Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
1.
Cells ; 13(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39056757

ABSTRACT

Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.


Subject(s)
Aminopyridines , Cilostazol , Drug Resistance, Neoplasm , Itraconazole , Humans , Itraconazole/pharmacology , Itraconazole/therapeutic use , Cilostazol/pharmacology , Cilostazol/therapeutic use , Drug Resistance, Neoplasm/drug effects , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Drug Repositioning , Lactams/pharmacology , Lactams/therapeutic use , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
2.
J Pharmacol Toxicol Methods ; 128: 107540, 2024.
Article in English | MEDLINE | ID: mdl-38996943

ABSTRACT

X-376 is a novel anaplastic lymphoma kinase (ALK) inhibitor that is capable of penetrating the blood brain barrier. This makes it suitable for use in patients with ALK-positive non-small cell lung cancer (NSCLC) who have metastases in the central nervous system. This study developed a highly sensitive, fast, eco-friendly, and reliable UPLC-MS/MS approach to quantify X-376 in human liver microsomes (HLMs). This approach was used to evaluate X-376's metabolic stability in HLMs in vitro. The UPLC-MS/MS analytical technique validation followed US-FDA bio-analytical method validation guidelines. StarDrop software, containing P450 metabolic and DEREK modules, was utilized to scan X-376's chemical structure for metabolic lability and hazardous warnings. X-376 and Encorafenib (ENF as internal standard) were resoluted on the Eclipse Plus C18 column utilizing an isocratic mobile phase method. The X-376 calibration curve was linear from 1 to 3000 ng/mL. The precision and accuracy of this study's UPLC-MS/MS approach were tested for intra- and inter-day measurements. Inter-day accuracy was -1.32% to 9.36% while intra-day accuracy was -1.5% to 10.00%. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of X-376 were 59.77 mL/min/kg and 13.56 min. The high extraction ratio of X-376 supports the 50 mg twice-daily dose for ALK-positive NSCLC and CNS metastases patients. In silico software suggests that simple structural changes to the piperazine ring or group substitution in drug design may improve metabolic stability and safety compared to X-376.


Subject(s)
Microsomes, Liver , Software , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Microsomes, Liver/metabolism , Chromatography, High Pressure Liquid/methods , Drug Stability , Computer Simulation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
3.
Cancer Med ; 13(14): e70030, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030811

ABSTRACT

PURPOSE: There is a lack of real-world data in Asian populations for brigatinib, a next-generation anaplastic lymphoma kinase (ALK) inhibitor for patients with non-small cell lung cancer (NSCLC). This study analysed real-world outcomes and dosing patterns for brigatinib in patients with crizotinib-refractory ALK+ NSCLC in South Korea. METHODS: This retrospective, non-interventional, cohort study used South Korean Health Insurance and Review Assessment claims data for adults with ALK+ NSCLC who initiated brigatinib between 19 April 2019 and 31 March 2021 after receiving prior crizotinib. Patients' characteristics, time to discontinuation (TTD), time to dose reduction, overall survival (OS) and treatment adherence were assessed. RESULTS: The study included 174 patients (56.9% male; 27.0% with a history of brain metastases). Median duration of prior crizotinib was 17 (range 0.3-48) months. Median follow-up after brigatinib initiation was 18 (range 0-34) months. Overall, 88.5% of patients received full-dose brigatinib (180 mg/day) and 93.1% of patients were adherent (proportion of days covered ≥0.8). The median TTD was 24.9 months (95% CI 15.2-not reached). The probability of continuing treatment was 63.2% at 1 year and 51.5% at 2 years. The probability of continuing at full or peak dose was 79.7% at 1 year and 75.6% at 2 years. Median OS was not reached. The 2-year OS rate was 68.7%. CONCLUSIONS: In this first nationwide retrospective study using national insurance claim data, brigatinib demonstrated real-world clinical benefit as second-line treatment after prior crizotinib in ALK+ NSCLC patients in South Korea.


Subject(s)
Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Crizotinib , Lung Neoplasms , Organophosphorus Compounds , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Male , Female , Republic of Korea , Crizotinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Middle Aged , Organophosphorus Compounds/therapeutic use , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/adverse effects , Retrospective Studies , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Adult , Pyrimidines/therapeutic use , Pyrimidines/administration & dosage , Aged , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome
4.
Front Immunol ; 15: 1369118, 2024.
Article in English | MEDLINE | ID: mdl-39026680

ABSTRACT

Lung cancer is the leading cause of cancer-related death worldwide, especially non-small cell lung cancer. Early diagnosis and better treatment choices have already provided a more promising prognosis for cancer patients. In targeted therapy, antagonists target specific genes supporting cancer growth, proliferation and metastasis. With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents must be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. Drug-related nephrotoxicity has attracted attention when initiating cancer therapy. Our review aims to summarize the adverse renal effects caused by targeted therapy during lung cancer treatment, mainly focusing on EGFR and ALK tyrosine kinase inhibitors. Also, we discuss the possible mechanism of the side effect and provide managements to help improve the renal function in clinical practice.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Molecular Targeted Therapy , Protein Kinase Inhibitors , Humans , Lung Neoplasms/drug therapy , Molecular Targeted Therapy/adverse effects , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Anaplastic Lymphoma Kinase/antagonists & inhibitors , ErbB Receptors/antagonists & inhibitors , Animals , Kidney Diseases/chemically induced , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy
5.
Adv Ther ; 41(8): 3217-3231, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38916812

ABSTRACT

INTRODUCTION: Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) are standard first- and second-line treatment for advanced ALK+ non-small cell lung cancer (NSCLC). We evaluated outcomes in patients with ALK+ NSCLC receiving third-line ALK TKI versus non-ALK-directed therapy. METHODS: Flatiron Health OncoEMR data were extracted for patients with ALK+ NSCLC initiating first-line ALK TKI between January 2015 and March 2022 followed by second-line ALK TKI and third-line ALK TKI (group A) or non-TKI therapy (group B). Time-to-treatment discontinuation (TTD) and overall survival (OS) were analyzed using multivariate modelling. RESULTS: Among patients receiving third-line ALK TKI (A, n = 85) or non-TKI therapy (B, n = 43), most received first-line crizotinib (A/B: 64%/60%) and second-line alectinib (36%/30%), ceritinib (24%/19%), or lorlatinib (15%/30%). Common third-line treatments were lorlatinib/alectinib (41%/33%) in A and immunotherapy, chemotherapy, or chemotherapy + immunotherapy (30%/28%/21%) in B. Group A versus B had longer TTD of first-line treatment (hazard ratio [HR] 0.62, 95% confidence interval [CI] 0.41-0.93; p = 0.020) and second-line treatment (HR 0.50, 95% CI 0.33-0.75; p < 0.001) and longer OS from start of first-line treatment (HR 0.32, 95% CI 0.19-0.54; p < 0.001) and second-line treatment (HR 0.40, 95% CI 0.24-0.66; p < 0.001). For third-line treatment, median TTD (A/B) was 6.2/2.4 months (HR 0.61, 95% CI 0.37-1.00; p = 0.049) and OS was 17.6/6.5 months (HR 0.57, 95% CI 0.33-0.98; p = 0.042). CONCLUSIONS: Patients receiving third-line non-ALK-directed therapy had suboptimal outcomes on prior TKIs. Patients with longer duration of prior ALK TKI treatment appeared to benefit from third-line ALK TKIs.


Subject(s)
Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Crizotinib , Lung Neoplasms , Piperidines , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Female , Male , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Aged , Piperidines/therapeutic use , Adult , Crizotinib/therapeutic use , Aminopyridines/therapeutic use , Lactams/therapeutic use , Pyrimidines/therapeutic use , Treatment Outcome , Sulfones/therapeutic use , Carbazoles/therapeutic use , Pyrazoles/therapeutic use , Retrospective Studies , Antineoplastic Agents/therapeutic use
6.
Pediatr Blood Cancer ; 71(9): e31139, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38867367

ABSTRACT

BACKGROUND: Alterations in the ALK (anaplastic lymphoma kinase) gene play a critical role in pathogenesis of anaplastic large cell lymphoma (ALCL). Crizotinib is a small molecule competitive inhibitor of ALK, ROS1, and MET kinases and was approved for pediatric patients with ALK-positive relapsed or refractory, systemic ALCL, and ALK-positive unresectable, recurrent, or refractory inflammatory myofibroblastic tumors (IMT). PROCEDURE: Crizotinib data from pediatric patients with relapsed or refractory solid tumors, IMT, or ALCL were included in the analyses. All patients received crizotinib orally at doses ranging from 100 to 365 mg/m2 twice daily (BID). PopPK analyses were conducted to characterize crizotinib disposition in pediatric patients. Exposure-response (ER) safety and antitumor analyses were conducted to characterize relationships between crizotinib dose or exposure with safety and antitumor activity endpoints of interest. RESULTS: The population pharmacokinetic (popPK), ER safety, and ER antitumor analysis included 98, 110, and 36 pediatric patients, respectively. A one-compartment pharmacokinetic model with allometric scaling, first-order elimination, and first-order absorption with lag time adequately described the data. Natural log-transformed model-predicted crizotinib AUCss (steady-state area under the concentration-time curve) demonstrated a significant, positive relationship with Grade ≥3 NEUTROPENIA and Any Grade VISION DISORDER. Crizotinib dose demonstrated a positive relationship with objective response rate. CONCLUSIONS: No significant differences in PK were identified across a wide range of ages or across tumor types, suggesting body surface area (BSA)-based dosing adequately adjusted for differences in patient size to achieve similar systemic crizotinib exposures across young children and adolescent pediatric patients. None of the myelosuppressive events except Grade ≥3 NEUTROPENIA had significant relationships identified with crizotinib dose or exposure, suggesting crizotinib is a tolerable treatment with less hematological toxicity than traditional chemotherapy regimens for pediatric patients with ALK-mutated cancers. Results from the presented analyses support the pediatric dosing recommendations in the product label.


Subject(s)
Anaplastic Lymphoma Kinase , Crizotinib , Protein Kinase Inhibitors , Humans , Crizotinib/therapeutic use , Crizotinib/pharmacokinetics , Child , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Female , Male , Adolescent , Child, Preschool , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/adverse effects , Neoplasms/drug therapy , Neoplasms/pathology , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/pathology , Young Adult , Infant
7.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928438

ABSTRACT

Anaplastic thyroid cancer (ATC) is one of the deadliest human cancers and represents <2% of thyroid carcinomas. A therapeutic target for ATC is represented by anaplastic lymphoma kinase (ALK) rearrangements, involved in tumor growth. Crizotinib is an oral small-molecule tyrosine kinase inhibitor of the ALK, MET, and ROS1 kinases, approved in ALK-positive non-small cell lung cancer. Until now, the effect of crizotinib in "primary human ATC cells" (pATCs) with transforming striatin (STRN)-ALK fusion has not been reported in the literature. In this study, we aimed to obtain pATCs with STRN-ALK in vitro and evaluate the in vitro antineoplastic action of crizotinib. Thyroid surgical samples were obtained from 12 ATC patients and 6 controls (who had undergone parathyroidectomy). A total of 10/12 pATC cultures were obtained, 2 of which with transforming STRN-ALK fusion (17%). Crizotinib inhibited proliferation, migration, and invasion and increased apoptosis in 3/10 pATC cultures (2 of which with/1 without STRN-ALK), particularly in those with STRN-ALK. Moreover, crizotinib significantly inhibited the proliferation of AF cells (a continuous cell line obtained from primary ATC cells). In conclusion, the antineoplastic activity of crizotinib has been shown in human pATCs (with STRN-ALK) in preclinical studies in vitro, opening the way to future clinical evaluation in these patients.


Subject(s)
Anaplastic Lymphoma Kinase , Apoptosis , Cell Proliferation , Crizotinib , Protein Kinase Inhibitors , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Crizotinib/pharmacology , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Male , Female , Antineoplastic Agents/pharmacology , Middle Aged , Cell Movement/drug effects , Aged , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Tumor Cells, Cultured , Cell Line, Tumor , Calmodulin-Binding Proteins , Membrane Proteins , Nerve Tissue Proteins
8.
Anticancer Res ; 44(7): 2805-2813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925827

ABSTRACT

BACKGROUND/AIM: Randomized trials have shown the benefit of combining tyrosine kinase inhibitors (TKI) and chemotherapy in the treatment of epidermal growth factor receptor-mutant non-small-cell lung cancer (NSCLC). For anaplastic lymphoma kinase-rearranged (ALK+) NSCLC, prospective trial results of the combination are not available and have not even been thoroughly investigated in vitro. In this study, we investigated combinations of TKI and chemotherapy using in vitro models of ALK+ NSCLC. MATERIALS AND METHODS: ALK+ cell line models H3122, H2228, and DFCI032 with differing primary resistance to ALK receptor TKIs were used. We investigated short-(viability assay) and long-term (colony-formation assay) cytotoxicity, apoptosis, and cell signaling in response to the combinations of agents. We selected the most commonly used agents, alectinib, cisplatin, and pemetrexed, to investigate the combination effects. RESULTS: In the combination experiments with short-term exposure, synergism between TKI and pemetrexed was observed, while cisplatin had antagonistic effects. In the long-term experiments, the combination of cisplatin and TKI was synergistic in all lines, while no synergism was observed with pemetrexed. Among the chemotherapy and TKI sequences, cisplatin followed by TKI was more cytotoxic than the opposite in two out of the three models. In the TKI-sensitive H3122 cell line, the combination of chemotherapy and TKI combination increased apoptosis. Interestingly, pemetrexed treatment resulted in the activation of ALK, which was abolished with TKI. CONCLUSION: Combining TKI and chemotherapy in ALK+ models has some synergistic effects that overcome primary TKI resistance. However, the synergy varies depending on the chemotherapeutic agent, cytotoxic assay, and the cell line used. Prospective clinical trials are warranted to fully characterize the potential of combination chemotherapy with TKIs in ALK+ NSCLC.


Subject(s)
Anaplastic Lymphoma Kinase , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Cisplatin , Lung Neoplasms , Pemetrexed , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cisplatin/pharmacology , Cisplatin/administration & dosage , Pemetrexed/pharmacology , Pemetrexed/administration & dosage , Apoptosis/drug effects , Drug Synergism , Drug Resistance, Neoplasm/drug effects , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Piperidines/pharmacology , Piperidines/administration & dosage , Carbazoles/pharmacology , Carbazoles/administration & dosage
9.
J Med Chem ; 67(12): 9842-9856, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38839424

ABSTRACT

Advancements in anticancer strategies spotlight proteolysis targeting chimera (PROTAC) technology, yet it is hindered by poor water solubility and bioavailability. This study introduces a novel amphiphilic PROTAC, B1-PEG, synthesized through PEGylation of an optimized PROTAC molecule, B1, to enhance its properties. B1-PEG is engineered to self-organize into micelles in water and releases its active form in response to the tumor-specific high GSH environment. Comparative pharmacokinetic analysis revealed B1-PEG's superior bioavailability at 84.8%, outperforming the unmodified PROTAC molecule B1. When tested in a H3122 xenograft mouse model, B1-PEG significantly regressed tumors, underscoring its potential as a formidable candidate in targeted cancer therapy. Our findings offer a promising direction for overcoming bioavailability limitations in PROTAC drug design.


Subject(s)
Anaplastic Lymphoma Kinase , Polyethylene Glycols , Proteolysis , Animals , Humans , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Proteolysis/drug effects , Mice , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Biological Availability , Xenograft Model Antitumor Assays , Micelles , Mice, Nude
11.
Commun Biol ; 7(1): 742, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890421

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.


Subject(s)
Anaplastic Lymphoma Kinase , Antimalarials , Lysine-tRNA Ligase , Plasmodium falciparum , Protein Kinase Inhibitors , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Lysine-tRNA Ligase/antagonists & inhibitors , Lysine-tRNA Ligase/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Antimalarials/pharmacology , Antimalarials/chemistry , Structure-Activity Relationship , Humans , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
12.
Biomolecules ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927035

ABSTRACT

Lysophosphatidic acid (LPA) is a well-documented pro-oncogenic factor in different cancers, but relatively little is known on its biological activity in neuroblastoma. The LPA effects and the participation of the tyrosine kinase receptor anaplastic lymphoma kinase (ALK) in LPA mitogenic signaling were studied in human neuroblastoma cell lines. We used light microscopy and [3H]-thymidine incorporation to determine cell proliferation, Western blot to study intracellular signaling, and pharmacological and molecular tools to examine the role of ALK. We found that LPA stimulated the growth of human neuroblastoma cells, as indicated by the enhanced cell number, clonogenic activity, and DNA synthesis. These effects were curtailed by the selective ALK inhibitors NPV-TAE684 and alectinib. In a panel of human neuroblastoma cell lines harboring different ALK genomic status, the ALK inhibitors suppressed LPA-induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), which are major regulators of cell proliferation. ALK depletion by siRNA treatment attenuated LPA-induced ERK1/2 activation. LPA enhanced ALK phosphorylation and potentiated ALK activation by the ALK ligand FAM150B. LPA enhanced the inhibitory phosphorylation of the tumor suppressor FoxO3a, and this response was impaired by the ALK inhibitors. These results indicate that LPA stimulates mitogenesis of human neuroblastoma cells through a crosstalk with ALK.


Subject(s)
Anaplastic Lymphoma Kinase , Cell Proliferation , Lysophospholipids , Neuroblastoma , Signal Transduction , Humans , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Proliferation/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Phosphorylation/drug effects , Piperidines/pharmacology , Carbazoles/pharmacology , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , MAP Kinase Signaling System/drug effects
13.
J Transl Med ; 22(1): 585, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902768

ABSTRACT

BACKGROUND: In the era of second-generation ALK tyrosine kinase inhibitors (ALK-TKIs), there was a paucity of data regarding the progression patterns, resistant mechanisms, and subsequent therapeutic approaches for ALK-positive (ALK+) non-small cell lung cancer (NSCLC). METHODS: Patients with advanced ALK+ NSCLC were retrospectively selected from our center. Cohort 1 consisted of patients who experienced disease progression after receiving first-line alectinib treatment (n = 20), while Cohort 2 included patients who progressed following sequential treatment with crizotinib and second-generation ALK-TKIs (n = 53). Oligo-progression was defined as the occurrence of disease progression in no more than three lesions. Symptomatic progression was determined when patients developed new symptoms or experienced worsening of pre-existing symptoms during radiological progression. RESULTS: The incidence of central nervous system (CNS) progression and symptomatic CNS progression was significantly lower in Cohort 1 compared to patients treated with crizotinib, with rates of 15.0% vs. 56.6% (p = 0.002) and 5.0% vs. 32.1% (p = 0.016), respectively. A total of 60.3% (44/73) patients underwent repeated biopsy and next-generation sequencing subsequent to the second-generation ALK-TKI resistance, with secondary mutation in ALK kinase domain emerging as the predominant mechanism of resistance (56.8%). Local therapy was applied to 50% of oligo-progression cases. Subsequent ALK-TKIs demonstrated significantly prolonged progression-free survival (PFS) (8.6 m vs. 2.7 m, p = 0.021, HR = 0.43, 95%CI: 0.15-0.85) and long-term overall survival (OS) (NA vs. 11.9 m, p = 0.132, HR = 0.50, 95%CI: 0.18-1.25) in patients harboring ALK resistance mutations, compared to those without such mutations. For patients without ALK-resistant mutations following progression on second-generation ALK-TKIs, there was no statistically significant difference in survival outcomes between subsequent chemotherapy or alternative ALK-TKI treatments. CONCLUSIONS: First-line alectinib demonstrated superior efficacy in protecting the CNS compared to crizotinib. For patients with ALK-resistant mutations following the resistance to second-generation ALK-TKIs, appropriate sensitive ALK-TKI should be administered; for those without such mutations, the selection of chemotherapy or third-generation ALK-TKI should be based on the patient's overall physical health and personal preferences.


Subject(s)
Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Disease Progression , Drug Resistance, Neoplasm , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Male , Female , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Aged , Adult , Crizotinib/therapeutic use , Crizotinib/pharmacology , Retrospective Studies , Mutation/genetics
16.
Cell Death Differ ; 31(7): 910-923, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38858548

ABSTRACT

Solute Carrier Family 3, Member 2 (SLC3A2 or 4F2hc) is a multifunctional glycoprotein that mediates integrin-dependent signaling, acts as a trafficking chaperone for amino acid transporters, and is involved in polyamine transportation. We identified SLC3A2 as a potential Anaplastic Lymphoma Kinase (ALK) interacting partner in a BioID-proximity labeling screen in neuroblastoma (NB) cells. In this work we show that endogenous SLC3A2 and ALK interact in NB cells and that this SLC3A2:ALK interaction was abrogated upon treatment with the ALK inhibitor lorlatinib. We show here that loss of ALK activity leads to decreased SLC3A2 expression and reduced SLC3A2 protein stability in a panel of NB cell lines, while stimulation of ALK with ALKAL2 ligand resulted in increased SLC3A2 protein levels. We further identified MARCH11, an E3 ligase, as a regulator of SLC3A2 ubiquitination downstream of ALK. Further, knockdown of SLC3A2 resulted in inhibition of NB cell growth. To investigate the therapeutic potential of SLC3A2 targeting, we performed monotreatment of NB cells with AMXT-1501 (a polyamine transport inhibitor), which showed only moderate effects in NB cells. In contrast, a combination lorlatinib/AMXT-1501 treatment resulted in synergistic inhibition of cell growth in ALK-driven NB cell lines. Taken together, our results identify a novel role for the ALK receptor tyrosine kinase (RTK), working in concert with the MARCH11 E3 ligase, in regulating SLC3A2 protein stability and function in NB cells. The synergistic effect of combined ALK and polyamine transport inhibition shows that ALK/MARCH11/SLC3A2 regulation of amino acid transport is important for oncogenic growth and survival in NB cells.


Subject(s)
Anaplastic Lymphoma Kinase , Cell Proliferation , Fusion Regulatory Protein 1, Heavy Chain , Neuroblastoma , Signal Transduction , Humans , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Fusion Regulatory Protein 1, Heavy Chain/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Lactams/pharmacology , Aminopyridines/pharmacology , Ubiquitination/drug effects , Pyrazoles/pharmacology
17.
Rev Mal Respir ; 41(6): 451-454, 2024 Jun.
Article in French | MEDLINE | ID: mdl-38796386

ABSTRACT

Targeted therapies are the standard first-line treatment for metastatic lung adenocarcinoma with certain molecular abnormalities. These abnormalities are particularly common in Southeast Asia and French Polynesia. A 51-year-old Tahitian female non-smoker was diagnosed in 2018 with stage IV lung adenocarcinoma harboring a p.L858R EGFR mutation. She received gefitinib as first-line treatment. Due to locoregional progression and the presence of a resistance mutation (p.T790M of EFGR), she received osimertinib as second-line treatment, after which chemotherapy was proposed as 3rd-line treatment. An additional biopsy detected not only the previously known EGFR mutation, but also a BRAF p.V600E mutation. Following disease progression during chemotherapy, the patient received targeted therapies combining dabrafenib, trametinib and osimertinib. Due to a dissociated response after four months of treatment, a 5th line of paclitaxel bevacizumab was initiated. Subsequent to additional progression and given the ALK rearrangement shown on the re-biopsy, 6th-line treatment with alectinib was proposed. As the response was once again dissociated, a final line was proposed before stopping active treatments due to their toxicity and overall deterioration in the patient's state of health. This exceptional case is characterized by resistance to anti-EGFR through the successive and cumulative acquisition of two new oncogene addictions. The authors underline the importance of re-biopsy at each progression, leading (if at all feasible) to yet around round of targeted therapy.


Subject(s)
Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Oncogene Addiction , Female , Humans , Middle Aged , Acrylamides/therapeutic use , Acrylamides/pharmacology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , ErbB Receptors/genetics , Gefitinib/therapeutic use , Gefitinib/pharmacology , Indoles , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Pyrimidines
18.
Sci Rep ; 14(1): 10317, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705930

ABSTRACT

Lung cancer is still the leading cause of cancer-related mortality. Over the past two decades, the management of non-small cell lung cancer (NSCLC) has undergone a significant revolution. Since the first identification of activating mutations in the epidermal growth factor receptor (EGFR) gene in 2004, several genetic aberrations, such as anaplastic lymphoma kinase rearrangements (ALK), neurotrophic tropomyosin receptor kinase (NTRK) and hepatocyte growth factor receptor (MET), have been found. With the development of gene sequencing technology, the development of targeted drugs for rare mutations, such as multikinase inhibitors, has provided new strategies for treating lung cancer patients with rare mutations. Patients who harbor this type of oncologic driver might acquire a greater survival benefit from the use of targeted therapy than from the use of chemotherapy and immunotherapy. To date, more new agents and regimens can achieve satisfactory results in patients with NSCLC. In this review, we focus on recent advances and highlight the new approval of molecular targeted therapy for NSCLC patients with rare oncologic drivers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Molecular Targeted Therapy , Mutation , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/therapeutic use
19.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702301

ABSTRACT

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
20.
Clin Cancer Res ; 30(15): 3316-3328, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38787533

ABSTRACT

PURPOSE: The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN: Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS: Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS: We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.


Subject(s)
Anaplastic Lymphoma Kinase , Cell-Free Nucleic Acids , Clonal Evolution , Mutation , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Clonal Evolution/genetics , Male , Female , Child , Child, Preschool , Cell-Free Nucleic Acids/genetics , Aminopyridines/therapeutic use , Pyrazoles/therapeutic use , Lactams , Infant , Adolescent , Exome Sequencing , Protein Kinase Inhibitors/therapeutic use , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Molecular Targeted Therapy/methods , Biomarkers, Tumor/genetics , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL