Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 832
Filter
1.
An Acad Bras Cienc ; 96(3): e20230172, 2024.
Article in English | MEDLINE | ID: mdl-38896738

ABSTRACT

In the last few years, there has been a growing interest in the use of natural feed additives in animal feed. These can be used as replacements for antibiotics, to alter rumen fermentation and increase feed efficiency in ruminants. Therefore, the objective of this study is to evaluate the effects of adding different feed additives in the diet of beef and dairy cattle on their performance, dry matter intake (DMI) and feed efficiency, through a systematic review followed by meta-analysis. The systematic review suggested 43 peer-reviewed publications, according to the pre-established criteria. In beef cattle, the ionophore antibiotics reduced the DMI, improved the feed efficiency without interfering in the average daily gain (ADG). Non-ionophore antibiotics and propolis extract increased the ADG. In dairy cattle, the ionophores, yeast-based additives, and enzyme additives increased the feed efficiency, DMI, and daily milk production (MY), respectively. Essential oil supplementation in beef and dairy cattle had no effect on the feed intake and animal performance. The systematic review and meta-analysis allowed us to conclude that different feed additives have different effects on cattle performance, however, our results suggest that there are a few gaps regarding their effects on animal performance.


Subject(s)
Animal Feed , Cattle , Animals , Animal Feed/analysis , Dietary Supplements , Eating/drug effects , Eating/physiology , Food Additives/administration & dosage , Food Additives/pharmacology , Animal Nutritional Physiological Phenomena/drug effects
2.
Vet Q ; 44(1): 1-10, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38889341

ABSTRACT

The aim of the present study was to assess the effects of different levels of hempseed (HS) on growth performance, immunity and gut health in broiler chickens. A total of 192 Hubbard broiler chicks were divided into four groups and fed HS as follow: control (HS0), HS 10% (HS-10), HS 15% (HS-15) and HS 20% (HS-20). The study on HS supplementation in broilers revealed no significant impacts on feed intake during the starter (p = .2294) and finisher phases (p = .2294), or overall (p = .0944), though numerical increases were noted with higher HS levels. Body weight gain showed no significant influence in the starter and finisher phases, with overall weight gain also not significantly different (p = .0944), but numerically higher with increased HS. Feed conversion ratio was unaffected in the starter (p = .6986) and finisher phases (p = .6425), and overall (p = .2218). Dressing percentage (p = .1062) and mortality (p = .1631) were not significantly altered, but HS-20 had the highest dressing percentage and lowest mortality numerically. White blood cell counts increased significantly (p = .0377), especially in HS-15 and HS-20 groups. IgM and IgG production was higher in HS-20 on day 28 (p = .021). Gut pH (p > .05) and intestinal histomorphology (p > .05) were not significantly affected, although villus height increased numerically with higher HS levels. These results suggest potential benefits of HS, especially at higher inclusion levels. In conclusion, the obtained results indicated that HS incorporation into the diet of broilers did not affect the growth performance and gut health; however, the immune responses were significantly higher at 15 and 20% levels.


Subject(s)
Animal Feed , Cannabis , Chickens , Diet , Dietary Supplements , Animals , Chickens/immunology , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Cannabis/chemistry , Diet/veterinary , Animal Nutritional Physiological Phenomena/drug effects , Male , Weight Gain/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/immunology
3.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38875129

ABSTRACT

We investigated the effects of a calf starter supplemented with calcium salts of medium-chain fatty acids (MCFA-Ca) on growth and plasma hormone concentration in calves. Twelve Holstein calves were randomly assigned to two dietary groups (without supplementation [CON] and supplemented with MCFA-Ca [MCFA]) from 4 d of age. Calves were fed 1.0 kg/d of milk replacer until 5 wk of age and were completely weaned at 7 wk of age. Calves in the MCFA group received a calf starter containing 1% MCFA-Ca. dry matter intake (DMI) was measured daily, and body weight was measured weekly. Rumen fluid was collected at 13 wk of age to measure pH and volatile fatty acid concentration. Preprandial blood samples were collected weekly to measure the basal plasma hormone and metabolite concentrations. At 4, 8, and 13 wk of age, peri-prandial blood samples were collected every 30 min, from 60 min before feeding to 120 min after feeding, to observe metabolic responses to feeding. In addition, insulin sensitivity was assessed using euglycemic-hyperinsulinemic clamps at 4, 8, and 13 wk of age in three calves from each treatment. There were no differences in starter and hay DMI between the treatments. However, the average daily gain (ADG) after weaning was higher in the MCFA group than in the CON group. Weekly changes in plasma parameters did not differ between the treatments. Plasma concentrations of preprandial ghrelin and postprandial total ketone bodies at 13 wk of age were higher in the MCFA group than in the CON group. At 8 wk of age, peri-prandial plasma insulin concentrations were lower in the MCFA group than in the CON group. There were no differences between the treatments in terms of insulin sensitivity. The present study suggested that feeding weaning calves MCFA-Ca increases the ADG during the postweaning period, which may be mediated by endocrine signals, such as enhanced ghrelin secretion and decreased insulin secretion, without altering insulin sensitivity.


Calves are prone to growth retardation because of insufficient energy intake during the weaning transition period. Starch is the main energy source used in the formulation of calf starters. However, there is a concern that preweaned calves do not have sufficient functional rumen and small intestine to digest large amounts of starch, causing diarrhea, and decreased feed intake. Medium-chain fatty acids are easily accessible to calves and are expected to have functional properties, such as increasing the plasma concentration of ghrelin, which may enhance growth by stimulating growth hormone. The effect of calf starter supplementation with medium-chain fatty acids on growth performance and metabolism has not been evaluated previously and was evaluated in this study. Medium-chain fatty acids were fed in the form of calcium salts as pelleted solid feed. The results showed that feeding medium-chain fatty acids increased plasma ghrelin concentration, decreased insulin concentration, suggesting that these metabolic changes might be beneficial for calf growth performance.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Animals , Cattle/growth & development , Cattle/physiology , Cattle/metabolism , Animal Feed/analysis , Diet/veterinary , Male , Animal Nutritional Physiological Phenomena/drug effects , Fatty Acids/metabolism , Dietary Supplements/analysis , Insulin/blood , Insulin/metabolism , Calcium/metabolism , Calcium/blood , Random Allocation , Ghrelin/blood , Ghrelin/metabolism , Rumen/metabolism , Rumen/drug effects
4.
Vet Med Sci ; 10(4): e1470, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923734

ABSTRACT

BACKGROUND: The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep. METHODS: Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively. RESULTS: Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05). CONCLUSION: Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.


Subject(s)
Animal Feed , Betaine , Creatine , Diet , Dietary Supplements , Digestion , Glycine , Animals , Dietary Supplements/analysis , Betaine/metabolism , Betaine/administration & dosage , Animal Feed/analysis , Diet/veterinary , Male , Digestion/drug effects , Creatine/metabolism , Glycine/analogs & derivatives , Glycine/administration & dosage , Glycine/metabolism , Sheep/physiology , Sheep/metabolism , Sheep, Domestic/physiology , Sheep, Domestic/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Random Allocation , Nutrients/metabolism
5.
Open Vet J ; 14(5): 1243-1250, 2024 May.
Article in English | MEDLINE | ID: mdl-38938426

ABSTRACT

Background: Feed additives are products used in poultry nutrition to improve the quality of feed and the safety of food byproducts from animal origin. They are promising antibiotic alternatives for the production of broilers. Aim: This study aimed to investigate the effect of sodium butyrate (SB) and RL on growth performance, biochemical profile, immunity, and carcass traits of broilers. Methods: Five hundred-one-day-old chicks of the Hubbard breed were reared on floor pens in a privet farm, Giza. The chicks were weighed on arrival (each chick weighted 43-45 gm) and randomly assigned into five equal groups, with four replicates each (25 chicks/replicate). Group 1 was fed on a broiler diet without any additions (control). The diets of groups 2 and 3 were supplemented with 500 g/ton SB and 4 kg/ton RL, respectively. In group 4, the diet was enriched with 250 g/ton SB plus 2 kg/ton RL. Chicks in group 5 were fed on a diet fortified with 500 g/ton SB plus 4 kg/ton RL. Results: Supplementation of broiler diet with 500 g/ton SB plus 4 kg /ton RL increased body weight gain (BWG) and feed efficiency ratio (FER) of birds. It decreased serum levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol triglycerides, and malondialdehyde, but increased superoxide dismutase, catalase, and immunoglobulins, phagocytic activity, lysozyme activity, and nitric oxide concentrations. Antibody titers against the Newcastle disease virus were also elevated. Conclusion: Supplementation of broiler diet with 500 g/ton SB plus 4 kg/ton RL gives the best result regarding productive efficiency and immunity of broiler chickens.


Subject(s)
Animal Feed , Butyric Acid , Chickens , Diet , Dietary Supplements , Animals , Chickens/growth & development , Chickens/immunology , Chickens/physiology , Animal Feed/analysis , Butyric Acid/administration & dosage , Butyric Acid/pharmacology , Diet/veterinary , Dietary Supplements/analysis , Rosmarinus/chemistry , Animal Nutritional Physiological Phenomena/drug effects , Random Allocation
6.
Poult Sci ; 103(7): 103798, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703759

ABSTRACT

Honokiol is a multifunctional polyphenol present in Magnolia officinalis. The effects of honokiol as a supplement in broiler chicken diets, and the underlying mechanisms, remain unclear. Therefore, the aim of the present study was to investigate the effects of honokiol on the growth performance, antioxidant capacity, and intestinal histomorphology of broiler chickens and to explore the underlying mechanisms. In total, 240 one-day-old broilers were randomly allocated to 5 dietary treatments, with 6 replicate pens and 8 birds per pen. Birds were fed a basal diet supplemented with 0 (blank control, BC), 100, 200, or 400 mg/kg honokiol (H100, H200, and H400), or 200 mg/kg bacitracin zinc (PC) for 42 d. The results showed that H200 and H400 increased body weight gain (BWG) and decreased feed conversion ratio (FCR) during the starter period (P < 0.05). H100 and H200 increased total superoxide dismutase (T-SOD) activity in the serum and decreased malondialdehyde (MDA) amount in the jejunum on d 42 (P < 0.05). Moreover, H100 increased villus height-to-crypt depth ratio in both the jejunum and ileum on d 21 (P < 0.05). PCR analysis showed that honokiol upregulated intestinal expression of glutathione peroxidase (GSH-Px) and downregulated intestinal expression of inducible nitric oxide synthase (iNOS) on d 42 (P < 0.05). The Shannon index, which represents the microbial alpha diversity, was reduced for the PC, H200, and H400 groups. Notably, honokiol treatment altered the cecal microbial community structure and promoted the enrichment of several bacteria, including Firmicutes and Lactobacillus. Higher production of short-chain fatty acids was observed in the cecal digesta of H100 birds, accompanied by an enriched glycolysis/gluconeogenesis pathway, according to the functional prediction of the cecal microbiota. This study provides evidence that honokiol improves growth performance, antioxidant capacity, and intestinal health of broiler chickens, possibly by manipulating the composition and function of the microbial community.


Subject(s)
Animal Feed , Antioxidants , Biphenyl Compounds , Cecum , Chickens , Diet , Dietary Supplements , Gastrointestinal Microbiome , Lignans , Animals , Chickens/physiology , Chickens/growth & development , Lignans/administration & dosage , Lignans/pharmacology , Animal Feed/analysis , Biphenyl Compounds/administration & dosage , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Cecum/microbiology , Cecum/drug effects , Random Allocation , Male , Intestines/drug effects , Intestines/anatomy & histology , Dose-Response Relationship, Drug , Animal Nutritional Physiological Phenomena/drug effects , Allyl Compounds , Phenols
7.
Poult Sci ; 103(7): 103790, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713989

ABSTRACT

This study investigated the ameliorating effects of high-energy and high-amino acid (HEHA) diets on heat stress (HS) in yellow-feathered broilers. Broilers aged 35 d were randomly assigned to 3 groups: control and HS groups fed the basic normal diet, and the HEHA group fed the HEHA diet (basal diet + 100 kcal/kg AME + 15 % DAAs). The HS and HEHA groups were exposed to cyclic HS (30 ± 1 to 34 ± 1 ℃) for 2 wk, while the control group was maintained at 26 ± 1 ℃. The results indicated that the HEHA diet significantly alleviated HS-induced feed intake and body weight loss. HEHA feeding mitigated the increase in body temperature during HS. Compared with observations in the HS group, the HEHA diet reduced the levels of ALT, Alb, and corticosterone in the serum and downregulated the gene expression of HSP27 and HSP60 in the liver. Moreover, the HEHA group showed higher GSH-px activity in the serum and SOD and GSH-Px activity in the jejunal mucosa than that of the HS group. HEHA supplementation also reduced MDA levels in the liver. In conclusion, the HEHA diet improved the production performance of broilers under HS by increasing their antioxidant capacities. These findings suggest an effective strategy to combat HS in poultry production.


Subject(s)
Amino Acids , Animal Feed , Antioxidants , Chickens , Diet , Random Allocation , Animals , Chickens/physiology , Animal Feed/analysis , Diet/veterinary , Antioxidants/metabolism , Amino Acids/metabolism , Male , Heat-Shock Response/drug effects , Dietary Supplements/analysis , Hot Temperature , Animal Nutritional Physiological Phenomena/drug effects
8.
Poult Sci ; 103(7): 103771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749109

ABSTRACT

This work aimed to investigate the effects of dietary frankincense oil and ginger on the growth efficiency of growing Japanese quail, including live body weight, body weight gain, feed intake, feed conversion ratio, carcass traits, and physical characteristics of the meat. In total, 150 unsexed Japanese quail chicks that were 7 d old were utilized in the experiment. The chicks were randomly divided into 5 groups. Each group was divided into 3 replicates with ten birds in a completely randomized design. Group 1 received a basal diet without supplements and was used as a control group. Groups 2 and 3 received basal diets with 250 and 500 mg of ginger per kg of diet, respectively. Groups 4 and 5 received basal diets with 200 and 400 mg of frankincense oil per kg of diet, respectively. Results showed that BW of chicks received 500 mg of ginger and the 2 levels of frankincense oil at 5 wk of age, and 250 mg of ginger and 400 mg of frankincense oil at 6 wk significantly increased. BWG was significantly increased by using 500 mg of ginger and 2 levels of frankincense oil at 1 to 3 wk, 250 mg of ginger and 400 mg of frankincense oil at 3 to 6 wk, and 1 to 6 wk of age, in comparison with the control group. Treatments insignificantly influenced feed intake (FI), and feed conversion ratio (FCR) was improved considerably by using 250 mg of ginger and 400 mg of frankincense at 3 to 6 wk and 1 to 6 wk of age, respectively. Gizzard% was notably reduced with 200 mg of frankincense oil. The pH value of meat was significantly increased by having 2 levels of ginger. Still, water holding capacity and tenderness significantly decreased owing to 500 mg of ginger and 400 mg of frankincense oil. We can conclude that adding ginger and frankincense oil to Japanese quail diets may be beneficial.


Subject(s)
Animal Feed , Coturnix , Diet , Dietary Supplements , Meat , Zingiber officinale , Animals , Zingiber officinale/chemistry , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Coturnix/growth & development , Coturnix/physiology , Meat/analysis , Random Allocation , Male , Frankincense/administration & dosage , Frankincense/chemistry , Animal Nutritional Physiological Phenomena/drug effects , Dose-Response Relationship, Drug , Plant Oils/administration & dosage , Plant Oils/pharmacology
9.
Poult Sci ; 103(7): 103799, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759566

ABSTRACT

This study investigated the effect of different levels of zeolite in laying hen (Silver Montazah) diet and litter on productive performance, egg quality criteria, and economics during the second stage of production (40-56 wk of age). An experiment with a 3 × 4 factorial design was performed to study the effects of four levels of zeolite (0, 10, 15, and 20 g/kg feed) in the diet and three levels of zeolite (0, 1.5, and 2 kg/m2) in the litter. Adding zeolite to diet and litter significantly improved final BW and BW change, egg number, egg weight, egg mass, laying rate, feed consumption (FC), and feed conversion ratio (FCR), as well as egg quality criteria when compared to the unsupplemented group. Additionally, adding zeolite at a level of 2 kg /m2 litter and 20 g/kg diet achieved the greatest enhancement in productive performance features. Therefore, it can be suggested that the greatest results were obtained in laying farms when zeolite was added as a litter addition and as a supplement to feed.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Zeolites , Animals , Zeolites/administration & dosage , Zeolites/pharmacology , Chickens/physiology , Chickens/growth & development , Animal Feed/analysis , Female , Diet/veterinary , Dietary Supplements/analysis , Animal Nutritional Physiological Phenomena/drug effects , Dose-Response Relationship, Drug , Housing, Animal , Reproduction/drug effects , Random Allocation , Floors and Floorcoverings , Animal Husbandry/methods , Animal Husbandry/economics
10.
Poult Sci ; 103(7): 103811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763061

ABSTRACT

A 35-d study investigated the impact of dietary supplementation with Arginine (Arg) or branched-chain amino acids (BCAA) of broilers receiving low-protein diets whilst infected with mixed Eimeria species. All birds were given the same starter (d0-10) and finisher (d28-35) diets. The 4 grower diets used were a positive control (PC) with adequate protein (18.5%), a low protein diet (NC;16.5% CP), or the NC supplemented with Arg or BCAA. Supplemental AA was added at 50% above the recommended levels. The treatments were in a 4 × 2 factorial arrangement, with 4 diets, with or without Eimeria inoculation on d14. Birds and feed were weighed after inoculation in phases: prepatent (d14-17), acute (d18-21), recovery (d22-28), and compensatory (d29-35). Ileal digesta, jejunum, and breast tissue were collected on d21, 28, and 35. There was no diet × Eimeria inoculation on growth performance at any phase. Infected birds weighed less and consumed less feed (P < 0.05) in all phases. In the prepatent and acute phases, birds on the Arg diets had higher weight gain (P < 0.05) and lower FCR, similar to PC, when compared to NC and BCAA-fed ones. Infection reduced AA digestibility on d21 and 28 (Met and Cys). However, birds that received supplemental AA had higher digestibility (P < 0.05) of their respective supplemented AA on d 21 only. Infected birds had lower (P < 0.05) BO + AT and higher PEPT1 expression on d21. There was a diet × Eimeria interaction (P = 0.004) on gene expression at d28; 4EBP1 genes were significantly downwardly expressed (P < 0.05) in birds fed Arg diet, irrespective of infection. Infected birds exhibited an upward expression (P < 0.05) of Eef2 on d21 and d28 but experienced a downward expression on d35. Supplemental Arg and BCAA had variable effects on growth performance, apparent ileal AA digestibility, and genes of protein synthesis and degradation, but the effect of Arg on promoting weight gain, irrespective of the Eimeria challenge, was more consistent.


Subject(s)
Amino Acids, Branched-Chain , Animal Feed , Arginine , Chickens , Coccidiosis , Dietary Supplements , Digestion , Eimeria , Poultry Diseases , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Eimeria/physiology , Arginine/administration & dosage , Arginine/pharmacology , Poultry Diseases/parasitology , Dietary Supplements/analysis , Animal Feed/analysis , Amino Acids, Branched-Chain/administration & dosage , Digestion/drug effects , Diet, Protein-Restricted/veterinary , Male , Diet/veterinary , Animal Nutritional Physiological Phenomena/drug effects , Random Allocation
11.
Poult Sci ; 103(7): 103796, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776857

ABSTRACT

The study examined the effects of successive feeding of sources of n-3 PUFA to broiler breeders (BB) and their progeny in broiler chickens challenged with Eimeria. The BB were fed: 1) control (CON), corn-soybean meal diet, 2) CON + 1 % microalgae (DMA), as a source of DHA and 3) CON + 2.50% co-extruded full fat flaxseed (FFF), as a source of ALA. Eggs were hatched at 34, 44, and 54 wk of age. Posthatch treatments (BB-progeny) were: CON-CON, DMA-CON, FFF-CON, DMA-DMA and FFF-FFF with diets formulated for starter (d 1-10) and grower/finisher (d 11-42) phases. All chicks were orally challenged with Eimeria (E. acervulina and E. maxima) on d 10. Relative to CON, DMA and FFF increased concentration of n-3 PUFA by ≥ 2-fold in hatching eggs and progeny diets. There were no (P > 0.05) interactions between treatment and BB age on d 0 to 10 growth. In general, BB age affected (P < 0.05) growth performance throughout the study. In the starter phase, successive exposure to DHA and ALA improved FCR over CON-CON (P < 0.01). The interaction between treatment and BB age in grower/finisher was such that DHA exposure to younger BB resulted in poor growth performance (P < 0.05) relative to exposure to older BB. In contrast, exposure to ALA had similar (P > 0.05) growth performance irrespective of BB age. Moreover, successive exposure to ALA resulted in higher BWG, breast weight and lower FCR compared to successive exposure to DHA (P < 0.05). There were no (P > 0.05) interactions between treatment and BB age on the intestinal lesion scores, lymphoid organ weights and concentration of plasma immunoglobulin A (IgA). Successive exposure to DHA resulted in higher (P = 0.006) jejunal lesion scores than CON-CON birds. The results showed that successive exposure of DHA and ALA improved FCR relative to non-exposed birds in the starter phase. However, responses in the grower/finisher phase depended on n-3 PUFA type, with birds on successive ALA exposure supporting better growth and breast yield than birds on successive DHA exposure.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Eimeria , Fatty Acids, Omega-3 , Immunoglobulin A , Poultry Diseases , Animals , Chickens/growth & development , Chickens/physiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/immunology , Eimeria/physiology , Animal Feed/analysis , Diet/veterinary , Poultry Diseases/parasitology , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Dietary Supplements/analysis , Lymphoid Tissue/drug effects , Female , Random Allocation , Organ Size/drug effects , Male , Intestines/drug effects , Animal Nutritional Physiological Phenomena/drug effects
12.
Poult Sci ; 103(7): 103803, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781767

ABSTRACT

Carrier materials for oils in compound feeds may be used in animal nutrition to supply liquid feed additives. However, implications of such carriers for the digestibility of the contained oil are unknown. This study investigated the potential of oil carriers in compound feed and their effect on performance, metabolizable energy, fatty acid (FA) retention, amino acid (AA) digestibility, and gut microbiota in broiler chickens. Six experimental diets were formulated following a 2 × 3 factorial arrangement with 20 g/kg or 40 g/kg of rapeseed oil supplied with no carrier or bound in a silica-based (SC) or lignocellulose-based (LC) carrier in a 1:1 mass ratio. The diets were assigned to 48 metabolism units with 15 animals each based on a randomized complete block design and fed from d 18 to 28 of the trial. Total excreta were collected from d 24 to 27 and used to determine total tract retention (TTR) of FA and MEn. On d 28, AA digestibility both by the distal half of the jejunum and the distal half of the ileum was determined, and microbiota of ileal and cecal digesta was analyzed using 16S ribosomal RNA sequencing. There were significant interactions for ADG, ADFI, the gain:feed ratio (G:F), MEn, and the TTR of crude fat and most fatty acids (P ≤ 0.046) except for C18, C18:2, and C22:0. Addition of SC decreased ADG, ADFI, and G:F (P < 0.001), while LC at 40 g/kg oil inclusion increased G:F and MEn (P < 0.001) for both inclusion levels. The TTR of crude fat and the FA C18:1, C18:2, C18:3, and C22:0 was increased by the addition of SC (P ≤ 0.016), while LC increased the TTR of the FA C18:1 and C18:2 as well as the TTR of C18:3 at 20 g/kg oil inclusion (P ≤ 0.016). Adding SC and LC increased the digestibility of 7 and 2 AA by the distal half of the jejunum, respectively, and the digestibility of 8 and 13 AA by the distal half of the ileum, respectively (P ≤ 0.039). The ß-diversity and abundance of some taxa were altered by addition of LC and SC in the ceca while no treatment effect on the ileal microbiota was found. The results give no indication of an incomplete release of the oil from the carriers because the TTR of most FA was increased upon addition of SC and LC. LC may be used to supply liposoluble feed additives without drawbacks for nutrient digestibility and growth while SC requires further examination.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Gastrointestinal Microbiome , Animals , Chickens/growth & development , Chickens/microbiology , Chickens/physiology , Gastrointestinal Microbiome/drug effects , Animal Feed/analysis , Digestion/drug effects , Diet/veterinary , Animal Nutritional Physiological Phenomena/drug effects , Male , Random Allocation , Rapeseed Oil/chemistry , Rapeseed Oil/administration & dosage , Lignin/metabolism , Dietary Supplements/analysis , Nutrients
13.
Poult Sci ; 103(7): 103828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795513

ABSTRACT

Heat stress can greatly challenge growth and meat quality of broiler chickens where research is looking for sustainable ingredients, such as microalgae, that could also alleviate its negative impacts. Thus, in the present study, 576 1-D-old chicks (Ross 308) were housed until commercial slaughtering (42 D) in 36 pens in 2 rooms of a poultry house, according to a full factorial design encompassing 2 room temperatures (standard vs. high), 2 sexes (females vs. males), and 3 dietary treatments, that is, diet C0 (control diet), diet C3, and diet C6 containing 0, 3, and 6%, respectively, of C. vulgaris meal replacing the same quantities of soybean meal. The highest inclusion level of C. vulgaris decreased feed intake (P < 0.001) and body weight (P < 0.0001) compared to the control diet; it increased yellow and red indexes (P < 0.0001) of the breast muscle, besides the proportion of n3 polyunsaturated fatty acids (PUFA) (P = 0.028). Heat stress decreased feed intake (P = 0.001), breast (P = 0.001) and p. major yields (P = 0.036), and increased meat pH (P= 0.008) and cooking losses (P < 0.001), umami (P = 0.021) and brothy flavor (P < 0.001), and the proportion of n3 PUFA rates (P = 0.027), while reducing the contents of several amino acids in the breast meat (P ≤ 0.05). Compared to females, males displayed higher feed intake and growth, and more favorable feed conversion (P < 0.001). Carcass and p. major yields were greater in females (P < 0.001) which also showed a higher occurrence of spaghetti meat compared to males (P < 0.001). In conclusion, C. vulgaris can be used to replace until 3% of soybean meal in diets for broiler chickens without negative implications, while positively affecting breast meat color according to consumers' preferences. However, the microalgae inclusion did not mitigate the negative effects of a chronic heat stress on growth performance nor reduced the occurrence of any myopathies.


Subject(s)
Animal Feed , Chickens , Chlorella vulgaris , Diet , Dietary Supplements , Meat , Animals , Animal Feed/analysis , Chickens/physiology , Chickens/growth & development , Diet/veterinary , Male , Meat/analysis , Female , Dietary Supplements/analysis , Chlorella vulgaris/chemistry , Hot Temperature , Heat-Shock Response , Random Allocation , Animal Nutritional Physiological Phenomena/drug effects
14.
Poult Sci ; 103(7): 103855, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796988

ABSTRACT

Lipid metabolic capacity, feed utilization, and the diversity of gut microbiota are reduced in the late laying stage for laying hens. This experiment aimed to investigate the effects of different levels of dietary metabolizable energy (ME) on hepatic lipid metabolism and cecal microbiota in late laying hens. The 216 Peking Pink laying hens (57-wk-old) were randomly assigned to experimental diets of 11.56 (HM = high ME), 11.14 (MM = medium ME), or 10.72 (LM = low ME) MJ of ME/kg, with each dietary treatment containing 6 replicates per group and 12 chickens per replicate. The HM group showed higher triglyceride (TG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) concentrations in the liver compared with the LM group; second, the HM group showed higher TG concentration and the LM group showed lower T-CHO concentration compared with MM group; finally, the HM group showed a lower hepatic lipase (HL) activity compared with the MM and LM groups (P < 0.05). There was a significant difference in the microbial community structure of the cecum between the HM and MM groups (P < 0.05). The decrease of dietary ME level resulted in a gradual decrease relative abundance of Proteobacteria. At the genus level, beneficial bacteria were significantly enriched in the LM group compared to the MM group, including Faecalibacterium, Lactobacillus, and Bifidobacterium, (linear discriminant analysis [LDA] >2, P <0.05). In addition, at the species level, Lactobacillus crispatus, Parabacteroides gordonii, Blautia caecimuris, and Lactobacillus johnsonii were significantly enriched in the LM group (LDA>2, P < 0.05). The HM group had a higher abundance of Sutterella spp. compared to the LM group (LDA>2, P <0.05). In conclusion, this research suggests that the reduction in dietary energy level did not adversely affect glycolipid metabolism or low dietary ME (10.72 MJ/kg). The findings can be helpful for maintaining intestinal homeostasis and increasing benefit for gut microbiota in late laying hens.


Subject(s)
Animal Feed , Cecum , Chickens , Diet , Gastrointestinal Microbiome , Lipid Metabolism , Liver , Animals , Chickens/microbiology , Chickens/metabolism , Gastrointestinal Microbiome/drug effects , Cecum/microbiology , Cecum/metabolism , Cecum/drug effects , Diet/veterinary , Female , Animal Feed/analysis , Liver/metabolism , Liver/drug effects , Energy Metabolism/drug effects , Random Allocation , Animal Nutritional Physiological Phenomena/drug effects , Dose-Response Relationship, Drug , Energy Intake
15.
Poult Sci ; 103(7): 103854, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815497

ABSTRACT

The capacity of combinations of feed enzymes, natural betaine and a probiotic, combined with alternative plant-based ingredients, to totally replace soybean meal (SBM) in a broiler diet was evaluated. Day-old Ross 308 males (2,574) were assigned to 9 treatments (13 pens/treatment, 22 birds/pen) in a completely randomized design. All diets were pelleted and fed ad libitum in 4 phases: starter, grower, finisher 1, finisher 2 (0-10, 10-21, 21-35, and 35-42 d of age, respectively). Treatments included: 1) control diet containing SBM (SBM control), supplemented with phytase (PhyG), at 2,000, 1,500, 1000 and 1,000 FTU/kg in each phase and xylanase (X) at 750 U/kg, [crude protein (CP): 23.5%, 22.0%, 20.2% and 19.3% in each phase]; 2) to 5), alternative (ALT), SBM-free diets, containing the same CP level as the control ("CP high"), supplemented with PhyG as in the control, protease (P, 800 U/kg) and in 2) xylanase (750 U/kg) (ALT+PhyG+P+X), 3) xylanase-ß-glucanase (XB, 1,200 U/kg and 152 U/kg) (Alt+PhyG+P+XB), 4) XB plus betaine (800 g/ton) (ALT+PhyG+P+XB+Bet), and 5) XB plus a probiotic [150,000 colony forming units (CFU)/g] (ALT+PhyG+P+XB+Prob); 6) to 9) as treatments 2) to 5) but with CP reduced by -2.0 to -1.5% points vs. control ('CP low'). Final (d 42) BW and overall (d 0-42) feed conversion ratio (FCR) of birds fed the SBM control exceeded breeder objectives (+3.8% and -1.9%, respectively). Overall FCR was reduced and d 42 BW increased in birds fed "low" vs. "high" CP (P < 0.01). Overall FCR and feed intake were not different in ALT+PhyG+XB+P+Bet and ALT+PhyG+XB+P+Prob vs. the control, whereas final BW was reduced (P < 0.05) in all ALT treatments but close to breeder objectives (98.3%) in ALT+PhyG+XB+P+Prob. Feed costs of this treatment were similar to the control. Total replacement of SBM with alternative plant-based ingredients in a CP-low diet supplemented with hydrolytic enzymes and probiotics can achieve growth performance outcomes close to commercial breeder objectives.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Betaine , Chickens , Diet , Dietary Supplements , Glycine max , Animals , Animal Feed/analysis , Chickens/growth & development , Chickens/physiology , Male , Diet/veterinary , Dietary Supplements/analysis , Betaine/administration & dosage , Betaine/metabolism , Glycine max/chemistry , Animal Nutritional Physiological Phenomena/drug effects , Probiotics/administration & dosage , Random Allocation , 6-Phytase/administration & dosage , 6-Phytase/metabolism , Endo-1,4-beta Xylanases/administration & dosage , Endo-1,4-beta Xylanases/metabolism
16.
Res Vet Sci ; 174: 105294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744020

ABSTRACT

This study aimed to evaluate the effects of a mixture of olive, laurel, and rosemary leaf powders, on the oxidative state, biochemical, immune, intestinal morphophysiological parameters, and egg quality of laying hens. One hundred Lohmann Brown hens (28 weeks old) were equally assigned to two groups (n. 50) corresponding to a basal control diet (CON) or the diet supplemented with 6 g/kg feed of leaf powder mixture (LPM) containing olive, laurel, and rosemary leaves (1:1:1), for 60 days. Oxidative status, biochemical indices, immune response, cecal short chain fatty acids (SCFAs), intestinal morphological characteristics, and some egg traits were evaluated at the end of the experiment. The results indicated that LPM improved (P < 0.05) the oxidative status (TOS, ROMs), the immune system (IL-6, IL-1ß, and TNF-α), the total protein and HDL cholesterol content, whereas it decreased (P < 0.05) total cholesterol and LDL cholesterol. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase were significantly (P < 0.05) lower in the LPM than in the CON group. A significant increase (P < 0.05) in SCFA content in the caecum, as well as in villi height and crypt depth in both duodenum and ileum of LPM-treated hens, was observed. Egg quality parameters were not influenced (P > 0.05) by LPM. These findings indicate that LPM can be considered a candidate as an antioxidant ingredient for functional food in laying hens.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Olea , Plant Leaves , Rosmarinus , Animals , Chickens/immunology , Chickens/physiology , Animal Feed/analysis , Female , Dietary Supplements/analysis , Diet/veterinary , Plant Leaves/chemistry , Rosmarinus/chemistry , Olea/chemistry , Intestines/drug effects , Intestines/anatomy & histology , Animal Nutritional Physiological Phenomena/drug effects , Oxidative Stress/drug effects , Ovum/drug effects , Eggs/analysis , Eggs/standards
17.
BMC Vet Res ; 20(1): 176, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711127

ABSTRACT

BACKGROUND: This investigation assessed the effects of high dietary inclusion of Spirulina (Arthrospira platensis) on broiler chicken growth performance, meat quality and nutritional attributes. For this, 120 male broiler chicks were housed in 40 battery brooders (three birds per brooder). Initially, for 14 days, a standard corn and soybean meal diet was administered. Subsequently, from days 14 to 35, chicks were assigned to one of the four dietary treatments (n = 10 per treatment): (1) control diet (CTR); (2) diet with 15% Spirulina (SP); (3) diet with 15% extruded Spirulina (SPE); and (4) diet with 15% Spirulina plus a super-dosing enzymes supplement (0.20% pancreatin extract and 0.01% lysozyme) (SPM). RESULTS: Throughout the experimental period, both SP and SPM diets resulted in decreased final body weight and body weight gain compared to control (p < 0.001), with the SPE diet showing comparable results to CTR. The SPE diet prompted an increase in average daily feed intake (p = 0.026). However, all microalga treatments increased the feed conversion ratio compared to CTR. Dietary inclusion of Spirulina notably increased intestinal content viscosity (p < 0.010), which was mitigated by the SPM diet. Spirulina supplementation led to lower pH levels in breast meat 24 h post-mortem and heightened the b* colour value in both breast and thigh meats (p < 0.010). Furthermore, Spirulina contributed to an increased accumulation of total carotenoids, n-3 polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA), while diminishing n-6 PUFA, thus altering the n-6/n-3 and PUFA/SFA ratios favourably (p < 0.001). However, it also reduced zinc concentration in breast meat (p < 0.001). CONCLUSIONS: The findings indicate that high Spirulina levels in broiler diets impair growth due to increased intestinal viscosity, and that extrusion pre-treatment mitigates this effect. Despite reducing digesta viscosity, a super-dosing enzyme mix did not improve growth. Data also indicates that Spirulina enriches meat with antioxidants and n-3 PUFA but reduces α-tocopherol and increases saturated fats. Reduced zinc content in meat suggests the need for Spirulina biofortification to maintain its nutritional value.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Meat , Spirulina , Animals , Chickens/growth & development , Animal Feed/analysis , Spirulina/chemistry , Diet/veterinary , Male , Meat/analysis , Meat/standards , Animal Nutritional Physiological Phenomena/drug effects , Muramidase/metabolism
18.
Br Poult Sci ; 65(3): 361-369, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38787328

ABSTRACT

1. The objective of this study was to determine the nutritional and energy values of four maize distiller's dried grains with solubles (DDGS) and one maize high protein distiller's dried grains (HP-DDG) from ethanol production plants in Brazil; to evaluate the digestibility, performance, nitrogen balance and energy values for broiler chickens fed diets containing these coproducts (Experiment I); and to evaluate the effects of xylanase inclusion in diets containing maize DDGS for broilers on energy availability, digestibility, nitrogen balance and gastrointestinal morphometry (Experiment II).2. For each experiment, 180 broiler chickens aged 17 and 30 days with initial weights of 450 ± 18 g and 1228 ± 33 g, respectively, were used; the chickens were distributed into 36 metabolism cages. The experimental design consisted of complete randomised blocks, with six replications per treatment and five birds per experimental unit. The treatments consisted of a basal diet (BD) and five test diets containing maize ethanol coproducts (Experiment I) one BD and five test diets containing DDGS with inclusions of 0, 8,000, 16,000, 24,000 and 32,000 BXU/kg xylanase (Experiment II). In Experiment I, HP-DDG and DDGS2 presented higher AME and AMEn values (14.1 and 13.9 MJ/kg and 13.4 and 13.3 MJ/kg, respectively), than did the other coproducts (p < 0.05). Compared with DDGS1 and DDGS3, DDGS4 and HP-DDG had higher digestible CP values (p < 0.05). In Experiment II, the inclusion of the enzyme quadratically affected the values of digestible CP and digestible EE (p < 0.05), with the maximum values occurring with the inclusion of 18 750 and 22,170 BXU/kg of xylanase, respectively.3. The digestible NDF and digestible MM values linearly increased with the inclusion of xylanase (p < 0.05). The addition of xylanase had no effect on gastrointestinal morphometry (p > 0.05). It was concluded that the inclusion of between 18,000 and 22,000 BXU/kg of xylanase resulted in better digestible CP and digestible EE values.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Endo-1,4-beta Xylanases , Zea mays , Animals , Chickens/physiology , Chickens/metabolism , Zea mays/chemistry , Animal Feed/analysis , Digestion/drug effects , Animal Nutritional Physiological Phenomena/drug effects , Diet/veterinary , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/administration & dosage , Male , Random Allocation , Ethanol , Nutritive Value , Gastrointestinal Tract/metabolism , Dietary Supplements/analysis
19.
Poult Sci ; 103(7): 103746, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678974

ABSTRACT

Polyunsaturated fatty acids (PUFA), including n-6 and n-3 fatty acids, are essential for enhancing the performance and health of poultry. Avian species lack desaturase enzymes for endogenous synthesis of n-6 and n-3 fatty acids. This work aimed to determine the impacts of including soybean oil (SO) and linseed oil (LO) in quail diets on growth, lipid profile, hepatic and renal functions, immunity, and antioxidant status. A total of 350 Japanese quail chicks (1-wk-old) were randomly arranged into 7 dietary treatment groups. Seven isocaloric and isonitrogenous experimental basal diets were formed based on the nutritional requirements of growing Japanese quail. Group 1, the control, received a basal with no oils, while groups 2 to 7 received a basal diet containing either 1% SO, 1.5% SO, 2% SO, 1% LO, 1.5% LO, or 2% LO, respectively. Quail groups that consumed diets containing LO at all levels showed significantly greater live body weight (LBW) at 5th wk of age than other experimental groups. The dietary incorporation of 1.5 or 2% SO or LO at all levels yielded significant improvements in body weight gain (BWG) and feed conversion ratio (FCR) through 3 to 5 and 1 to 5 wk of age. Different dietary oil sources and levels have no significant impacts on feed intake (FI) and carcass yield parameters. Lipid profile parameters were improved by adding SO and LO in quail diets, with LO having a higher effect than SO. The hepatic and renal functionality were improved by adding SO and LO in quail diets. The lowest uric acid (UA) bloodstream concentrations were recorded in the quail group fed a diet with 2% LO. Values of Gamma globulins (G-GLO) and immunoglobulins (G, M, and A) were increased by adding SO or LO to quail diets. Blood levels of MDA and TAC were improved significantly by including LO in quail diets. The activity of the superoxide dismutase (SOD) enzyme was significantly increased by adding SO or LO to quail diets. Generally, adding SO or LO to growing quail diets up to 2% could yield favorable effects on growth performance, blood lipids, hepatic and renal functions, immunity, and antioxidant status; however, LO seems to have better effects than SO.


Subject(s)
Animal Feed , Coturnix , Diet , Dietary Supplements , Linseed Oil , Soybean Oil , Animals , Linseed Oil/administration & dosage , Animal Feed/analysis , Diet/veterinary , Coturnix/growth & development , Coturnix/physiology , Soybean Oil/administration & dosage , Soybean Oil/metabolism , Dietary Supplements/analysis , Random Allocation , Animal Nutritional Physiological Phenomena/drug effects , Male , Dose-Response Relationship, Drug , Health Status
20.
Animal ; 18(5): 101135, 2024 May.
Article in English | MEDLINE | ID: mdl-38636148

ABSTRACT

There is a gap in the understanding of the relationship between dietary phytate levels and the relative efficacy of phytase to improve amino acid (AA) digestibility in pigs and chickens. Two experiments were conducted to investigate the effect of exogenous phytase on standardized ileal digestibility (SID) of AA and the apparent ileal digestibility (AID) of P in both standard- (SP) and high-phytate (HP) diets for broilers and swine. There were either 40 cages of Cobb 500 male broilers or 10 crossbred barrows (35 kg) fitted with ileal T-cannulas. Both studies were allotted to five dietary treatments (8 replicates). Treatments consisted of four corn-soybean meal-based diets arranged in a 2 × 2 factorial of standard or high phytate and exogenous phytase at 0 or 1 000 phytase units (FYT)/kg; and one N-free diet. Birds were fed a common starter diet from d 0 to 20 and fed experimental diets from d 20 to 25. Birds were euthanized on d 25 via CO2 asphyxiation, and digesta were collected from the terminal ileum. Pigs were fed for a total of four 7-d periods, where digesta were collected on d 6 and 7 of each period. Diet and digesta samples were analyzed for DM, N, Ti, AA, and P to determine AA and P digestibility. The SID of AA was determined by correcting the AID of AA for the basal endogenous losses estimated using the N-free diet. Main effects of the diet type (standard or HP) and phytase (0 or 1 000 FYT/kg), and the interaction of diet type and phytase were evaluated. For both experiments, the HP diets produced lower SID of AA compared to the SP (P < 0.001). For broilers, there was a phytase effect (P < 0.001) for the SID of all AAs evaluated regardless of the diet type. For pigs, phytase improved (P < 0.05) the SID of Met, Lys, Cys, Glu and Ser and tended to improve (P < 0.10) Arg, Leu, Thr, and Tyr. There were no significant interactions for either experiment. For both experiments, AID of P was lower for the HP diets (P < 0.01), and phytase produced greater AID of P for both diet types (P < 0.01). These data indicate that phytase greatly improves the digestibility of P for broilers and pigs and has the ability to significantly increase the digestibility of amino acids for these animals, regardless of the dietary phytate P.


Subject(s)
6-Phytase , Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Ileum , Phytic Acid , Animals , 6-Phytase/administration & dosage , 6-Phytase/pharmacology , Chickens/physiology , Chickens/metabolism , Animal Feed/analysis , Phytic Acid/metabolism , Phytic Acid/administration & dosage , Phytic Acid/pharmacology , Male , Digestion/drug effects , Diet/veterinary , Animal Nutritional Physiological Phenomena/drug effects , Ileum/metabolism , Swine/physiology , Amino Acids/metabolism , Dietary Supplements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...