutaneously twice a day from postnatal day 6 (P6) to P28. The results showed that Met, MetO, and Met + MetO impaired short-term and spatial memories (P < 0.05), reduced rearing and grooming (P < 0.05), but did not alter locomotor activity (P > 0.05). Acetylcholinesterase activity was increased in the cerebral cortex, hippocampus, and striatum following Met and/or MetO (P < 0.05) treatment, while Na+, K+-ATPase activity was reduced in the hippocampus (P < 0.05). There was an increase in the level of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex in Met-, MetO-, and Met + MetO-treated rats (P < 0.05). Met and/or MetO treatment reduced superoxide dismutase, catalase, and glutathione peroxidase activity, total thiol content, and nitrite levels, and increased reactive oxygen species and TBARS levels in the hippocampus and striatum (P < 0.05). Hippocampal brain-derived neurotrophic factor was reduced by MetO and Met + MetO compared with the control group. The number of NeuN-positive cells was decreased in the CA3 in Met + MetO group and in the dentate gyrus in the Met, MetO, and Met + MetO groups compared to control group (P < 0.05). Taken together, these findings further increase our understanding of changes in the brain in hypermethioninemia by elucidating behavioral alterations, biological mechanisms, and the vulnerability of brain function to high concentrations of Met and MetO.
Subject(s)
Amino Acid Metabolism, Inborn Errors/complications , Glycine N-Methyltransferase/deficiency , Hippocampus/pathology , Memory Disorders/etiology , Memory Disorders/pathology , Methionine/analogs & derivatives , Reactive Oxygen Species/metabolism , Acetylcholinesterase/metabolism , Amino Acid Metabolism, Inborn Errors/chemically induced , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Catalase/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Female , Glutathione Peroxidase/deficiency , Glycine N-Methyltransferase/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory Disorders/metabolism , Memory, Short-Term/drug effects , Methionine/metabolism , Methionine/toxicity , Rats , Rats, Wistar , Spatial Memory/drug effects , Superoxide Dismutase/deficiency , Thiobarbituric Acid Reactive Substances/metabolismABSTRACT
Glutaric acidemia type I (GA1) is caused by severe deficiency of glutaryl-CoA dehydrogenase activity, resulting in an accumulation of glutaric acid and glutarylcarnitine (C5DC) in the organism. Patients affected by GA1 are asymptomatic in the neonate period but usually manifest chronically progressive neurodegeneration apart from severe encephalopathic crises associated with acute striatum necrosis. Neurological manifestations like dyskinesia, dystonia, hypotonia, muscle stiffness, and spasticity are present. Treatment is based on protein/lysine restriction and l-carnitine supplementation. In this work, we evaluated markers of neurodegeneration and inflammation, namely BDNF (brain-derived neurotrophic factor), NCAM (neuronal adhesion molecule), PDGF-AA (platelet-derived growth factor), and cathepsin-d in plasma of six treated GA1 patients. We first found marked increases of plasma C5DC concentrations in GA1 patients, as well as increased levels of the markers BDNF and cathepsin-d as compared to those of age-matched healthy children. Furthermore, C5DC concentrations were highly correlated with the levels of cathepsin-d. These results may demonstrate that brain tissue degeneration is present in GA1 patients and that there is a relationship between increased metabolites concentrations with this process. To the best of our knowledge, this is so far the first study showing altered peripheral parameters of neurodegeneration and inflammation in GA1 patients.
Subject(s)
Amino Acid Metabolism, Inborn Errors/blood , Brain Diseases, Metabolic/blood , Brain-Derived Neurotrophic Factor/blood , Cathepsin D/blood , Glutaryl-CoA Dehydrogenase/deficiency , Nerve Degeneration/diagnosis , Amino Acid Metabolism, Inborn Errors/complications , Biomarkers/blood , Brain Diseases, Metabolic/complications , Child , Child, Preschool , Female , Glutaryl-CoA Dehydrogenase/blood , Humans , Infant , Infant, Newborn , Male , Nerve Degeneration/blood , Nerve Degeneration/etiology , Neural Cell Adhesion Molecules/blood , Platelet-Derived Growth Factor/metabolismABSTRACT
Isovaleric acidemia (IVA) is an inborn error of metabolism caused by deficiency of isovaleryl-CoA dehydrogenase. IVA clinical picture includes gastroenterological and progressive neurological symptoms which can lead to permanent disability and death. Early detection by newborn screening (NBS) and treatment promotes normal development. In this study, clinical summaries, biochemical measurements and targeted next generation sequencing (tNGS) data from the IVD gene were compared in 13 Mexican patients. The main symptoms were vomiting, feeding refusal, abdominal pain, impaired alertness, lethargy, stupor, coma; hypotonia, ataxia, hallucinations, seizures; anemia, neutropenia and pancytopenia. Mean blood concentration of isovalerylcarnintine was above the reference value (0.5⯵M) in symptomatic patients (8.78⯵M), as well as in the screen positive newborns (2.23⯵M). The molecular spectrum of this cohort was heterogeneous, with 14 different variants identified, seven were previously-described, and seven were novel. The most frequent variant was c.158Gâ¯>â¯C (p.R53P). In this study, we found a long diagnostic delay (average of 44â¯months). Thus, it is essential to increase physician awareness of this treatable condition. Biochemical IVA NBS accompanied by molecular studies (e.g. tNGS) will permit identification of potentially asymptomatic forms of the disease, and improve genotype-phenotype relationship, management decisions and follow-up.
Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing , Isovaleryl-CoA Dehydrogenase/deficiency , Sequence Analysis, DNA , Amino Acid Metabolism, Inborn Errors/blood , Biomarkers/blood , Cohort Studies , Delayed Diagnosis , Female , Humans , Infant, Newborn , Isovaleryl-CoA Dehydrogenase/blood , Isovaleryl-CoA Dehydrogenase/genetics , Male , Mexico , Neonatal Screening , Tandem Mass SpectrometryABSTRACT
transporte de los aminoácidos. Los síntomas pueden ser agudos en estado de catabolismo, donde se origina un aumento de los niveles de aminoácidos. Las manifestaciones clínicas van a depender de la cantidad y toxicidad de los metabolitos acumulados o de la importancia del producto deficiente. Estas enfermedades pueden detectarse mediante el análisis del perfil de aminoácidos en diferentes fluidos biológicos y del perfil de ácidos orgánicos en orina. Su diagnóstico, manejo y tratamiento es complejo, por lo que requiere de un conocimiento amplio y experiencia por parte del personal médico.Objetivo: Proponer una guía con recomendaciones para el adecuado diagnóstico clínico y bioquímico de las aminoacidopatías.Métodos: Se consultaron varias fuentes especializadas y plataformas de revistas médicas internacionales, de sociedades científicas internacionales, sitios web nacionales e internacionales y bases de datos (PubMed, MedlinePlus, Medline,) de los últimos 10 años. Se emplearon 10 descriptores relacionados con el objetivo del trabajo; y se tuvieron en cuenta los criterios de los expertos con más experiencia en el diagnóstico, tratamiento y manejo de los errores innatos del metabolismo en Cuba.Resultados: Se elaboró un documento donde se recogen recomendaciones prácticas dirigidas al personal médico, que garantice el diagnóstico clínico-bioquímico de las aminoacidopatías.Conclusiones: Conocer y aplicar estas recomendaciones garantizará el diagnóstico rápido y certero de estas enfermedades complejas...(AU)
Subject(s)
Humans , Male , Female , Amino Acids/genetics , Cerebrospinal Fluid , Amino Acid Metabolism, Inborn Errors , Biomarkers/urine , Urinary Bladder , Biological Phenomena/analysis , ChromatographyABSTRACT
Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non-genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na+,K+-ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects. The aim of this study was to verify the possible neuroprotective effects of melatonin administration in hypermethioninemic pregnant rats on damage to biomolecules (Na+,K+-ATPase, sulfhydryl content and DNA damage index) and behavior (open field, novel object recognition and water maze tasks), as well as its effect on cells morphology by electron microscopy in offspring. Wistar female rats received methionine (2.68⯵mol/g body weight) and/or melatonin (10â¯mg/kg body weight) by subcutaneous injections during entire pregnancy. Control rats received saline. Biochemical analyzes were performed at 21 and 30 days of life of offspring and behavioral analyzes were performed only at 30 days of age in male pups. Results showed that gestational hypermethioninemia diminished Na+,K+-ATPase activity and sulfhydryl content and increased DNA damage at 21 and 30 days of life. Melatonin was able to totally prevent Na+,K+-ATPase activity alteration at 21 days and partially prevent its alteration at 30 days of rats life. Melatonin was unable in to prevent sulfhydryl and DNA damage at two ages. It also improved DNA damage, but not at level of saline animals (controls). Regarding to behavioral tests, data showed that pups exposed to gestational hypermethioninemia decreased reference memory in water maze, spent more time to the center of the open field and did not differentiate the objects in the recognition test. Melatonin was able to prevent the deficit in novel object recognition task. Electron microscopy revealed ultrastructure alterations in neurons of hypermethioninemic at both ages of offspring, whose were prevented by melatonin. These findings suggest that melatonin may be a good neuroprotective to minimize the harmful effects of gestational hypermethioninemia on offspring.