Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 625
Filter
1.
Pharmacol Res ; 205: 107234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815882

ABSTRACT

After the initial androgen deprivation therapy (ADT), part of the prostate cancer may continuously deteriorate into castration-resistant prostate cancer (CRPC). The majority of patients suffer from the localized illness at primary diagnosis that could rapidly assault other organs. This disease stage is referred as metastatic castration-resistant prostate cancer (mCRPC). Surgery and radiation are still the treatment of CRPC, but have some adverse effects such as urinary symptoms and sexual dysfunction. Hormonal castration therapy interfering androgen receptor (AR) signaling pathway is indispensable for most advanced prostate cancer patients, and the first- and second-generation of novel AR inhibitors could effectively cure hormone sensitive prostate cancer (HSPC). However, the resistance to these chemical agents is inevitable, so many of patients may experience relapses. The resistance to AR inhibitor mainly involves AR mutation, splice variant formation and amplification, which indicates the important role in CRPC. Proteolysis-targeting chimera (PROTAC), a potent technique to degrade targeted protein, has recently undergone extensive development as a biological tool and therapeutic drug. This technique has the potential to become the next generation of antitumor therapeutics as it could overcome the shortcomings of conventional small molecule inhibitors. In this review, we summarize the molecular mechanisms on PROTACs targeting AR signaling for CRPC, hoping to provide insights into drug development and clinical medication.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Proteolysis , Receptors, Androgen , Signal Transduction , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Male , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Animals , Proteolysis/drug effects , Androgen Receptor Antagonists/therapeutic use , Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Proteolysis Targeting Chimera
2.
Expert Opin Drug Metab Toxicol ; 20(6): 491-502, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778707

ABSTRACT

INTRODUCTION: The therapeutic scenario of metastatic hormone-sensitive prostate cancer (mHSPC) has dramatically changed in recent years, with the approval of new-generation Androgen Receptor Signaling Inhibitors (ARSIs), in combination with the androgen deprivation therapy (ADT), which was the previous standard of care. Despite showing a similar clinical efficacy, ARSIs, all of which are administered orally, are different in terms of pharmacokinetic and drug-drug interactions (DDIs). AREAS COVERED: This review covers the main pharmacokinetic characteristics of ARSIs that have been approved for the first-line therapy of mHSPC patients, underlying the differences among these molecules and focusing on the known or possible interactions with other drugs. Full-text articles and abstracts were searched in PubMed. EXPERT OPINION: Since prostate cancer occurs mainly in older age, comorbidities and the consequent polypharmacy increase the DDI risk in mHSPC patients who are candidates for ARSI. Waiting for new therapeutic options, in the absence of direct comparisons, pharmacokinetic knowledge is essential to guide clinicians in prescribing ARSI in this setting.


Subject(s)
Androgen Receptor Antagonists , Drug Interactions , Neoplasm Metastasis , Prostatic Neoplasms , Signal Transduction , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Androgen Receptor Antagonists/pharmacokinetics , Androgen Receptor Antagonists/administration & dosage , Androgen Receptor Antagonists/pharmacology , Signal Transduction/drug effects , Polypharmacy , Aged , Androgen Antagonists/administration & dosage , Androgen Antagonists/pharmacokinetics , Androgen Antagonists/pharmacology , Androgen Antagonists/adverse effects , Administration, Oral , Antineoplastic Agents, Hormonal/pharmacokinetics , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/pharmacology , Animals
3.
Free Radic Biol Med ; 221: 81-88, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38762061

ABSTRACT

Androgen receptor (AR)-targeting therapy induces oxidative stress in prostate cancer. However, the mechanism of oxidative stress induction by AR-targeting therapy remains unclear. This study investigated the mechanism of oxidative stress induction by AR-targeting therapy, with the aim to develop novel therapeutics targeting oxidative stress induced by AR-targeting therapy. Intracellular reactive oxygen species (ROS) was examined by fluorescence microscopy and flow cytometry analysis. The effects of silencing gene expression and small molecule inhibitors on gene expression and cytotoxic effects were examined by quantitative real-time PCR and cell proliferation assay. ROS induced by androgen depletion co-localized with peroxisomes in prostate cancer cells. Among peroxisome-related genes, PPARA was commonly induced by AR inhibition and involved in ROS production via PKC signaling. Inhibition of PPARα by specific siRNA and a small molecule inhibitor suppressed cell proliferation and increased cellular sensitivity to the antiandrogen enzalutamide in prostate cancer cells. This study revealed a novel pathway by which AR inhibition induced intracellular ROS mainly in peroxisomes through PPARα activation in prostate cancer. This pathway is a promising target for the development of novel therapeutics for prostate cancer in combination with AR-targeting therapy such as antiandrogen enzalutamide.


Subject(s)
Benzamides , Cell Proliferation , Drug Resistance, Neoplasm , Nitriles , Oxidative Stress , PPAR alpha , Peroxisomes , Phenylthiohydantoin , Prostatic Neoplasms , Reactive Oxygen Species , Receptors, Androgen , Male , Humans , Phenylthiohydantoin/pharmacology , Nitriles/pharmacology , Peroxisomes/metabolism , Peroxisomes/drug effects , Oxidative Stress/drug effects , Drug Resistance, Neoplasm/drug effects , Benzamides/pharmacology , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Reactive Oxygen Species/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , Cell Proliferation/drug effects , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Androgen Receptor Antagonists/pharmacology , RNA, Small Interfering/genetics
4.
Bioorg Chem ; 148: 107433, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754311

ABSTRACT

Second-generation AR antagonists, such as enzalutamide, are the primary therapeutic agents for advanced prostate cancer. However, the development of both primary and secondary drug resistance leads to treatment failures and patient mortality. Bifunctional agents that simultaneously antagonize and degrade AR block the AR signaling pathway more completely and exhibit excellent antiproliferative activity against wild-type and drug-resistant prostate cancer cells. Here, we reported the discovery and optimization of a series of biphenyl derivatives as androgen receptor antagonists and degraders. These biphenyl derivatives exhibited potent antiproliferative activity against LNCaP and 22Rv1 cells. Our discoveries enrich the diversity of small molecule AR degraders and offer insights for the development of novel AR degraders for the treatment of enzalutamide-resistant prostate cancer.


Subject(s)
Androgen Receptor Antagonists , Antineoplastic Agents , Benzamides , Biphenyl Compounds , Cell Proliferation , Drug Resistance, Neoplasm , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , Nitriles/chemistry , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/chemistry , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Receptors, Androgen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Molecular Structure , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/chemical synthesis , Androgen Receptor Antagonists/therapeutic use , Drug Discovery , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Cell Line, Tumor
5.
Eur J Med Chem ; 271: 116400, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38626524

ABSTRACT

The androgen receptor AR antagonists, such as enzalutamide and apalutamide, are efficient therapeutics for the treatment of prostate cancer (PCa). Even though they are effective at first, resistance to both drugs occurs frequently. Resistance is mainly driven by aberrations of the AR signaling pathway including AR gene amplification and the expression of AR splice variants (e.g. AR-V7). This highlights the urgent need for alternative therapeutic strategies. Here, a total of 24 compounds were synthesized and biologically evaluated to disclose compound 20i, exhibiting potent AR antagonistic activities (IC50 = 172.85 ± 21.33 nM), promising AR/AR-V7 protein degradation potency, and dual targeting site of probably AR (ligand-binding domain, LBD and N-terminal domain, NTD). It potently inhibits cell growth with IC50 values of 4.87 ± 0.52 and 2.07 ± 0.34 µM in the LNCaP and 22RV1 cell lines, respectively, and exhibited effective tumor growth inhibition (TGI = 50.9 %) in the 22RV1 xenograft study. These data suggest that 20i has the potential for development as an AR/AR-V7 inhibitor with degradation ability to treat advanced prostate cancer.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Proliferation/drug effects , Receptors, Androgen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Structure-Activity Relationship , Molecular Structure , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/chemical synthesis , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Cell Line, Tumor , Mice , Mice, Nude , Proteolysis/drug effects
6.
BMC Cancer ; 24(1): 482, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627648

ABSTRACT

BACKGROUND: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC. Detection of both AR-V7 and PSMA gene expression in both CTCs and cfRNA simultaneously has not yet been reported. METHODS: To characterize the combined VTX-1-AdnaDetect workflow, 22Rv1 cancer cells were spiked into blood from healthy donors and processed with the VTX-1 to mimic patient samples and assess performances (capture efficiency, purity, AR and AR-V7 expression). Then, we collected 19 blood samples from 16 patients with mCRPC and therapeutic resistance to androgen receptor inhibitors (ARIs). Plasma was separated and the plasma-depleted blood was processed further with the VTX-1 to collect CTCs. Both plasma exosomal cfRNA and CTCs were subsequently analyzed for AR, AR-V7, PSMA, and prostate-specific antigen (PSA) mRNA expression using the AdnaTest ProstateCancerPanel AR-V7 assay. RESULTS: AR-V7 expression could be detected in 22Rv1 cells spiked into blood from healthy volunteers as well as in CTCs and plasma-derived exosomal cfRNA from patients with mCRPC by processing blood with the VTX-1 CTC isolation system followed by the AdnaTest ProstateCancerPanel AR-V7 assay. 94.7% of patient blood samples (18/19) had detectable AR expression in either CTCs or exosomal cfRNA (16 in CTCs, 12 in cfRNA). 15.8% of the 19 patient blood samples (3/19) were found to have AR-V7-positive (AR-V7+) CTCs, one of which was also AR-V7+ in the exosomal cfRNA analysis. 42.1% of patient blood samples (8/19) were found to be PSMA positive (PSMA+): 26.3% (5/19) were PSMA+ in the CTC analysis and 31.6% (6/19) were PSMA+ in the exosomal cfRNA analysis. Of those 8 PSMA+ samples, 2 had detectable PSMA only in CTCs, and 3 had detectable PSMA only in exosomal cfRNA. CONCLUSION: VTX-1 enables isolation of CTCs and plasma exosomes from a single blood draw and can be used for detecting AR-V7 and PSMA mRNA in both CTCs and cfRNA in patients with mCRPC and resistance to ARIs. This technology facilitates combining RNA measurements in CTCs and exosomal cfRNA for future studies to develop potentially clinically relevant cancer biomarker detection in blood.


Subject(s)
Cell-Free Nucleic Acids , Exosomes , Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism , Exosomes/genetics , Exosomes/metabolism , Neoplastic Cells, Circulating/pathology , Prostate/pathology , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Isoforms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , RNA, Messenger/genetics
7.
Org Lett ; 26(15): 3054-3059, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38557107

ABSTRACT

While pentacyclic triterpenoids have a rich history in chemistry and biology, the challenges associated with their asymmetric synthesis contribute to the current reality that medicinal exploration in the area is largely constrained to natural product derivatization. To address this deficiency, a function-oriented synthesis of pentacyclic triterpenoids was pursued. Overall, we report a divergent synthesis of 26-norgermanicol and 26-norlupeol and we have identified a new class of androgen receptor antagonist that is ∼6× more potent than lupeol.


Subject(s)
Biological Products , Triterpenes , Pentacyclic Triterpenes , Triterpenes/pharmacology , Androgen Receptor Antagonists/pharmacology , Biological Products/pharmacology
8.
J Med Chem ; 67(7): 5351-5372, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38530938

ABSTRACT

CBP/p300 are critical transcriptional coactivators of the androgen receptor (AR) and are promising cancer therapeutic targets. Herein, we report the discovery of highly potent, selective, and orally bioavailable CBP/p300 degraders using the PROTAC technology with CBPD-409 being the most promising compound. CBPD-409 induces robust CBP/p300 degradation with DC50 0.2-0.4 nM and displays strong antiproliferative effects with IC50 1.2-2.0 nM in the VCaP, LNCaP, and 22Rv1 AR+ prostate cancer cell lines. It has a favorable pharmacokinetic profile and achieves 50% of oral bioavailability in mice. A single oral administration of CBPD-409 at 1 mg/kg achieves >95% depletion of CBP/p300 proteins in the VCaP tumor tissue. CBPD-409 exhibits strong tumor growth inhibition and is much more potent and efficacious than two CBP/p300 inhibitors CCS1477 and GNE-049 and the AR antagonist Enzalutamide. CBPD-409 is a promising CBP/p300 degrader for further extensive evaluations for the treatment of advanced prostate cancer and other types of human cancers.


Subject(s)
Prostatic Neoplasms , Male , Humans , Animals , Mice , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Cell Line, Tumor
9.
Bioorg Chem ; 146: 107309, 2024 May.
Article in English | MEDLINE | ID: mdl-38537338

ABSTRACT

Prostate Cancer (PCa) easily progress to metastatic Castration-Resistant Prostate Cancer (mCRPC) that remains a significant cause of cancer-related death. Androgen receptor (AR)-dependent transcription is a major driver of prostate tumor cell proliferation. Proteolysis-targeting chimaera (PROTAC) technology based on Hydrophobic Tagging (HyT) represents an intriguing strategy to regulate the function of therapeutically androgen receptor proteins. In the present study, we have designed, synthesized, and evaluated a series of PROTAC-HyT AR degraders using AR antagonists, RU59063, which were connected with adamantane-based hydrophobic moieties by different alkyl chains. Compound D-4-6 exhibited significant AR protein degradation activity, with a degradation rate of 57 % at 5 µM and nearly 90 % at 20 µM in 24 h, and inhibited the proliferation of LNCaP cells significantly with an IC50 value of 4.77 ± 0.26 µM in a time-concentration-dependent manner. In conclusion, the present study lays the foundation for the development of a completely new class of therapeutic agents for the treatment of mCRPC, and further design and synthesis of AR-targeting degraders are currently in progress for better degradation rate.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/chemistry , Prostatic Neoplasms, Castration-Resistant/drug therapy , Cell Line, Tumor , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Proteolysis
10.
Adv Sci (Weinh) ; 11(19): e2309261, 2024 May.
Article in English | MEDLINE | ID: mdl-38481034

ABSTRACT

Androgen receptor (AR) antagonists are widely used for the treatment of prostate cancer (PCa), but their therapeutic efficacy is usually compromised by the rapid emergence of drug resistance. However, the lack of the detailed interaction between AR and its antagonists poses a major obstacle to the design of novel AR antagonists. Here, funnel metadynamics is employed to elucidate the inherent regulation mechanisms of three AR antagonists (hydroxyflutamide, enzalutamide, and darolutamide) on AR. For the first time it is observed that the binding of antagonists significantly disturbed the C-terminus of AR helix-11, thereby disrupting the specific internal hydrophobic contacts of AR-LBD and correspondingly the communication between AR ligand binding pocket (AR-LBP), activation function 2 (AF2), and binding function 3 (BF3). The subsequent bioassays verified the necessity of the hydrophobic contacts for AR function. Furthermore, it is found that darolutamide, a newly approved AR antagonist capable of fighting almost all reported drug resistant AR mutants, can induce antagonistic binding structure. Subsequently, docking-based virtual screening toward the dominant binding conformation of AR for darolutamide is conducted, and three novel AR antagonists with favorable binding affinity and strong capability to combat drug resistance are identified by in vitro bioassays. This work provides a novel rational strategy for the development of anti-resistant AR antagonists.


Subject(s)
Androgen Receptor Antagonists , Benzamides , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Humans , Benzamides/pharmacology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Male , Receptors, Androgen/metabolism , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Nitriles/pharmacology , Molecular Dynamics Simulation , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Pyrazoles/pharmacology , Pyrazoles/chemistry , Molecular Docking Simulation/methods , Amides/pharmacology , Amides/chemistry , Flutamide/analogs & derivatives
12.
Expert Rev Anticancer Ther ; 24(5): 325-333, 2024 May.
Article in English | MEDLINE | ID: mdl-38469875

ABSTRACT

BACKGROUND: Nonmetastatic castration-resistant prostate cancer (nmCRPC) patients are often older and use concurrent medications that increase the potential for drug-drug interactions (pDDIs). This study assessed pDDI prevalence in real-world nmCRPC patients treated with apalutamide, darolutamide, or enzalutamide. RESEARCH DESIGN AND METHODS: Castrated prostate cancer patients without metastases prior to androgen receptor inhibitor initiation were identified retrospectively via Optum Clinformatics Data Mart claims data (8/2019-3/2021). The top 100 concomitant medications were assessed for pDDIs. RESULTS: Among 1,515 patients (mean age: 77 ± 8 years; mean Charlson Comorbidity Index: 3 ± 3), 340 initiated apalutamide, 112 darolutamide, and 1,063 enzalutamide. Common concomitant medication classes were cardiovascular (80%) and central nervous system (52%). Two-thirds of the patients received ≥5 concomitant medications; 30 (30/100 medications) pDDIs were identified for apalutamide and enzalutamide each and 2 (2/100 medications) for darolutamide. Most pDDIs had risk ratings of C or D, but four for apalutamide were rated X. Approximately 58% of the patients on apalutamide, 5% on darolutamide, and 54% on enzalutamide had ≥1 identified pDDI. CONCLUSIONS: Results showed a higher frequency of pDDIs in patients receiving apalutamide and enzalutamide vs darolutamide. The impact of these could not be determined retrospectively. DDI risk should be carefully evaluated when discussing optimal therapy for patients with nmCRPC.


Subject(s)
Androgen Receptor Antagonists , Benzamides , Drug Interactions , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Pyrazoles , Thiohydantoins , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Retrospective Studies , Aged , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/adverse effects , Benzamides/administration & dosage , Benzamides/pharmacology , Androgen Receptor Antagonists/administration & dosage , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/adverse effects , Thiohydantoins/administration & dosage , Thiohydantoins/pharmacology , Thiohydantoins/adverse effects , Nitriles/administration & dosage , Aged, 80 and over , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Pyrazoles/adverse effects
13.
Oncogene ; 43(20): 1522-1533, 2024 May.
Article in English | MEDLINE | ID: mdl-38532114

ABSTRACT

Androgen deprivation therapies (ADT) are the mainstay treatments for castration-resistant prostate cancer (CRPC). ADT suppresses the androgen receptor (AR) signaling by blocking androgen biosynthesis or inhibiting AR with antiandrogens that target AR's ligand-binding domain (LBD). However, the ADT's effect is short-lived, as the AR signaling inevitably arises again, which is frequently coupled with AR-V7 overexpression. AR-V7 is a truncated form of AR that lacks the LBD, thus being constitutively active in the absence of androgens and irresponsive to AR-LBD-targeting inhibitors. Though compelling evidence has tied AR-V7 to drug resistance in CRPC, pharmacological inhibition of AR-V7 is still an unmet need. Here, we discovered a small molecule, SC912, which binds to full-length AR as well as AR-V7 through AR N-terminal domain (AR-NTD). This pan-AR targeting relies on the amino acids 507-531 in the AR-NTD. SC912 also disrupted AR-V7 transcriptional activity, impaired AR-V7 nuclear localization and DNA binding. In the AR-V7 positive CRPC cells, SC912 suppressed proliferation, induced cell-cycle arrest, and apoptosis. In the AR-V7 expressing CRPC xenografts, SC912 attenuated tumor growth and antagonized intratumoral AR signaling. Together, these results suggested the therapeutic potential of SC912 for CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Protein Domains , Apoptosis/drug effects , Signal Transduction/drug effects , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use
14.
Oncologist ; 29(7): 581-588, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38394384

ABSTRACT

BACKGROUND: Patients with nonmetastatic castration-resistant prostate cancer (nmCRPC) are usually asymptomatic and seek treatments that improve survival but have a low risk of adverse events. Darolutamide, a structurally distinct androgen receptor inhibitor (ARi), significantly reduced the risk of metastasis and death versus placebo in ARAMIS. We assessed the extended safety and tolerability of darolutamide and the time-course profile of treatment-emergent adverse events (TEAEs) related to ARis and androgen-suppressive treatment. PATIENTS AND METHODS: Patients with nmCRPC were randomized 2:1 to darolutamide (n = 955) or placebo (n = 554). After trial unblinding, patients could receive open-label darolutamide. Tolerability and TEAEs were assessed every 16 weeks. Time interval-specific new and cumulative event rates were determined during the first 24 months of the double-blind period. RESULTS: Darolutamide remained well tolerated during the double-blind and open-label periods, with 98.8% of patients receiving the full planned dose. The incidence of TEAEs of interest in the darolutamide group was low and ≤2% different from that in the placebo group, except for fatigue. When incidences were adjusted for exposure time, there were minimal differences between the darolutamide double-blind and double-blind plus open-label periods. The rate of initial onset and cumulative incidence of grade 3/4 TEAEs and serious TEAEs were similar for darolutamide and placebo groups over 24 months. CONCLUSION: Extended treatment with darolutamide was well tolerated and no new safety signals were observed. Most ARi-associated and androgen-suppressive treatment-related TEAEs occurred at low incidences with darolutamide, were similar to placebo, and showed minimal increase over time with continued treatment. TRIAL NUMBER: ClinicalTrials.gov identifier NCT02200614.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Pyrazoles , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Double-Blind Method , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Androgen Receptor Antagonists/therapeutic use , Androgen Receptor Antagonists/adverse effects , Androgen Receptor Antagonists/pharmacology , Middle Aged , Aged, 80 and over
15.
J Steroid Biochem Mol Biol ; 239: 106476, 2024 May.
Article in English | MEDLINE | ID: mdl-38311010

ABSTRACT

A new chemical scaffold with antagonistic activity towards the androgen receptor (AR) was identified. The parent compound, (3-Methoxy-N-[1-methyl-2-(4-phenyl-1-piperazinyl)-2-(2-thienyl)ethyl]benzamide) referred to as MEL-6, binds in the ligand binding pocket of AR and induces an antagonistic conformation of the ligand binding domain, even in presence of the antagonist-to-agonist switch mutations W741C, T877A and F876L-T877A. MEL-6 has antiproliferative effects on several AR positive prostate cancer cell lines. We further identified AR as the specific target of MEL-6 since it demonstrates little effect on other steroid receptors. In LNCaP cells it also inhibits the androgen-regulated transcriptome. These findings identify MEL-6 as a promising candidate for treatment of patients with prostate tumors that have become resistant to current clinically used AR antagonists. Analytical studies on the chemical composition of MEL-6 identified the presence of four isomers (two enantiomeric pairs), among which one isomer is responsible for the antiandrogenic activity. We therefore developed a synthetic route towards the selective preparation of the active enantiomeric pair. Various MEL-6-like analogues had improved metabolic stability while maintaining antiandrogenic activity. Metabolite identification of MEL-6 derivatives pinpointed N-dealkylation of the piperazine as the main mode for inactivation by liver enzymes. For further structural optimization, MEL-6 derivatives were purchased or synthesized having alterations on the N-phenyl group of the piperazine, the benzoyl group and additionally substituting the thiophen-2-yl ring of MEL-6 to a phenyl ring. This optimization process resulted in compound 12b with sustained AR inhibition and a 4-fold increased half-life due to the 1-(5-chloro-2-methylphenyl)-piperazine substitution, thienyl-to-phenyl substitution and chloro in para-position of the benzoyl group.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms , Male , Humans , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Ligands , Receptors, Androgen/metabolism , Prostatic Neoplasms/metabolism , Androgens , Piperazines/pharmacology , Cell Line, Tumor , Androgen Antagonists/pharmacology
16.
NEJM Evid ; 3(1): EVIDoa2300171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38320513

ABSTRACT

BACKGROUND: Prostate cancer is regulated by steroid hormones, even in castration-resistant disease. ODM-208, a novel inhibitor of cytochrome P450 11A1 (which catalyzes the first step of steroid-hormone biosynthesis), was investigated in patients with heavily pretreated metastatic castration-resistant prostate cancer (mCRPC). METHODS: CYPIDES is a first-in-human phase 1 (3 + 3 design) and phase 2 study. We administered ODM-208 twice daily with glucocorticoid/mineralocorticoid replacement and ongoing androgen deprivation therapy to adults with previously treated mCRPC, regardless of androgen receptor gene (AR) ligand-binding domain mutations (phase 1) and with activating AR ligand-binding domain mutations (ARmut; phase 2). Safety, pharmacokinetics, steroid-hormone pharmacodynamics, and preliminary efficacy were the key outcomes. RESULTS: Ninety-two patients received one or more doses of ODM-208: 47 in phase 1 (20 [42.6%] with ARmut) and 45 in phase 2 (all ARmut). A dose of ODM-208 of 5 mg twice a day with dexamethasone 1 mg/fludrocortisone 0.1 mg provided a balance between decreased steroidogenesis and toxicity. Treatment-related adrenal insufficiency was the most common toxicity in phase 1 (n=17, 36.2%; necessitating ODM-208 discontinuation in one patient); this toxicity occurred in six patients (13.3%) at 5 mg twice a day in phase 2. Median circulating testosterone levels declined from 3.0 ng/dl (interquartile range, 1.3 to 6.2 ng/dl) at baseline to undetectable levels within the first week of ODM-208 5 mg twice a day treatment in 46 of 53 (87%) patients. A decrease in prostate-specific antigen levels of 50% or more occurred in 14 of 19 (73.7%) patients with ARmut and 2 of 23 (8.7%) patients with AR wild type in phase 1 and in 24 of 45 (53.3%) patients with ARmut in phase 2. CONCLUSIONS: ODM-208 potently inhibited steroid-hormone biosynthesis with the expected toxicity of adrenal insufficiency. Evidence of antitumor activity was observed in this heavily pretreated mCRPC population, especially in those with ARmut. (Funded by Orion Pharma; ClinicalTrials.gov number, NCT03436485.)


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Cholesterol Side-Chain Cleavage Enzyme , Prostate-Specific Antigen/therapeutic use , Treatment Outcome , Androgen Receptor Antagonists/pharmacology
17.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339092

ABSTRACT

Breast cancer is a major cause of death worldwide. The complexity of endocrine regulation in breast cancer may allow the cancer cells to escape from a particular treatment and result in resistant and aggressive disease. These breast cancers usually have fewer treatment options. Targeted therapies for cancer patients may offer fewer adverse side effects because of specificity compared to conventional chemotherapy. Signaling pathways of nuclear receptors, such as the estrogen receptor (ER), have been intensively studied and used as therapeutic targets. Recently, the role of the androgen receptor (AR) in breast cancer is gaining greater attention as a therapeutic target and as a prognostic biomarker. The expression of constitutively active truncated AR splice variants in breast cancer is a possible mechanism contributing to treatment resistance. Therefore, targeting both the full-length AR and AR variants, either through the activation or suppression of AR function, depending on the status of the ER, progesterone receptor, or human epidermal growth factor receptor 2, may provide additional treatment options. Studies targeting AR in combination with other treatment strategies are ongoing in clinical trials. The determination of the status of nuclear receptors to classify and identify patient subgroups will facilitate optimized and targeted combination therapies.


Subject(s)
Breast Neoplasms , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Receptors, Androgen/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy
18.
J Med Chem ; 67(5): 3419-3436, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38385428

ABSTRACT

Androgen receptor (AR) antagonists play important roles in the treatment of castration-resistant prostate cancer (CRPC). The glucocorticoid receptor (GR) upregulation leads to drug resistance for clinically used antiandrogens. Therefore, blocking AR/GR signaling simultaneously has become an efficient strategy to overcome the drug resistance of CRPC. Our previous work indicated that Z19 could inhibit the activity of both AR and GR. Herein, we optimized the structure of Z19 and identified GA32 as a potent AR/GR dual inhibitor. GA32 efficiently reduced the mRNA and protein levels of AR/GR downstream genes. GA32 efficiently inhibited the proliferation of enzalutamide resistance CRPC both in vitro and in vivo. GA32 could directly bind to AR and GR, and the predicted binding modes for GA32 with AR/GR suggested that GA32 binds to the AR or GR hormone binding pocket. This work provides a potential lead compound with dual AR/GR inhibitory activity to conquer the drug resistance of CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Glucocorticoid/metabolism , Drug Resistance, Neoplasm , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Nitriles/therapeutic use , Cell Line, Tumor
19.
Med Res Rev ; 44(4): 1446-1500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38279967

ABSTRACT

As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.


Subject(s)
Androgen Receptor Antagonists , Receptors, Androgen , Humans , Male , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Animals , Diet , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/prevention & control
20.
ChemMedChem ; 19(6): e202400040, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38291942

ABSTRACT

We previously identified nitrophenylferrocenes and cyanophenylferrocenes as promising lead structures of novel androgen receptor (AR) antagonists, based on the structural similarity between ferrocene and the steroidal skeleton. In the present research, we explored the structure-activity relationship (SAR) of phenylferrocene derivatives. Introduction of a hydrophobic substituent such as a chlorine atom at the 2-position or 3-position of phenylferrocene derivatives significantly increased the antagonistic activity toward wild-type AR, and among the synthesized compounds, 3-chloro-4-cyanophenylferrocene (29) exhibited the most potent anti-proliferative activity toward the androgen-dependent growth of SC-3 cells expressing wild-type AR (IC50 14 nM). Like conventional antiandrogens such as hydroxyflutamide, the major active metabolite of flutamide, compound 29 exhibited agonistic activity toward T877A-AR, a mutant AR expressed in human prostate cancer cell line LNCaP. Notably, however, the 2-chloro isomer 27 showed potent antagonistic activity toward wild-type AR (IC50 49 nM) and also exhibited antagonistic activity toward T877A-AR. Our SAR data should prove helpful for the development of new-generation AR antagonists based on phenylferrocene as candidate agents to treat drug-resistant prostate cancer.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms , Male , Humans , Androgen Receptor Antagonists/pharmacology , Pharmacophore , Cell Line, Tumor , Androgen Antagonists/pharmacology , Androgen Antagonists/chemistry , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...