Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.661
Filter
1.
BMC Genomics ; 25(1): 742, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080521

ABSTRACT

The anthrax-causing bacterium Bacillus anthracis comprises the genetic clades A, B, and C. In the northernmost part (Pafuri) of Kruger National Park (KNP), South Africa, both the common A and rare B strains clades occur. The B clade strains were reported to be dominant in Pafuri before 1991, while A clade strains occurred towards the central parts of KNP. The prevalence of B clade strains is currently much lower as only A clade strains have been isolated from 1992 onwards in KNP. In this study 319 B. anthracis strains were characterized with 31-loci multiple-locus variable-number tandem repeat analysis (MLVA-31). B clade strains from soil (n = 9) and a Tragelaphus strepsiceros carcass (n = 1) were further characterised by whole genome sequencing and compared to publicly available genomes. The KNP strains clustered in the B clade before 1991 into two dominant genotypes. South African strains cluster into a dominant genotype A.Br.005/006 consisting of KNP as well as the other anthrax endemic region, Northern Cape Province (NCP), South Africa. A few A.Br.001/002 strains from both endemic areas were also identified. Subclade A.Br.101 belonging to the A.Br.Aust94 lineage was reported in the NCP. The B-clade strains seems to be vanishing, while outbreaks in South Africa are caused mainly by the A.Br.005/006 genotypes as well as a few minor clades such as A.Br.001/002 and A.Br.101 present in NCP. This work confirmed the existence of the rare and vanishing B-clade strains that group in B.Br.001 branch with KrugerB and A0991 KNP strains.


Subject(s)
Anthrax , Bacillus anthracis , Phylogeny , Bacillus anthracis/genetics , Bacillus anthracis/classification , Bacillus anthracis/isolation & purification , South Africa , Anthrax/microbiology , Anthrax/epidemiology , Anthrax/veterinary , Genotype , Genome, Bacterial , Soil Microbiology , Whole Genome Sequencing
2.
Vet Med Sci ; 10(5): e1553, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39042567

ABSTRACT

BACKGROUND: Anthrax is the most prioritized zoonotic disease in Kazakhstan due to its threatening potential to the public health and agricultural sector. Sporadic anthrax outbreaks are being reported annually among human and livestock populations throughout the country, with the highest frequency occurring in West Kazakhstan. METHODS: A cross-sectional study was conducted using a survey-based face-to-face interview. From January to May 2022, 489 randomly selected participants were surveyed in 6 districts of the Baiterek province in West Kazakhstan oblast to evaluate the knowledge, attitude and practice (KAP) regarding anthrax among community members. This is the first KAP study conducted relating to outbreaks of anthrax in Kazakhstan. RESULTS: In this study, most participants (74%) surveyed were males, and 40% of respondents had a secondary level education. Overall, 91% of the community respondents were engaged in agriculture and livestock rearing. Among these community members, cattle rearing was the most common (67%) occupation compared to other livestock species. Additionally, over a 50% of the population studied had no knowledge about the zoonotic nature of the disease, and about 82% and 87% of respondents were unaware of any animal and human anthrax symptoms, respectively. About 70% of the respondents were interested in vaccinating their livestock against anthrax. Individuals aged 45-54 displayed notably higher animal vaccination rates (45%; 95% CI: 38.4-52.0; p < 0.025) compared to those aged 25-34 and 65-74. Respondents residing in the Beles district (20%; 95% CI: 17.1-24.7; p < 0.005) exhibited a significantly higher level of awareness concerning the fatality of anthrax in contrast to participants from Bolashak. Roughly 61% of respondents held the belief that anthrax is a lethal disease. An overwhelming majority of the survey participants (99%) affirmed their non-participation in the slaughter of infected animals. CONCLUSION: The findings of this study indicate that KAP among community members relating to anthrax is low and requires swift implementation of education programmes in building awareness of anthrax under the One Health approach, especially in anthrax prone regions.


Subject(s)
Anthrax , Farmers , Health Knowledge, Attitudes, Practice , Livestock , Anthrax/veterinary , Anthrax/epidemiology , Anthrax/prevention & control , Male , Cross-Sectional Studies , Kazakhstan/epidemiology , Female , Humans , Animals , Adult , Farmers/psychology , Farmers/statistics & numerical data , Middle Aged , Young Adult , Zoonoses , Aged , Animal Husbandry/methods , Adolescent
3.
Inorg Chem ; 63(29): 13516-13524, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38959250

ABSTRACT

Anthrax bacillus is a very dangerous zoonotic pathogen that seriously endangers public health. Rapid and accurate qualitative and quantitative detection of its biomarkers, 2,6-dipicolinic acid (DPA), is crucial for the prevention and treatment of this pathogenic bacterium. In this work, a novel Cd-based MOF (TTCA-Cd) has been synthesized from a polycarboxylate ligand, [1,1':2',1″-terphenyl]-4,4',4″,5'-tetracarboxylic acid (H4TTCA), and further doped with Tb(III), forming a dual-emission lanthanide-functionalized MOF hybrid (TTCA-Cd@Tb). TTCA-Cd@Tb can be developed as a high-performance ratiometric fluorescent sensor toward DPA with a very low detection limit of 7.14 nM and high selectivity in a wide detection range of 0-200 µM, demonstrating a big advancement and providing a new option for the detection of DPA.


Subject(s)
Anthrax , Bacillus anthracis , Biomarkers , Fluorescent Dyes , Metal-Organic Frameworks , Picolinic Acids , Terbium , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/chemical synthesis , Terbium/chemistry , Picolinic Acids/analysis , Picolinic Acids/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Biomarkers/analysis , Anthrax/diagnosis , Cadmium/chemistry , Cadmium/analysis , Molecular Structure , Limit of Detection , Spectrometry, Fluorescence
4.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(7): 990-996, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-39004972

ABSTRACT

Objective: To analyze the multiple locus variable number tandem repeat analysis (MLVA) genotype polymorphism of Bacillus (B.) anthracis and establish a MLVA genotype database of B. anthracis in China. Methods: B. anthracis strains isolated from different sources in China since 1947 were collected. Genotype identification was carried out using the MLVA15 genotyping protocol based on 15 variable number tandem repeat loci. The genotypes were uniformly numbered and named. The distribution characteristics of the MLVA genotypes of strains were analyzed. Software Bionumerics was used to construct clustering diagrams to analyze the genetic relationships. Results: The MLVA15 clustering analysis subdivided the isolates into 4 major groups and 91 genotypes, 54 of which were unique to China. The genotypes from MLVA15-CHN1 to MLVA15-CHN6 were widely distributed throughout China and in all eras, while other genotypes were restricted to certain regions or eras. Conclusions: This study established a MLVA genotype database of B. anthracis, which provides basis for the understanding of MLVA genetic polymorphisms and the control and molecular source tracing of the anthrax outbreaks in China.


Subject(s)
Bacillus anthracis , Genotype , Minisatellite Repeats , Polymorphism, Genetic , Bacillus anthracis/genetics , China/epidemiology , Phylogeny , Anthrax/microbiology , Anthrax/epidemiology , Multilocus Sequence Typing , Cluster Analysis
5.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930821

ABSTRACT

2,6-pyridine dicarboxylic acid (DPA) is an exceptional biomarker of notorious anthrax spores. Therefore, the rapid, sensitive, and selective quantitative detection of DPA is extremely significant and urgent. This paper reports a Zn(II) metal-organic framework with the formula of {[Zn6(NDA)6(DPBT)3] 2H2O·3DMF}n (MOF-1), which consists of 2,6-naphthalenedicarboxylic acid (2,6-NDA), 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole (DPBT), and Zn(II) ions. Structural analysis indicated that MOF-1 is a three-dimensional (3D) network which crystallized in the monoclinic system with the C2/c space group, revealing high pH, solvent, and thermal stability. Luminescence sensing studies demonstrated that MOF-1 had the potential to be a highly selective, sensitive, and recyclable fluorescence sensor for the identification of DPA. Furthermore, fluorescent test paper was made to detect DPA promptly with color changes. The enhancement mechanism was established by the hydrogen-bonding interaction and photoinduced electron transfer transition between MOF-1 and DPA molecules.


Subject(s)
Biomarkers , Metal-Organic Frameworks , Thiadiazoles , Zinc , Metal-Organic Frameworks/chemistry , Zinc/chemistry , Zinc/analysis , Thiadiazoles/chemistry , Anthrax/diagnosis , Picolinic Acids/chemistry , Picolinic Acids/analysis , Bacillus anthracis , Models, Molecular
6.
PLoS One ; 19(6): e0304872, 2024.
Article in English | MEDLINE | ID: mdl-38837969

ABSTRACT

The One Health approach calls for collaboration across various sectors and different scales to improve understanding of complex health issues. Regarding epidemiological surveillance, this implies the development of integrated systems that link several surveillance components operating in different domains (human, domestic animals, environment) and involving several actor networks. However, surveillance continues to operate in a very compartmentalized way, with little interaction between sectoral institutions and with the community for the governance and operation of surveillance activities. This is partly explained by the insufficient consideration of the local context and the late involvement of national stakeholders when developing programmes that aimed at strengthening the integration of surveillance. In low- and middle-income countries in particular, there is a strong influence of external partners on the development of intersectoral programmes, including surveillance systems. In this context, we developed and implemented a participatory planning process to support stakeholders of the surveillance system of anthrax in Burkina Faso, in the definition of the One Health surveillance system they wish for and of the pathway to reach it. The workshop produced an action plan that reflects the views and perspectives of representatives of the different categories of stakeholders and beneficiaries of surveillance. In addition, the participation of stakeholders in this participatory co-construction process has also improved their knowledge and mutual understanding, fostering a climate of trust conducive to further collaboration for surveillance activities. However, the quality of the participation raises some questions over the results, and contextual factors may have influenced the process. This underlines the need to include a monitoring and evaluation plan in the process to assess its implementation and ability to produce One Health surveillance modalities that are appropriate, accepted and applied over the long term.


Subject(s)
Anthrax , One Health , Burkina Faso/epidemiology , Humans , Anthrax/epidemiology , Anthrax/prevention & control , Population Surveillance/methods , Epidemiological Monitoring , Animals
7.
Appl Microbiol Biotechnol ; 108(1): 366, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850320

ABSTRACT

This review gathers all, to the best of our current knowledge, known lysins, mainly bacteriophage-derived, that have demonstrated activity against Bacillus anthracis strains. B. anthracis is a spore-forming, toxin-producing bacteria, naturally dwelling in soil. It is best known as a potential biowarfare threat, an etiological agent of anthrax, and a severe zoonotic disease. Anthrax can be treated with antibiotics (ciprofloxacin, penicillin, doxycycline); however, their administration may take up even to 60 days, and different factors can compromise their effectiveness. Bacterial viruses, bacteriophages (phages), are natural enemies of bacteria and use their lytic enzymes, endolysins (lysins), to specifically kill bacterial cells. Harnessing the potential of lysins to combat bacterial infections holds promise for diminishing antibiotic usage and, consequently, addressing the escalating antibiotic resistance in bacteria. In this context, we list the lysins with the activity against B. anthracis, providing a summary of their lytic properties in vitro and the outcomes observed in animal models. Bacillus cereus strain ATCC 4342/RSVF1, a surrogate for B. anthracis, was also included as a target bacteria. KEY POINTS: • More than a dozen different B. anthracis lysins have been identified and studied. • They fall into three blocks regarding their amino acid sequence similarity and most of them are amidases. • Lysins could be used in treating B. anthracis infections.


Subject(s)
Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Endopeptidases , Bacillus anthracis/drug effects , Bacillus anthracis/virology , Anthrax/drug therapy , Anthrax/microbiology , Animals , Endopeptidases/pharmacology , Endopeptidases/metabolism , Endopeptidases/genetics , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Bacillus cereus/drug effects , Bacillus cereus/virology , Humans , Bacillus Phages/genetics
8.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38888319

ABSTRACT

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Subject(s)
Aminoglycosides , Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Lipoglycopeptides , Microbial Sensitivity Tests , Respiratory Tract Infections , Animals , Lipoglycopeptides/pharmacology , Rabbits , Anthrax/drug therapy , Anthrax/microbiology , Anthrax/mortality , Bacillus anthracis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aminoglycosides/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Disease Models, Animal , Levofloxacin/pharmacology , Female
9.
Spat Spatiotemporal Epidemiol ; 49: 100657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876568

ABSTRACT

Anthrax is a zoonotic disease caused by a spore-forming gram-positive bacterium, Bacillus anthracis. Increased anthropogenic factors inside wildlife-protected areas may worsen the spillover of the disease at the interface. Consequently, environmental suitability prediction for B. anthracis spore survival to locate a high-risk area is urgent. Here, we identified a potentially suitable habitat and a high-risk area for appropriate control measures. Our result revealed that a relatively largest segment of Omo National Park, about 23.7% (1,218 square kilometers) of the total area; 36.6% (711 square kilometers) of Mago National Park, and 29.4% (489 square kilometers) of Tama wildlife Reserve predicted as a high-risk area for the anthrax occurrence in the current situation. Therefore, the findings of this study provide the priority area to focus on and allocate resources for effective surveillance, prevention, and control of anthrax before it causes devastating effects on wildlife.


Subject(s)
Animals, Wild , Anthrax , Bacillus anthracis , Animals , Anthrax/epidemiology , Anthrax/veterinary , Anthrax/prevention & control , Bacillus anthracis/isolation & purification , Animals, Wild/microbiology , Ethiopia/epidemiology , Conservation of Natural Resources , Ecosystem
10.
FP Essent ; 541: 14-19, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896826

ABSTRACT

Bacterial skin infections represent a significant health care burden. Cellulitis and erysipelas are rapidly spreading, painful, superficial skin infections, usually caused by streptococci or Staphylococcus aureus. Folliculitis is an infection of hair follicles mostly caused by S aureus. Simple folliculitis typically is self-limited. Topical benzoyl peroxide is a first-line nonantibiotic treatment. Mupirocin and clindamycin are topical antibiotic options. For treatment-resistant cases, oral cephalexin or dicloxacillin is an appropriate option. Impetigo is a common, self-limited infection in children. Bullous impetigo is caused by S aureus, and nonbullous impetigo is caused by beta-hemolytic streptococci, S aureus, or both. In most cases, topical mupirocin or retapamulin (Altabax) is effective. Oral antibiotics should be considered for household outbreaks or patients with multiple lesions. Abscesses are red, painful collections of purulence in the dermis and deeper tissues caused by S aureus or polymicrobial infections. Furuncles are abscesses of a hair follicle, whereas carbuncles involve several hair follicles. In recurrent cases of these lesions, culture of the exudate is recommended. Abscess, furuncle, and carbuncle management consists of incision and drainage. Oral antibiotics are not necessary in most cases but should be prescribed for patients with severe immunocompromise or systemic signs of infection. In bacterial skin infections, methicillin-resistant S aureus coverage should be considered for patients with infections that have not improved with treatment.


Subject(s)
Anti-Bacterial Agents , Cellulitis , Impetigo , Skin Diseases, Bacterial , Humans , Child , Anti-Bacterial Agents/therapeutic use , Adolescent , Impetigo/diagnosis , Impetigo/drug therapy , Skin Diseases, Bacterial/diagnosis , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/microbiology , Skin Diseases, Bacterial/therapy , Cellulitis/diagnosis , Cellulitis/drug therapy , Cellulitis/microbiology , Cellulitis/therapy , Folliculitis/diagnosis , Folliculitis/drug therapy , Folliculitis/microbiology , Erysipelas/diagnosis , Erysipelas/drug therapy , Abscess/diagnosis , Abscess/therapy , Abscess/microbiology , Furunculosis/diagnosis , Furunculosis/drug therapy , Furunculosis/therapy , Furunculosis/microbiology , Carbuncle/diagnosis , Carbuncle/therapy
12.
Microbiol Spectr ; 12(8): e0378623, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38899864

ABSTRACT

The Gram-positive bacterium Bacillus anthracis is the causative agent of anthrax and a bioterrorism threat worldwide. As a crucial second messenger in many bacterial species, cyclic di-AMP (c-di-AMP) modulates various key processes for bacterial homeostasis and pathogenesis. Overaccumulation of c-di-AMP alters cellular growth and reduces anthrax toxin expression as well as virulence in Bacillus anthracis by unresolved underlying mechanisms. In this report, we discovered that c-di-AMP binds to a series of receptors involved in potassium uptake in B. anthracis. By analyzing Kdp and Ktr mutants for osmotic stress, gene expression, and anthrax toxin expression, we also showed that c-di-AMP inhibits Kdp operon expression through binding to the KdpD and ydaO riboswitch; up-regulating intracellular potassium promotes anthrax toxin expression in c-di-AMP accumulated B. anthracis. Decreased anthrax toxin expression at high c-di-AMP occurs through the inhibition of potassium uptake. Understanding the molecular basis of how potassium uptake affects anthrax toxin has the potential to provide new insight into the control of B. anthracis.IMPORTANCEThe bacterial second messenger cyclic di-AMP (c-di-AMP) is a conserved global regulator of potassium homeostasis. How c-di-AMP regulates bacterial virulence is unknown. With this study, we provide a link between potassium uptake and anthrax toxin expression in Bacillus anthracis. c-di-AMP accumulation might inhibit anthrax toxin expression by suppressing potassium uptake.


Subject(s)
Antigens, Bacterial , Bacillus anthracis , Bacterial Proteins , Bacterial Toxins , Dinucleoside Phosphates , Gene Expression Regulation, Bacterial , Potassium , Bacillus anthracis/metabolism , Bacillus anthracis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Potassium/metabolism , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Dinucleoside Phosphates/metabolism , Virulence/genetics , Down-Regulation , Anthrax/microbiology , Anthrax/metabolism , Riboswitch/genetics , Operon , Protein Kinases
13.
Clin Microbiol Infect ; 30(9): 1170-1175, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852852

ABSTRACT

OBJECTIVES: Bacillus anthracis clinical breakpoints, representing a systematic approach to guide clinicians in selecting the most appropriate antimicrobial treatments, are not part of the guidance from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). This is because defined distributions of MIC values and of epidemiological cut-off values (ECOFFs) have been lacking. In this study, a Europe-wide network of laboratories in collaboration with EUCAST, aimed at establishing standardized antimicrobial susceptibility testing methods, wild-type MIC distributions, and ECOFFs for ten therapeutically relevant antimicrobials. METHODS: About 335 B. anthracis isolates were tested by broth microdilution and disc diffusion methodologies. MIC and inhibition zone diameters were curated according to EUCAST SOP 10.2 and the results were submitted to EUCAST for ECOFFs and clinical breakpoint determination. RESULTS: Broth microdilution and disc diffusion data distributions revealed putative wild-type distributions for the tested agents. For each antimicrobial agent, ECOFFs were defined. Three highly resistant strains with MIC values of 32 mg/L benzylpenicillin were found. MIC values slightly above the defined ECOFFs were observed in a few isolates, indicating the presence of resistance mechanisms to doxycycline, tetracycline, and amoxicillin. DISCUSSION: B. anthracis antimicrobial susceptibility testing results were used by EUCAST to determine ECOFFs for ten antimicrobial agents. The MIC distributions were used in the process of determining clinical breakpoints. The ECOFFs can be used for the sensitive detection of isolates with resistance mechanisms, and for monitoring resistance development. Genetic changes causing phenotypic shifts in isolates displaying slightly elevated MICs remain to be investigated.


Subject(s)
Anti-Bacterial Agents , Bacillus anthracis , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Bacillus anthracis/drug effects , Bacillus anthracis/genetics , Bacillus anthracis/isolation & purification , Humans , Europe/epidemiology , Anthrax/microbiology , Anthrax/epidemiology , Drug Resistance, Bacterial
14.
Discov Med ; 36(184): 1030-1040, 2024 May.
Article in English | MEDLINE | ID: mdl-38798262

ABSTRACT

BACKGROUND: Since 2019, the incidence of anthrax in the Ningxia Hui Autonomous Region has increased significantly compared with previous years, so in this situation the anthrax in the Ningxia region not only had a detrimental impact on public health, but also inflicted significant economic repercussions. Therefore, we conducted a molecular epidemiological study of 20 strains from 2019-2023 isolates. This study investigated the origin of Bacillus anthracis and its genetic diversity. METHODS: We conducted canonical single-nucleotide polymorphisms (CanSNPs) typing and whole genome sequencing based on the extracted nucleic acid of Bacillus anthracis. Based on the whole genome drafts, we studied the genomic characteristics of 20 isolates. Meanwhile, we performed phylogenetic studies based on genome-wide core single-nucleotide polymorphisms (SNPs) using MEGA's Maximum Likelihood (ML) method and core-genome-based multilocus sequence typing (cgMLST) of the core genomes of these strains using BioNumerics' minimum spanning tree (MST) model. RESULTS: The 20 isolates were categorized into sub-lineages A.Br.001/002, and comparative genomic analyses of these strains with other isolates from other parts of the world showed that the strains from Ningxia were correlated with isolates from Europe, Indonesia, Georgia (USA), and Beijing (China). For the 20 isolates in Ningxia, the genetic relationship of the isolates isolated from the same year or region was relatively close. CONCLUSION: The A.Br.001/002 subgroup was the dominant endemic strain in Ningxia. The genetic relationship and phylogenesis between isolates from Ningxia and strains from Europe and Indonesia suggest that anthrax spread around the globe through ancient trade routes.


Subject(s)
Anthrax , Bacillus anthracis , Genome, Bacterial , Phylogeny , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/isolation & purification , Whole Genome Sequencing/methods , China/epidemiology , Anthrax/microbiology , Anthrax/epidemiology , Genome, Bacterial/genetics , Humans , Multilocus Sequence Typing/methods
15.
Geospat Health ; 19(1)2024 04 15.
Article in English | MEDLINE | ID: mdl-38619397

ABSTRACT

Anthrax, a widespread zoonosis in low and middle-income countries with low disease awareness and insufficient livestock vaccination coverage, has been known in Lao Cai Province in northern Vietnam for years before its apparent absence in 2009, which requires investigation as this infection is frequently reported from neighbouring provinces and countries. We aimed to describe the seasonal patterns of anthrax (1991-2008), compare livestock anthrax vaccine coverage to disease occurrence (1991- 2022), and delineate the high-risk areas to inform local disease surveillance in the province. We illustrated the seasonal pattern of anthrax and provided a comparison between livestock vaccine coverage and disease occurrence by purely spatial SaTScan (Poisson model, 25% population at risk) to detect spatial clusters of human and livestock anthrax using population derived from zonal statistics routines. The number of cases, crude cumulative incidence, and spatial clusters of human and livestock anthrax were mapped in QGIS. Results indicate peak anthrax incidence from May to October. Buffalo, domestic cattle, and horses accounted for 75% of total animal cases. Horse anthrax was more common in Lao Cai than in its neighbours and often occurred in years with human mortality. Vaccination covered less than 30% of the livestock population. We found an apparent pattern where anthrax was controlled from 1998-2003 with higher vaccine coverage (>20%) and identified spatial clusters of human and livestock anthrax in Muong Khuong, Bao Thang, and Bac Ha districts of Lao Cai. The local public health and veterinary agencies are recommended to revisit the high-risk areas and communicate with neighbouring provinces for a regional approach to anthrax surveillance and control.


Subject(s)
Anthrax , Vaccines , Humans , Cattle , Animals , Horses , Anthrax/epidemiology , Anthrax/veterinary , Livestock , Laos , Vietnam/epidemiology
16.
Microbiol Spectr ; 12(6): e0418023, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38666793

ABSTRACT

The high-consequence pathogen Bacillus anthracis causes human anthrax and often results in lethal infections without the rapid administration of effective antimicrobial treatment. Antimicrobial resistance profiling is therefore critical to inform post-exposure prophylaxis and treatment decisions, especially during emergencies such as outbreaks or where intentional release is suspected. Whole-genome sequencing using a rapid long-read sequencer can uncover antimicrobial resistance patterns if genetic markers of resistance are known. To identify genomic markers associated with antimicrobial resistance, we isolated B. anthracis derived from the avirulent Sterne strain with elevated minimal inhibitory concentrations to clarithromycin. Mutants were characterized both phenotypically through broth microdilution susceptibility testing and observations during culturing, as well as genotypically with whole-genome sequencing. We identified two different in-frame insertions in the L22 ribosomal protein-encoding gene rplV, which were subsequently confirmed to be involved in clarithromycin resistance through the reversion of the mutant gene to the parent (drug-susceptible) sequence. Detection of the rplV insertions was possible with rapid long-read sequencing, with a time-to-answer within 3 h. The mutations associated with clarithromycin resistance described here will be used in conjunction with known genetic markers of resistance for other antimicrobials to strengthen the prediction of antimicrobial resistance in B. anthracis.IMPORTANCEThe disease anthrax, caused by the pathogen Bacillus anthracis, is extremely deadly if not treated quickly and appropriately. Clarithromycin is an antibiotic recommended for the treatment and post-exposure prophylaxis of anthrax by the Centers for Disease Control and Prevention; however, little is known about the ability of B. anthracis to develop resistance to clarithromycin or the mechanism of that resistance. The characterization of clarithromycin-resistant isolates presented here provides valuable information for researchers and clinicians in the event of a release of the resistant strain. Additionally, knowledge of the genetic basis of resistance provides a foundation for susceptibility prediction through rapid genome sequencing to inform timely treatment decisions.


Subject(s)
Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Clarithromycin , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/drug effects , Clarithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Anthrax/microbiology , Humans , Mutation , Bacterial Proteins/genetics , Ribosomal Proteins/genetics , Genome, Bacterial/genetics
17.
Food Chem ; 451: 139410, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670024

ABSTRACT

Dipicolinic acid (DPA), as a biomarker for Bacillus anthracis, is highly toxic at trace levels. Rapid and on-site quantitative detection of DPA is essential for maintaining food safety and public health. This work develops a dual-channel self-calibrated fluorescence sensor constructed by the YVO4:Eu and Tb-ß-diketone complex for rapid visual detection of DPA. This sensor exhibits high selectivity, fast response time, excellent detection sensitivity, and the detection limit is as low as 4.5 nM in the linear range of 0-16 µM. A smartphone APP and portable ultraviolet lamp can assemble a mobile fluorescence sensor for on-site analysis. Interestingly, adding Cu2+ ions can quench the fluorescence intensity of Tb3+. In contrast, the addition of cysteine can restore the fluorescence, allowing the accurate detection of Cu2+ ions and cysteine in environmental water and food samples. This work provides a portable sensor that facilitates real-time analysis of multiple targets in food and the environment.


Subject(s)
Anthrax , Bacillus anthracis , Biomarkers , Copper , Cysteine , Food Analysis , Food Contamination , Picolinic Acids , Smartphone , Copper/analysis , Cysteine/analysis , Bacillus anthracis/isolation & purification , Bacillus anthracis/chemistry , Biomarkers/analysis , Food Contamination/analysis , Anthrax/diagnosis , Food Analysis/instrumentation , Food Analysis/methods , Picolinic Acids/analysis , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Limit of Detection , Fluorescence , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
18.
Anal Methods ; 16(16): 2606-2613, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38618990

ABSTRACT

2,6-Pyridinedicarboxylic acid (DPA) is a significant biomarker of anthrax, which is a deadly infectious disease for human beings. However, the development of a convenient anthrax detection method is still a challenge. Herein, we report a novel europium metal-organic framework (Eu-MOF) with an enhanced peroxidase-like activity and fluorescence property for DPA detection. The Eu-MOF was one-step synthesized using Eu3+ ions and 2-methylimidazole. In the presence of DPA, the intrinsic fluorescence of Eu3+ ions is sensitized, the fluorescence intensity linearly increases with an increase in DPA concentration, and the fluorescence color changes from blue to purple. Simultaneously, the peroxide-like activity of the Eu-MOF is enhanced by DPA, which can promote the oxidation of TMB to oxTMB. The absorbance values increase linearly with DPA concentrations, and the colorimetric images change from colorless to blue. The dual-mode detection of DPA has good sensitivity with a colorimetric detection limit of 0.67 µM and a fluorescent detection limit of 16.67 nM. Moreover, a simple detection method for DPA was developed using a smartphone with the RGB analysis system. A portable kit with standard color cards was developed using paper test strips. The proposed methods have good practicability for DPA detection in real samples. In conclusion, the developed Eu-MOF biosensor offers a valuable and general platform for anthrax diagnosis.


Subject(s)
Colorimetry , Europium , Metal-Organic Frameworks , Picolinic Acids , Europium/chemistry , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Picolinic Acids/analysis , Picolinic Acids/chemistry , Limit of Detection , Humans , Fluorescence , Anthrax/diagnosis , Smartphone , Spectrometry, Fluorescence/methods , Peroxidase/chemistry , Peroxidase/metabolism
19.
Genes (Basel) ; 15(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38674361

ABSTRACT

Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin Receptor-2 (ANTXR2) gene acts as membrane receptor and facilitates the entry of the anthrax toxin into host cells. Additionally, mutations in the ANTXR2 gene have been linked to various autoimmune diseases, including Hyaline Fibromatosis Syndrome (HFS), Ankylosing Spondylitis (AS), Juvenile Hyaline Fibromatosis (JHF), and Infantile Systemic Hyalinosis (ISH). This study delves into the genetic landscape of ANTXR2, aiming to comprehend its associations with diverse disorders, elucidate the impacts of its mutations, and pinpoint minimal non-pathogenic mutations capable of reducing the binding affinity of the ANTXR2 gene with the protective antigen. Recognizing the pivotal role of single-nucleotide polymorphisms (SNPs) in shaping genetic diversity, we conducted computational analyses to discern highly deleterious and tolerated non-synonymous SNPs (nsSNPs) in the ANTXR2 gene. The Mutpred2 server determined that the Arg465Trp alteration in the ANTXR2 gene leads to altered DNA binding (p = 0.22) with a probability of a deleterious mutation of 0.808; notably, among the identified deleterious SNPs, rs368288611 (Arg465Trp) stands out due to its significant impact on altering the DNA-binding ability of ANTXR2. We propose these SNPs as potential candidates for hypertension linked to the ANTXR2 gene, which is implicated in blood pressure regulation. Noteworthy among the tolerated substitutions is rs200536829 (Ala33Ser), recognized as less pathogenic; this highlights its potential as a valuable biomarker, potentially reducing side effects on the host while also reducing binding with the protective antigen protein. Investigating these SNPs holds the potential to correlate with several autoimmune disorders and mitigate the impact of anthrax disease in humans.


Subject(s)
Anthrax , Antigens, Bacterial , Mutation , Polymorphism, Single Nucleotide , Receptors, Peptide , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Humans , Anthrax/microbiology , Anthrax/genetics , Anthrax/immunology , Receptors, Peptide/genetics , Bacterial Toxins/genetics , Bacillus anthracis/genetics , Bacillus anthracis/pathogenicity , Hyaline Fibromatosis Syndrome/genetics , Hyaline Fibromatosis Syndrome/microbiology , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/microbiology , Disease Resistance/genetics , Receptors, Cell Surface/genetics , Protein Binding
20.
PLoS Negl Trop Dis ; 18(4): e0012067, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574113

ABSTRACT

BACKGROUND: Anthrax and brucellosis are endemic national priority zoonotic diseases in Ethiopia. This study assess the possible factors explaining the current limited information available on animal and human cases in pastoral communities. METHODS: Two questionnaire surveys gathered data from 509 pastoralists and 51 healthcare providers between February and April 2019 in five districts of Afar and the Somali region (SRS). RESULTS: Among the 51 healthcare providers, 25 (49%) and 38 (74.5%) had heard of brucellosis, and anthrax, respectively. Of those, only 3 (12%) and 14 (36.8%) knew the symptoms of brucellosis and Anthrax. None of the Health Extension Workers knew any disease symptoms. Healthcare providers recalled two human cases of brucellosis and 39 cases of Anthrax in the last 12 months, based on symptom-based diagnosis. Pastoralists had a moderate level of knowledge about diseases in their animals, with over half (52.4%; n = 267/509) understanding that animals can transmit diseases to people. Overall, 280 out of 508 (55.1%) and 333 out of 507 (65.7%) pastoralists had heard of brucellosis and Anthrax, respectively. Among the latter, 282 (51.3%) knew at least one preventive measure for Anthrax. However, disease knowledge among women was poor. Despite their knowledge, pastoralists engaged in risky unprotected animal handling, animal product consumption/usage as well as husbandry behaviors exposing them to pathogens and favoring the spread of diseases. They identified Anthrax as the most important zoonosis (47.6%) and as one of top three diseases suspected to cause mortality in their livestock. Pastoralists highlighted lack of vaccine coverage, availability and their timely administration. Both, pastoralists and healthcare providers stated the lack of disease awareness and the unavailability of drugs in the market as important challenges. Health facilities lacked protocols and standard operating procedures for managing zoonotic diseases, and did not have access to laboratory confirmation of pathogens. CONCLUSION: Our study revealed significant under-reporting of Anthrax and brucellosis, and weak prevention and response in humans, mostly associated with poor disease knowledge of healthcare providers. Ability to respond to animal outbreaks was limited by vaccine and drugs availability, timely vaccine administration and the mobility of pastoralists.


Subject(s)
Anthrax , Brucellosis , Vaccines , Animals , Humans , Female , Anthrax/epidemiology , Anthrax/prevention & control , Ethiopia/epidemiology , Somalia/epidemiology , Health Knowledge, Attitudes, Practice , Zoonoses/epidemiology , Zoonoses/prevention & control , Brucellosis/epidemiology , Brucellosis/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL