Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.840
Filter
1.
Alcohol Alcohol ; 59(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38953742

ABSTRACT

AIMS: Reward processing and regulation of emotions are thought to impact the development of addictive behaviors. In this study, we aimed to determine whether neural responses during reward anticipation, threat appraisal, emotion reactivity, and cognitive reappraisal predicted the transition from low-level to hazardous alcohol use over a 12-month period. METHODS: Seventy-eight individuals aged 18-22 with low-level alcohol use [i.e. Alcohol Use Disorder Identification Test (AUDIT) score <7] at baseline were enrolled. They completed reward-based and emotion regulation tasks during magnetic resonance imaging to examine reward anticipation, emotional reactivity, cognitive reappraisal, and threat anticipation (in the nucleus accumbens, amygdala, superior frontal gyrus, and insula, respectively). Participants completed self-report measures at 3-, 6-, 9-, and 12-month follow-up time points to determine if they transitioned to hazardous use (as defined by AUDIT scores ≥8). RESULTS: Of the 57 participants who completed follow-up, 14 (24.6%) transitioned to hazardous alcohol use. Higher baseline AUDIT scores were associated with greater odds of transitioning to hazardous use (odds ratio = 1.73, 95% confidence interval 1.13-2.66, P = .005). Brain activation to reward, threat, and emotion regulation was not associated with alcohol use. Of the neural variables, the amygdala response to negative imagery was numerically larger in young adults who transitioned to hazardous use (g = 0.31), but this effect was not significant. CONCLUSIONS: Baseline drinking levels were significantly associated with the transition to hazardous alcohol use. Studies with larger samples and longer follow-up should test whether the amygdala response to negative emotional imagery can be used to indicate a future transition to hazardous alcohol use.


Subject(s)
Emotional Regulation , Magnetic Resonance Imaging , Reward , Humans , Male , Female , Young Adult , Emotional Regulation/physiology , Adolescent , Alcoholism/psychology , Alcoholism/physiopathology , Alcoholism/diagnostic imaging , Brain/diagnostic imaging , Alcohol Drinking/psychology , Alcohol Drinking/physiopathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Emotions/physiology , Adult
2.
Autism Res ; 17(7): 1328-1343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949436

ABSTRACT

Although aversive responses to sensory stimuli are common in autism spectrum disorder (ASD), it remains unknown whether the social relevance of aversive sensory inputs affects their processing. We used functional magnetic resonance imaging (fMRI) to investigate neural responses to mildly aversive nonsocial and social sensory stimuli as well as how sensory over-responsivity (SOR) severity relates to these responses. Participants included 21 ASD and 25 typically-developing (TD) youth, aged 8.6-18.0 years. Results showed that TD youth exhibited significant neural discrimination of socially relevant versus irrelevant aversive sensory stimuli, particularly in the amygdala and orbitofrontal cortex (OFC), regions that are crucial for sensory and social processing. In contrast, ASD youth showed reduced neural discrimination of social versus nonsocial stimuli in the amygdala and OFC, as well as overall greater neural responses to nonsocial compared with social stimuli. Moreover, higher SOR in ASD was associated with heightened responses in sensory-motor regions to socially-relevant stimuli. These findings further our understanding of the relationship between sensory and social processing in ASD, suggesting limited attention to the social relevance compared with aversiveness level of sensory input in ASD versus TD youth, particularly in ASD youth with higher SOR.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Humans , Male , Adolescent , Child , Female , Autism Spectrum Disorder/physiopathology , Amygdala/physiopathology , Social Perception , Brain/physiopathology , Brain/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Brain Mapping/methods
3.
Transl Psychiatry ; 14(1): 301, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039061

ABSTRACT

Depressive symptoms occur commonly in Alzheimer's disease (AD). Although abnormalities in the amygdala-frontal circuit have been linked to emotional dysregulation and cognitive impairment, the neurological basis underlying these associations in AD patients with depressive symptoms (ADD) is unclear. We aimed to investigate the relationship between the amygdala-frontal circuit and depressive symptoms and cognitive function in ADD. We recruited 60 ADD, 60 AD patients without depressive symptoms (ADND), and 60 healthy controls (HC). Functional connectivity (FC) maps of the bilateral amygdala were compared. Fractional anisotropy (FA) of the amygdala-frontal circuit connected by the uncinate fasciculus (UF) was calculated using automated fiber quantification (AFQ). In addition, mediation analysis was performed to explore the effects of the amygdala-frontal circuit on the relationship between depressive symptoms and cognitive function. We found decreased bilateral amygdala FC with the inferior frontal gyrus (IFG) in the ADD group compared to the ADND and HC groups. Moreover, FA in the left frontal UF (nodes 64-97) was significantly lower in the ADD group than ADND group. Notably, amygdala-based FC with IFG and the left frontal UF FA mediated the relationship between depressive symptoms and cognitive function in ADD, with mediating effects ranging between 15 and 18%. Our study is the first to demonstrate the mediating effect of functional and microstructural abnormalities in the amygdala-frontal circuit in ADD. The findings suggest that the amygdala-frontal circuit may underlie emotional dysregulation in ADD, providing potential targets for treatment strategies.


Subject(s)
Alzheimer Disease , Amygdala , Cognition , Depression , Humans , Amygdala/physiopathology , Amygdala/diagnostic imaging , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Male , Female , Aged , Depression/physiopathology , Depression/diagnostic imaging , Middle Aged , Diffusion Tensor Imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Frontal Lobe/physiopathology , Frontal Lobe/diagnostic imaging , Neural Pathways/physiopathology , Case-Control Studies , Magnetic Resonance Imaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
4.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920682

ABSTRACT

Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.


Subject(s)
Amygdala , Epigenesis, Genetic , Neuralgia , Small-Conductance Calcium-Activated Potassium Channels , Animals , Male , Rats , Amygdala/metabolism , Amygdala/physiopathology , Behavior, Animal/drug effects , DNA Methylation/genetics , Neuralgia/metabolism , Neuralgia/genetics , Neuralgia/physiopathology , Neurons/metabolism , Rats, Sprague-Dawley , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Small-Conductance Calcium-Activated Potassium Channels/genetics
5.
JAMA Netw Open ; 7(6): e2416491, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38865126

ABSTRACT

Importance: Racial discrimination is a psychosocial stressor associated with youths' risk for psychiatric symptoms. Scarce data exist on the moderating role of amygdalar activation patterns among Black youths in the US. Objective: To investigate the association between racial discrimination and risk for psychopathology moderated by neuroaffective processing. Design, Setting, and Participants: This cohort study used longitudinal self-report and functional magnetic resonance imaging (fMRI) data from Black youth participants in the US from the Adolescent Brain Cognitive Development (ABCD) study. Data were analyzed from January 2023 to May 2024. Exposures: At time 1 of the current study (12 months after baseline), youths self-reported on their experiences of interpersonal racial discrimination and their feelings of marginalization. Amygdalar response was measured during an emotionally valenced task that included blocks of faces expressing either neutral or negative emotion. Main Outcomes and Measures: At 24 and 36 months after baseline, youths reported their internalizing (anxiety and depressive symptoms) and externalizing symptoms (aggression and rule-breaking symptoms). Results: A total of 1596 youths were a mean (SD) age of 10.92 (0.63) years, and 803 were female (50.3%). Families in the study had a mean annual income range of $25 000 to $34 999. Two factors were derived from factor analysis: interpersonal racial discrimination and feelings of marginalization (FoM). Using structural equation modeling in a linear regression, standardized ß coefficients were obtained. Neural response to faces expressing negative emotion within the right amygdala significantly moderated the association between FoM and changes in internalizing symptoms (ß = -0.20; 95% CI, -0.32 to -0.07; P < .001). The response to negative facial emotion within the right amygdala significantly moderated the association between FoM and changes in externalizing symptoms (ß = 0.24; 95% CI, 0.04 to 0.43; P = .02). Left amygdala response to negative emotion significantly moderated the association between FoM and changes in externalizing symptoms (ß = -0.16; 95% CI, -0.32 to -0.01; P = .04). Conclusions and Relevance: In this cohort study of Black adolescents in the US, findings suggest that amygdala function in response to emotional stimuli can both protect and intensify the affective outcomes of feeling marginalized on risk for psychopathology, informing preventive interventions aimed at reducing the adverse effects of racism on internalizing and externalizing symptoms among Black youths.


Subject(s)
Amygdala , Black or African American , Magnetic Resonance Imaging , Racism , Humans , Female , Male , Racism/psychology , Black or African American/psychology , Black or African American/statistics & numerical data , Child , Amygdala/physiopathology , Amygdala/diagnostic imaging , Adolescent , Longitudinal Studies , United States/epidemiology , Depression/psychology , Depression/ethnology , Anxiety/psychology , Anxiety/ethnology , Cohort Studies , Self Report
6.
Biochem Biophys Res Commun ; 724: 150218, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865810

ABSTRACT

Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/ß, and α/ß) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.


Subject(s)
Amygdala , Anxiety Disorders , gamma-Aminobutyric Acid , Humans , Animals , Anxiety Disorders/metabolism , Anxiety Disorders/physiopathology , gamma-Aminobutyric Acid/metabolism , Amygdala/metabolism , Amygdala/physiopathology , Anxiety/metabolism , Anxiety/physiopathology , Receptors, GABA-A/metabolism
7.
Eur Addict Res ; 30(3): 163-180, 2024.
Article in English | MEDLINE | ID: mdl-38710170

ABSTRACT

INTRODUCTION: The development of cocaine use disorder in females is suggested to be more strongly related to neural mechanisms underlying stress-reactivity, whereas in males it is suggested to be more strongly related to neural mechanisms underlying drug cue-reactivity. Existing evidence, however, is based on neuroimaging studies that either lack a control group and/or have very small sample sizes that do not allow to investigate sex differences. METHODS: The main objective of the current study was to investigate sex differences in the neural correlates of cocaine and negative emotional cue-reactivity within high-risk intranasal cocaine users (CUs: 31 males and 26 females) and non-cocaine-using controls (non-CUs: 28 males and 26 females). A region of interest (ROI) analysis was applied to test for the main and interaction effects of group, sex, and stimulus type (cocaine cues vs. neutral cocaine cues and negative emotional cues vs. neutral emotional cues) on activity in the dorsal striatum, ventral striatum (VS), amygdala, and dorsal anterior cingulate cortex (dACC). RESULTS: There were no significant sex or group differences in cocaine cue-reactivity in any of the ROIs. Results did reveal significant emotional cue-reactivity in the amygdala and VS, but these effects were not moderated by group or sex. Exploratory analyses demonstrated that emotional cue-induced activation of the dACC and VS was negatively associated with years of regular cocaine use in female CUs, while this relationship was absent in male CUs. CONCLUSIONS: While speculative, the sex-specific associations between years of regular use and emotional cue-reactivity in the dACC and VS suggest that, with longer years of use, female CUs become less sensitive to aversive stimuli, including the negative consequences of cocaine use, which could account for the observed "telescoping effect" in female CUs.


Subject(s)
Cocaine-Related Disorders , Cues , Emotions , Humans , Male , Female , Cocaine-Related Disorders/psychology , Cocaine-Related Disorders/physiopathology , Adult , Emotions/physiology , Magnetic Resonance Imaging , Sex Characteristics , Cocaine/pharmacology , Young Adult , Amygdala/diagnostic imaging , Amygdala/physiopathology , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Brain/diagnostic imaging , Sex Factors , Case-Control Studies
8.
Neurobiol Aging ; 140: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38691941

ABSTRACT

Growing evidence suggests that aging is associated with impaired endogenous pain modulation, and that this likely underlies the increased transition from acute to chronic pain in older individuals. Resting-state functional connectivity (rsFC) offers a valuable tool to examine the neural mechanisms behind these age-related changes in pain modulation. RsFC studies generally observe decreased within-network connectivity due to aging, but its relevance for pain modulation remains unknown. We compared rsFC within a set of brain regions involved in pain modulation between young and older adults and explored the relationship with the efficacy of distraction from pain. This revealed several age-related increases and decreases in connectivity strength. Importantly, we found a significant association between lower pain relief and decreased strength of three connections in older adults, namely between the periaqueductal gray and right insula, between the anterior cingulate cortex (ACC) and right insula, and between the ACC and left amygdala. These findings suggest that the functional integrity of the pain control system is critical for effective pain modulation, and that its function is compromised by aging.


Subject(s)
Aging , Gyrus Cinguli , Magnetic Resonance Imaging , Pain , Humans , Aging/physiology , Male , Aged , Female , Adult , Young Adult , Pain/physiopathology , Middle Aged , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Amygdala/physiopathology , Amygdala/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Periaqueductal Gray/physiopathology , Periaqueductal Gray/diagnostic imaging , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
9.
Eur Heart J ; 45(19): 1753-1764, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753456

ABSTRACT

BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.


Subject(s)
Carotid Artery Diseases , Positron-Emission Tomography , Stress Disorders, Post-Traumatic , Humans , Female , Male , Adult , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Artery Diseases/diagnostic imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Middle Aged , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Radiopharmaceuticals , Case-Control Studies , Stress, Psychological/physiopathology , Stress, Psychological/complications
10.
Hum Brain Mapp ; 45(8): e26712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38798104

ABSTRACT

The aim of this study was to systematically investigate structural and functional alterations in amygdala subregions using multimodal magnetic resonance imaging (MRI) in patients with tinnitus with or without affective dysfunction. Sixty patients with persistent tinnitus and 40 healthy controls (HCs) were recruited. Based on a questionnaire assessment, 26 and 34 patients were categorized into the tinnitus patients with affective dysfunction (TPAD) and tinnitus patients without affective dysfunction (TPWAD) groups, respectively. MRI-based measurements of gray matter volume, fractional anisotropy (FA), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC) were conducted within 14 amygdala subregions for intergroup comparisons. Associations between the MRI properties and clinical characteristics were estimated via partial correlation analyses. Compared with that of the HCs, the TPAD and TPWAD groups exhibited significant structural and functional changes, including white matter integrity (WMI), fALFF, ReHo, DC, and FC alterations, with more pronounced WMI changes in the TPAD group, predominantly within the left auxiliary basal or basomedial nucleus (AB/BM), right central nucleus, right lateral nuclei (dorsal portion), and left lateral nuclei (ventral portion containing basolateral portions). Moreover, the TPAD group exhibited decreased FC between the left AB/BM and left middle occipital gyrus and right superior frontal gyrus (SFG), left basal nucleus and right SFG, and right lateral nuclei (intermediate portion) and right SFG. In combination, these amygdalar alterations exhibited a sensitivity of 65.4% and specificity of 96.9% in predicting affective dysfunction in patients with tinnitus. Although similar structural and functional amygdala remodeling were observed in the TPAD and TPWAD groups, the changes were more pronounced in the TPAD group. These changes mainly involved alterations in functionality and white matter microstructure in various amygdala subregions; in combination, these changes could serve as an imaging-based predictor of emotional disorders in patients with tinnitus.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Tinnitus , Humans , Tinnitus/diagnostic imaging , Tinnitus/physiopathology , Tinnitus/pathology , Amygdala/diagnostic imaging , Amygdala/pathology , Amygdala/physiopathology , Male , Female , Adult , Middle Aged , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/physiopathology , Mood Disorders/diagnostic imaging , Mood Disorders/etiology , Mood Disorders/physiopathology , Mood Disorders/pathology
11.
J Psychiatry Neurosci ; 49(3): E145-E156, 2024.
Article in English | MEDLINE | ID: mdl-38692692

ABSTRACT

BACKGROUND: Neuroimaging studies have revealed abnormal functional interaction during the processing of emotional faces in patients with major depressive disorder (MDD), thereby enhancing our comprehension of the pathophysiology of MDD. However, it is unclear whether there is abnormal directional interaction among face-processing systems in patients with MDD. METHODS: A group of patients with MDD and a healthy control group underwent a face-matching task during functional magnetic resonance imaging. Dynamic causal modelling (DCM) analysis was used to investigate effective connectivity between 7 regions in the face-processing systems. We used a Parametric Empirical Bayes model to compare effective connectivity between patients with MDD and controls. RESULTS: We included 48 patients and 44 healthy controls in our analyses. Both groups showed higher accuracy and faster reaction time in the shape-matching condition than in the face-matching condition. However, no significant behavioural or brain activation differences were found between the groups. Using DCM, we found that, compared with controls, patients with MDD showed decreased self-connection in the right dorsolateral prefrontal cortex (DLPFC), amygdala, and fusiform face area (FFA) across task conditions; increased intrinsic connectivity from the right amygdala to the bilateral DLPFC, right FFA, and left amygdala, suggesting an increased intrinsic connectivity centred in the amygdala in the right side of the face-processing systems; both increased and decreased positive intrinsic connectivity in the left side of the face-processing systems; and comparable task modulation effect on connectivity. LIMITATIONS: Our study did not include longitudinal neuroimaging data, and there was limited region of interest selection in the DCM analysis. CONCLUSION: Our findings provide evidence for a complex pattern of alterations in the face-processing systems in patients with MDD, potentially involving the right amygdala to a greater extent. The results confirm some previous findings and highlight the crucial role of the regions on both sides of face-processing systems in the pathophysiology of MDD.


Subject(s)
Amygdala , Depressive Disorder, Major , Facial Recognition , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Female , Adult , Facial Recognition/physiology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Bayes Theorem , Young Adult , Brain Mapping , Facial Expression , Middle Aged , Reaction Time/physiology
12.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696599

ABSTRACT

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Visual Cortex , Humans , Amygdala/diagnostic imaging , Amygdala/physiopathology , Male , Female , Infant , Visual Cortex/diagnostic imaging , Visual Cortex/physiopathology , Visual Cortex/growth & development , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Genetic Predisposition to Disease/genetics
13.
Neuroimage Clin ; 42: 103619, 2024.
Article in English | MEDLINE | ID: mdl-38744025

ABSTRACT

The amygdala is divided into functional subnuclei which have been challenging to investigate due to functional magnetic resonance imaging (MRI) limitations in mapping small neural structures. Hence their role in the neurobiology of posttraumatic stress disorder (PTSD) remains poorly understood. Examination of covariance of structural MRI measures could be an alternate approach to circumvent this issue. T1-weighted anatomical scans from a 3 T scanner from non-trauma-exposed controls (NEC; n = 71, 75 % female) and PTSD participants (n = 67, 69 % female) were parcellated into 105 brain regions. Pearson's r partial correlations were computed for three and nine bilateral amygdala subnuclei and every other brain region, corrected for age, sex, and total brain volume. Pairwise correlation comparisons were performed to examine subnuclei covariance profiles between-groups. Graph theory was employed to investigate subnuclei network topology. Volumetric measures were compared to investigate structural changes. We found differences between amygdala subnuclei in covariance with the hippocampus for both groups, and additionally with temporal brain regions for the PTSD group. Network topology demonstrated the importance of the right basal nucleus in facilitating network communication only in PTSD. There were no between-group differences for any of the three structural metrics. These findings are in line with previous work that has failed to find structural differences for amygdala subnuclei between PTSD and controls. However, differences between amygdala subnuclei covariance profiles observed in our study highlight the need to investigate amygdala subnuclei functional connectivity in PTSD using higher field strength fMRI for better spatial resolution.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/pathology , Stress Disorders, Post-Traumatic/physiopathology , Female , Amygdala/diagnostic imaging , Amygdala/pathology , Amygdala/physiopathology , Adult , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
14.
Nord J Psychiatry ; 78(5): 402-410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38573199

ABSTRACT

BACKGROUND: Pediatric generalized anxiety disorder (GAD) is debilitating and increasingly prevalent, yet its etiology remains unclear. Some believe the disorder to be propagated by chronic dysregulation of the limbic-hypothalamic-pituitary-adrenal (L-HPA) axis, but morphometric studies of implicated subcortical areas have been largely inconclusive. Recognizing that certain subcortical subdivisions are more directly involved in L-HPA axis functioning, this study aims to detect specific abnormalities in these critical areas. METHODS: Thirty-eight MRI scans of preschool children with (n = 15) and without (n = 23) GAD underwent segmentation and between-group volumetric comparisons of the basolateral amygdala (BLA), ventral hippocampal subiculum (vSC), and mediodorsal medial magnocellular (MDm) area of the thalamus. RESULTS: Children with GAD displayed significantly larger vSC compared to healthy peers, F(1, 31) = 6.50, pFDR = .048. On average, children with GAD presented with larger BLA and MDm, Fs(1, 31) ≥ 4.86, psFDR ≤ .054. Exploratory analyses revealed right-hemispheric lateralization of all measures, most notably the MDm, F(1, 31) = 8.13, pFDR = .024, the size of which scaled with symptom severity, r = .83, pFDR = .033. CONCLUSION: The BLA, vSC, and MDm are believed to be involved in the regulation of anxiety and stress, both individually and collectively through the excitation and inhibition of the L-HPA axis. All were found to be enlarged in children with GAD, perhaps reflecting hypertrophy related to hyperexcitability, or early neuronal overgrowth. Longitudinal studies should investigate the relationship between these early morphological differences and the long-term subcortical atrophy previously observed.


Subject(s)
Amygdala , Anxiety Disorders , Hippocampus , Hypothalamo-Hypophyseal System , Magnetic Resonance Imaging , Thalamus , Humans , Male , Female , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/pathology , Anxiety Disorders/physiopathology , Amygdala/pathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Child , Hippocampus/pathology , Hippocampus/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/physiopathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/pathology , Hypothalamo-Hypophyseal System/metabolism , Child, Preschool , Pituitary-Adrenal System/physiopathology , Pituitary-Adrenal System/pathology
15.
J Integr Neurosci ; 23(4): 75, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38682218

ABSTRACT

BACKGROUND: Glaucoma patients frequently present with depressive symptoms, the development of which is closely associated with amygdalar activity. However, no studies to date have documented glaucoma-related changes in the functional connectivity (FC) of the amygdala. Accordingly, resting-state functional magnetic resonance imaging (rs-fMRI) analyses were herein used to evaluate changes in amygdalar FC in primary angle-closure glaucoma (PACG) patients. METHODS: In total, this study enrolled 36 PACG patients and 33 healthy controls (HCs). Complete eye exams were conducted for all PACG patients. After the preprocessing of magnetic resonance imaging (MRI) data, the bilateral amygdala was selected as a seed point, followed by the comparison of resting-state FC between the PACG and HC groups. Then, those brain regions exhibiting significant differences between these groups were identified, and relationships between the FC coefficient values for these regions and clinical variables of interest were assessed. RESULTS: These analyses revealed that as compared to HC individuals, PACG patients exhibited reductions in FC between the amygdala and the cerebellum_8, vermis_4_5, anterior central gyrus, supplementary motor area, paracentral lobule, putamen, middle frontal gyrus, and posterior cingulate gyrus, while enhanced FC was detected between the right and left amygdala. No significant correlations between these changes in amygdalar any any disease-related clinical parameters or disease duration were noted. CONCLUSIONS: Patients with PACG exhibit extensive resting state abnormalities with respect to the FC between the amygdala and other regions of the brain, suggesting that dysregulated amygdalar FC may play a role in the pathophysiology of PACG.


Subject(s)
Amygdala , Glaucoma, Angle-Closure , Magnetic Resonance Imaging , Humans , Glaucoma, Angle-Closure/physiopathology , Glaucoma, Angle-Closure/diagnostic imaging , Male , Female , Middle Aged , Amygdala/diagnostic imaging , Amygdala/physiopathology , Aged , Connectome , Nerve Net/diagnostic imaging , Nerve Net/physiopathology
16.
J Affect Disord ; 356: 604-615, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631423

ABSTRACT

BACKGROUND: Romantic relationship dissolutions (RRDs) are associated with posttraumatic stress symptoms (PTSS). Functional magnetic resonance imaging in RRD studies indicate overlapping neural activation similar to posttraumatic stress disorder. These studies combine real and hypothetical rejection, and lack contextual information and control and/or comparison groups exposed to non-RRD or DSM-5 defined traumatic events. AIM: We investigated blood oxygen level dependent (BOLD) activation in the hippocampus, amygdala, and insula of participants with RRDs compared with other traumatic or non-trauma stressors. METHODS: Emerging adults (mean age = 21.54 years; female = 74.7 %) who experienced an RRD (n = 36), DSM-5 defined trauma (physical and/or sexual assault: n = 15), or a non-RRD or DSM-5 stressor (n = 28) completed PTSS, depression, childhood trauma, lifetime trauma exposure, and attachment measures. We used a general and customised version of the International Affective Picture System to investigate responses to index-trauma-related stimuli. We used mixed linear models to assess between-group differences, and ANOVAs and Spearman's correlations to analyse factors associated with BOLD activation. RESULTS: BOLD activity increased between index-trauma stimuli as compared to neutral stimuli in the hippocampus and amygdala, with no significant difference between the DSM-5 Trauma and RRD groups. Childhood adversity, sexual orientation, and attachment style were associated with BOLD activation changes. Breakup characteristics (e.g., initiator status) were associated with increased BOLD activation in the hippocampus and amygdala, in the RRD group. CONCLUSION: RRDs should be considered as potentially traumatic events. Breakup characteristics are risk factors for experiencing RRDs as traumatic. LIMITATION: Future studies should consider more diverse representation across sex, ethnicity, and sexual orientation.


Subject(s)
Amygdala , Hippocampus , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic , Humans , Female , Male , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Young Adult , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Case-Control Studies , Adult , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Insular Cortex/physiology , Interpersonal Relations , Students/psychology , Students/statistics & numerical data , Adolescent , Object Attachment , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology
17.
Eur Psychiatry ; 67(1): e33, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572583

ABSTRACT

BACKGROUND: Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes. METHODS: Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions. RESULTS: Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13. CONCLUSIONS: The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.


Subject(s)
Amygdala , Antidepressive Agents , Depressive Disorder, Major , Ketamine , Magnetic Resonance Imaging , Humans , Ketamine/pharmacology , Ketamine/administration & dosage , Ketamine/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Amygdala/drug effects , Amygdala/diagnostic imaging , Amygdala/physiopathology , Male , Female , Adult , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/administration & dosage , Middle Aged , Treatment Outcome
18.
Brain Stimul ; 17(2): 324-332, 2024.
Article in English | MEDLINE | ID: mdl-38453003

ABSTRACT

The smoking rate is high in patients with schizophrenia. Brain stimulation targeting conventional brain circuits associated with nicotine addiction has also yielded mixed results. We aimed to identify alternative circuitries associated with nicotine addiction in both the general population and schizophrenia, and then test whether modulation of such circuitries may alter nicotine addiction behaviors in schizophrenia. In Study I of 40 schizophrenia smokers and 51 non-psychiatric smokers, cross-sectional neuroimaging analysis identified resting state functional connectivity (rsFC) between the dorsomedial prefrontal cortex (dmPFC) and multiple extended amygdala regions to be most robustly associated with nicotine addiction severity in healthy controls and schizophrenia patients (p = 0.006 to 0.07). In Study II with another 30 patient smokers, a proof-of-concept, patient- and rater-blind, randomized, sham-controlled rTMS design was used to test whether targeting the newly identified dmPFC location may causally enhance the rsFC and reduce nicotine addiction in schizophrenia. Although significant interactions were not observed, exploratory analyses showed that this dmPFC-extended amygdala rsFC was enhanced by 4-week active 10Hz rTMS (p = 0.05) compared to baseline; the severity of nicotine addiction showed trends of reduction after 3 and 4 weeks (p ≤ 0.05) of active rTMS compared to sham; Increased rsFC by active rTMS predicted reduction of cigarettes/day (R = -0.56, p = 0.025 uncorrected) and morning smoking severity (R = -0.59, p = 0.016 uncorrected). These results suggest that the dmPFC-extended amygdala circuit may be linked to nicotine addiction in schizophrenia and healthy individuals, and future efforts targeting its underlying pathophysiological mechanisms may yield more effective treatment for nicotine addiction.


Subject(s)
Magnetic Resonance Imaging , Schizophrenia , Tobacco Use Disorder , Transcranial Magnetic Stimulation , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/therapy , Tobacco Use Disorder/therapy , Tobacco Use Disorder/diagnostic imaging , Tobacco Use Disorder/physiopathology , Male , Adult , Female , Transcranial Magnetic Stimulation/methods , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Middle Aged , Amygdala/diagnostic imaging , Amygdala/physiopathology , Neuroimaging , Cross-Sectional Studies
19.
Brain Connect ; 14(4): 226-238, 2024 May.
Article in English | MEDLINE | ID: mdl-38526373

ABSTRACT

Background: Youths with thought problems (TP) are at risk to develop psychosis and obsessive-compulsive disorder (OCD). Yet, the pathophysiological mechanisms underpinning TP are still unclear. Functional magnetic resonance imaging (fMRI) studies have shown that striatal and limbic alterations are associated with psychosis-like and obsessive-like symptoms in individuals at clinical risk for psychosis, schizophrenia, and OCD. More specifically, nucleus accumbens (NAcc) and amygdala are mainly involved in these associations. The current study aims to investigate the neural correlates of TP in youth populations using a dimensional approach and explore potential cognitive functions and neurotransmitters associated with it. Methods: Seed-to-voxels functional connectivity analyses using NAcc and amygdala as regions-of-interest were conducted with resting-state fMRI data obtained from 1360 young individuals, and potential confounders related to TP such as anxiety and cognitive functions were included as covariates in multiple regression analyses. Replicability was tested in using an adult cohort. In addition, functional decoding and neurochemical correlation analyses were performed to identify the associated cognitive functions and neurotransmitters. Results: The altered functional connectivities between the right NAcc and posterior parahippocampal gyrus, between the right amygdala and lateral prefrontal cortex, and between the left amygdala and the secondary visual area were the best predictors of TP in multiple regression model. These functional connections are mainly involved in social cognition and reward processing. Conclusions: The results show that alterations in the functional connectivity of the NAcc and the amygdala in neural pathways involved in social cognition and reward processing are associated with severity of TP in youths.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Nucleus Accumbens , Humans , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/physiopathology , Amygdala/physiopathology , Amygdala/diagnostic imaging , Male , Adolescent , Magnetic Resonance Imaging/methods , Female , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Young Adult , Brain Mapping/methods , Adult , Child , Psychotic Disorders/physiopathology , Psychotic Disorders/diagnostic imaging , Connectome/methods , Obsessive-Compulsive Disorder/physiopathology , Obsessive-Compulsive Disorder/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging
20.
Mol Psychiatry ; 29(5): 1501-1509, 2024 May.
Article in English | MEDLINE | ID: mdl-38278993

ABSTRACT

Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression.


Subject(s)
Amygdala , Depressive Disorder, Major , Emotions , Magnetic Resonance Imaging , Humans , Amygdala/physiopathology , Male , Female , Adult , Magnetic Resonance Imaging/methods , Depressive Disorder, Major/physiopathology , Emotions/physiology , Case-Control Studies , Middle Aged , Prospective Studies , Facial Expression , Depression/physiopathology , Brain Mapping/methods , Subliminal Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL