Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
1.
ACS Chem Biol ; 19(9): 2002-2011, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39207862

ABSTRACT

Aminoglycosides are essential antibiotics used to treat severe infections caused mainly by Gram-negative bacteria. Gentamicin is an aminoglycoside and, despite its toxicity, is clinically used to treat several pulmonary and urinary infections. The commercial form of gentamicin is a mixture of five compounds with minor differences in the methylation of one of their aminosugars. In the case of two compounds, gentamicin C2 and C2a, the only difference is the stereochemistry of the methyl group attached to C-6'. GenB2 is the enzyme responsible for this epimerization and is one of the four PLP-dependent enzymes encoded by the gentamicin biosynthetic gene cluster. Herein, we have determined the structure of GenB2 in its holo form in complex with PMP and also in the ternary complex with gentamicin X2 and G418, two substrate analogues. Based on the structural analysis, we were able to identify the structural basis for the catalytic mechanism of this enzyme, which was also studied by site-directed mutagenesis. Unprecedently, GenB2 is a PLP-dependent enzyme from fold I, which is able to catalyze an epimerization but with a mechanism distinct from that of fold III PLP-dependent epimerases using a cysteine residue near the N-terminus. The substitution of this cysteine residue for serine or alanine completely abolished the epimerase function of the enzyme, confirming its involvement. This study not only contributes to the understanding of the enzymology of gentamicin biosynthesis but also provides valuable details for exploring the enzymatic production of new aminoglycoside derivatives.


Subject(s)
Gentamicins , Gentamicins/metabolism , Gentamicins/biosynthesis , Gentamicins/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Racemases and Epimerases/metabolism , Racemases and Epimerases/genetics , Racemases and Epimerases/chemistry , Models, Molecular , Crystallography, X-Ray , Mutagenesis, Site-Directed , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
2.
Appl Microbiol Biotechnol ; 108(1): 306, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656376

ABSTRACT

The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: • GarR/GarS is a TCS with domains for signal transduction and response regulation • GarR/GarS is an essential negative regulator of the ACT and RED production • GarR/GarS putatively interacts with and regulates activators of ACT and RED.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Streptomyces coelicolor , Anthraquinones/metabolism , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzoisochromanequinones , Catabolite Repression , Glucose/metabolism , Prodigiosin/analogs & derivatives , Prodigiosin/biosynthesis , Prodigiosin/metabolism , Secondary Metabolism/genetics , Streptomyces coelicolor/metabolism , Streptomyces coelicolor/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Extremophiles ; 28(2): 21, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532228

ABSTRACT

Antarctica harbors a microbial diversity still poorly explored and of inestimable biotechnological value. Cold-adapted microorganisms can produce a diverse range of metabolites stable at low temperatures, making these compounds industrially interesting for biotechnological use. The present work investigated the biotechnological potential for antimicrobial and antitumor activity of filamentous fungi and bacteria isolated from marine sediment samples collected at Deception Island, Antarctica. A total of 89 microbial isolates were recovered from marine sediments and submitted to an initial screening for L-glutaminase with antitumoral activity and for antimicrobial metabolites. The isolates Pseudogymnoascus sp. FDG01, Pseudogymnoascus sp. FDG02, and Penicillium sp. FAD33 showed potential antiproliferative action against human pancreatic carcinoma cells while showing no toxic effect on non-tumor cells. The microbial extracts from unidentified three bacteria and four filamentous fungi showed antibacterial activity against at least one tested pathogenic bacterial strain. The isolate FDG01 inhibited four bacterial species, while the isolate FDG01 was active against Micrococcus luteus in the minimal inhibitory concentration of 0.015625 µg mL -1. The results pave the way for further optimization of enzyme production and characterization of enzymes and metabolites found and reaffirm Antarctic marine environments as a wealthy source of compounds potentially applicable in the healthcare and pharmaceutical industry.


Subject(s)
Ascomycota , Fungi , Humans , Antarctic Regions , Ascomycota/metabolism , Geologic Sediments/microbiology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Pharmaceutical Preparations/metabolism
4.
Appl Environ Microbiol ; 90(3): e0179123, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38334306

ABSTRACT

Control measures are being introduced globally to reduce the prevalence of antibiotic resistance (ABR) in bacteria on farms. However, little is known about the current prevalence and molecular ecology of ABR in bacterial species with the potential to be key opportunistic human pathogens, such as Escherichia coli, on South American farms. Working with 30 dairy cattle farms and 40 pig farms across two provinces in central-eastern Argentina, we report a comprehensive genomic analysis of third-generation cephalosporin-resistant (3GC-R) E. coli, which were recovered from 34.8% (cattle) and 47.8% (pigs) of samples from fecally contaminated sites. Phylogenetic analysis revealed substantial diversity suggestive of long-term horizontal and vertical transmission of 3GC-R mechanisms. CTX-M-15 and CTX-M-2 were more often produced by isolates from dairy farms, while CTX-M-8 and CMY-2 and co-carriage of amoxicillin/clavulanate resistance and florfenicol resistance were more common in isolates from pig farms. This suggests different selective pressures for antibiotic use in these two animal types. We identified the ß-lactamase gene blaROB, which has previously only been reported in the family Pasteurellaceae, in 3GC-R E. coli. blaROB was found alongside a novel florfenicol resistance gene, ydhC, also mobilized from a pig pathogen as part of a new composite transposon. As the first comprehensive genomic survey of 3GC-R E. coli in Argentina, these data set a baseline from which to measure the effects of interventions aimed at reducing on-farm ABR and provide an opportunity to investigate the zoonotic transmission of resistant bacteria in this region. IMPORTANCE: Little is known about the ecology of critically important antibiotic resistance among bacteria with the potential to be opportunistic human pathogens (e.g., Escherichia coli) on South American farms. By studying 70 pig and dairy cattle farms in central-eastern Argentina, we identified that third-generation cephalosporin resistance (3GC-R) in E. coli was mediated by mechanisms seen more often in certain species and that 3GC-R pig E. coli were more likely to be co-resistant to florfenicol and amoxicillin/clavulanate. This suggests that on-farm antibiotic usage is key to selecting the types of E. coli present on these farms. 3GC-R E. coli and 3GC-R plasmids were diverse, suggestive of long-term circulation in this region. We identified the de novo mobilization of the resistance gene blaROB from pig pathogens into E. coli on a novel mobile genetic element, which shows the importance of surveying poorly studied regions for antibiotic resistance that might impact human health.


Subject(s)
Escherichia coli Infections , Escherichia coli , Thiamphenicol/analogs & derivatives , Animals , Humans , Swine , Cattle , Escherichia coli/metabolism , Farms , Cephalosporins/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Phylogeny , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Genomics , Amoxicillin , Clavulanic Acid
5.
Braz J Microbiol ; 55(2): 1529-1543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38340257

ABSTRACT

Multiple copper oxidase (MCO) like laccase is widely distributed in higher plant, fungi and bacteria. This study identified MCO like laccase producing bacterium isolated from a wastewater treatment plant based on 16S rRNA sequence analysis, and they were further confirmed by phylogenetic reconstruction. Biochemical and gene characterization of MCO like laccase from Stenotrophomonas sp. YBX1 is presented. Purification of MCO like laccase was carried out by ion exchange HQ Trap column and followed by gel filtration spheracryl S-100 column. The purified MCO like laccase from Stenotrophomonas sp. YBX1 shows a total activity of 1252 units and specific activity 391.2 U/mg and protein concentration 0.32 mg/mL. In SDS PAGE, the approximate molecular mass was found at 66 kDa and further confirmed from an MS spectrum of MALDI-TOF. The purified MCO like laccase is capable of degradation of antibiotics such as tetracycline completely, whereas oxytetracycline (78%) and ampicillin (62%) degraded within 96 min without any redox mediators at pH 5 and 30 ºC. Its degradation pathway was based on identification of metabolites by LC-MS spectrum. The enzymatic degradation may be used in advanced treatment of antibiotics containing wastewater.


Subject(s)
Ampicillin , Anti-Bacterial Agents , Laccase , Oxytetracycline , Phylogeny , Stenotrophomonas , Tetracycline , Laccase/metabolism , Laccase/genetics , Laccase/chemistry , Laccase/isolation & purification , Anti-Bacterial Agents/metabolism , Oxytetracycline/metabolism , Ampicillin/metabolism , Tetracycline/metabolism , Stenotrophomonas/genetics , Stenotrophomonas/metabolism , Stenotrophomonas/enzymology , Stenotrophomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Wastewater/microbiology , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry , Biodegradation, Environmental
6.
EMBO Rep ; 25(3): 1436-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332152

ABSTRACT

Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.


Subject(s)
Bacterial Proteins , Xanthomonas , Humans , Bacterial Proteins/metabolism , Xanthomonas/metabolism , Type IV Secretion Systems/metabolism , Anti-Bacterial Agents/metabolism
7.
Braz J Microbiol ; 55(1): 699-710, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253975

ABSTRACT

Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Weissella , Humans , Weissella/genetics , Weissella/metabolism , Brazil , Caco-2 Cells , Farms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Inflammation
8.
Braz J Microbiol ; 55(1): 179-190, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030865

ABSTRACT

Actinobacteria that are found in nature have enormous promise for the growth of the pharmaceutical sector. There is a scarce report on the antimicrobial activities of endophytic Actinobacteria from Nigeria. As a result, this study evaluated the Actinobacteria isolated from Nigerian medicinal plants in terms of their biodiversity, phylogenetics, and ability to produce antimicrobial compounds. Following accepted practices, Actinobacteria were isolated from the surface-sterilized plant parts. They were identified using 16S rRNA sequencing, microscopic, and morphological methods. The cell-free broth of Actinobacteria isolates was subjected to antimicrobial assay by agar well diffusion. Molecular evolutionary and genetic analysis (MEGA) version X was used for phylogenetic analysis, and the interactive tree of life (iTOL) version 6.0 was used to view the neighbour-joining method-drawn tree. A total of 13 Actinobacteria were recovered, belonging to three genera including 10 strains of Streptomyces, 2 strains of Saccharomonospora, and only 1 strain of Saccharopolyspora. They showed inhibitory activity against several bacterial pathogens. The phylogenetic tree generated from the sequences showed that our isolates are divergent and distinct from other closely related strains on the database. Further, optimization of the antibiotic production by selected Saccharomonospora sp. PNSac2 was conducted. It showed that the optimal conditions were the ISP2 medium (1-2% w/v salt) adjusted to pH of 8 at 30-32℃ for 12-14 days. In conclusion, endophytic Actinobacteria dwelling in Nigerian soils could be a promising source of new antibiotics. Future research is warranted because more genomic analysis and characterization of their metabolites could lead to the development of new antibacterial medicines.


Subject(s)
Actinobacteria , Anti-Infective Agents , Plants, Medicinal , Streptomyces , Phylogeny , Endophytes , RNA, Ribosomal, 16S/genetics , Nigeria , Anti-Infective Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Streptomyces/genetics
9.
Nat Prod Res ; 38(6): 978-985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37154616

ABSTRACT

Investigation of the endophytic fungi Nigrospora sphaerica, Nigrospora oryzae, and Pseudofusicoccum stromaticum MeOH fractions isolated from the leaves of Vochysia divergens, a medicinal species from the Brazilian Pantanal, led to the identification of five compounds, namely a new compound (1E,8Z)-10,11-dihydroxy-5,5,8-trimethyl-4-oxocycloundeca-1,8-diene-1-carbaldehyde (1) and four known compounds: 5-methylmellein (2), sclerone (3), daldinone A (4), and lasiodiplodin (5). All compounds were identified using spectroscopic methods, and 1 was corroborated with mass spectrometry, while the known compounds were compared with data in the literature. The relative configuration of compound 1 was determined based on theoretical conformational studies as well as the J experimental values between the hydroxymethyne hydrogens. The antimicrobial activity of the compounds was evaluated. Promising results were obtained for compounds 2, 4, and 5 since they inhibited the bacterium Pseudomonas aeruginosa, an opportunistic pathogen, suggesting the potential of these microorganisms as a source of new antibacterial agents.


Subject(s)
Anti-Infective Agents , Anti-Infective Agents/chemistry , Fungi/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Leaves/microbiology , Brazil , Endophytes/metabolism
10.
J Appl Microbiol ; 135(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38126104

ABSTRACT

AIM: To assess the effectiveness of Bacillus subtilis strain LN8B as a biocollector for recovering pyrite (Py) and chalcopyrite (CPy) in both seawater (Sw) and deionized water (Dw), and to explore the underlying adhesion mechanism in these bioflotation experiments. MATERIALS AND METHODS: The bioflotation test utilized B. subtilis strain LN8B as the biocollector through microflotation experiments. Additionally, frother methyl isobutyl carbinol (MIBC) and conventional collector potassium amyl xanthate (PAX) were introduced in some experiments. The zeta potential (ZP) and Fourier-transform infrared spectroscopy (FTIR) was employed to explore the adhesion mechanism of Py and CPy interacting with the biocollector in Sw and Dw. The adaptability of the B. subtilis strain to different water types and salinities was assessed through growth curves measuring optical density. Finally, antibiotic susceptibility tests were conducted to evaluate potential risks of the biocollector. RESULTS: Superior outcomes were observed in Sw where Py and CPy recovery was ∼39.3% ± 7.7% and 41.1% ± 5.8%, respectively, without microorganisms' presence. However, B. subtilis LN8B potentiate Py and CPy recovery, reaching 72.8% ± 4.9% and 84.6% ± 1.5%, respectively. When MIBC was added, only the Py recovery was improved (89.4% ± 3.6%), depicting an adverse effect for CPy (81.8% ± 1.1%). ZP measurements indicated increased mineral surface hydrophobicity when Py and CPy interacted with the biocollector in both Sw and Dw. FTIR revealed the presence of protein-related amide peaks, highlighting the hydrophobic nature of the bacterium. The adaptability of this strain to diverse water types and salinities was assessed, demonstrating remarkable growth versatility. Antibiotic susceptibility tests indicated that B. subtilis LN8B was susceptible to 23 of the 25 antibiotics examined, suggesting it poses minimal environmental risks. CONCLUSIONS: The study substantiates the biotechnological promise of B. subtilis strain LN8B as an efficient sulfide collector for promoting cleaner mineral production. This effectiveness is attributed to its ability to induce mineral surface hydrophobicity, a result of the distinct characteristics of proteins within its cell wall.


Subject(s)
Bacillus subtilis , Copper , Iron , Minerals , Bacillus subtilis/metabolism , Seawater , Sulfides/pharmacology , Sulfides/metabolism , Water/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
11.
Sci Rep ; 13(1): 22168, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092837

ABSTRACT

Bacillus sp. MEP218, a soil bacterium with high potential as a source of bioactive molecules, produces mostly C16-C17 fengycin and other cyclic lipopeptides (CLP) when growing under previously optimized culture conditions. This work addressed the elucidation of the genome sequence of MEP218 and its taxonomic classification. The genome comprises 3,944,892 bp, with a total of 3474 coding sequences and a G + C content of 46.59%. Our phylogenetic analysis to determine the taxonomic position demonstrated that the assignment of the MEP218 strain to Bacillus velezensis species provides insights into its evolutionary context and potential functional attributes. The in silico genome analysis revealed eleven gene clusters involved in the synthesis of secondary metabolites, including non-ribosomal CLP (fengycins and surfactin), polyketides, terpenes, and bacteriocins. Furthermore, genes encoding phytase, involved in the release of phytic phosphate for plant and animal nutrition, or other enzymes such as cellulase, xylanase, and alpha 1-4 glucanase were detected. In vitro antagonistic assays against Salmonella typhimurium, Acinetobacter baumanii, Escherichia coli, among others, demonstrated a broad spectrum of C16-C17 fengycin produced by MEP218. MEP218 genome sequence analysis expanded our understanding of the diversity and genetic relationships within the Bacillus genus and updated the Bacillus databases with its unique trait to produce antibacterial fengycins and its potential as a resource of biotechnologically useful enzymes.


Subject(s)
Bacillus , Genome, Bacterial , Phylogeny , Bacillus/genetics , Bacillus/metabolism , Lipopeptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
12.
Arch Microbiol ; 205(11): 354, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828121

ABSTRACT

The urgent need for new antimicrobials arises from antimicrobial resistance. Actinobacteria, especially Streptomyces genus, are responsible for production of numerous clinical antibiotics and anticancer agents. Genome mining reveals the biosynthetic gene clusters (BGCs) related to secondary metabolites and the genetic potential of a strain to produce natural products. However, this potential may not be expressed under laboratory conditions. In the present study, the Antarctic bacterium was taxonomically affiliated as Streptomyces albidoflavus ANT_B131 (CBMAI 1855). The crude extracts showed antimicrobial activity against both fungi, Gram-positive and Gram-negative bacteria and antiproliferative activity against five human tumor cell lines. Whole-genome sequencing reveals a genome size of 6.96 Mb, and the genome mining identified 24 BGCs, representing 13.3% of the genome. The use of three culture media and three extraction methods reveals the expression and recovery of 20.8% of the BGCs. The natural products identified included compounds, such as surugamide A, surugamide D, desferrioxamine B + Al, desferrioxamine E, and ectoine. This study reveals the potential of S. albidoflavus ANT_B131 as a natural product producer. Yet, the diversity of culture media and extraction methods could enhance the BGCs expression and recovery of natural products, and could be a strategy to intensify the BGC expression of natural products.


Subject(s)
Anti-Infective Agents , Biological Products , Streptomyces , Humans , Anti-Bacterial Agents/metabolism , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/genetics , Anti-Infective Agents/metabolism , Biological Products/pharmacology , Biological Products/metabolism , Culture Media/metabolism , Multigene Family
13.
Sci Rep ; 13(1): 17394, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833301

ABSTRACT

The NorA efflux pump of Staphylococcus aureus is known to play a major role in the development of resistance against quinolone drugs by reducing their concentration inside target pathogens. The objective of this study was to evaluate the ability of tannic acid to inhibit the gene expression of the NorA efflux pump in Staphylococcus aureus and to evaluate the in silico effect on the pump. Efflux pump inhibition was evaluated by fluorimetry. The checkerboard method evaluates the effect of the test substance in combination with an antimicrobial at different concentrations. To gene expression evaluation NorA the assay was performed using: a sub-inhibitory concentration preparation (MIC/4) of the antibiotic; a sub-inhibitory concentration preparation (MIC/4) of the antibiotic associated with tannic acid at a sub-inhibitory concentration (MIC/4). In this study, docking simulations were performed by the SWISSDOCK webserver. The ability of tannic acid to inhibit the NorA efflux pump can be related to both the ability to inhibit the gene expression of this protein, acting on signaling pathways involving the ArlRS membrane sensor. As well as acting directly through direct interaction with the NorA protein, as seen in the approach and in silico and in vitro per checkerboard method and fluorimetry of bromide accumulated in the cell.


Subject(s)
Ciprofloxacin , Staphylococcal Infections , Humans , Ciprofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Staphylococcus aureus , Tannins/pharmacology , Tannins/metabolism , Gene Expression , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Microbial Sensitivity Tests
14.
Analyst ; 148(22): 5762-5774, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37843562

ABSTRACT

Bacteria with antagonistic activity inhibit the growth of other bacteria through different mechanisms, including the production of antibiotics. As a result, these microorganisms are a prolific source of such compounds. However, searching for antibiotic-producing strains requires high-throughput techniques due to the vast diversity of microorganisms. Here, we screened and isolated bacteria with antagonistic activity against Escherichia coli expressing the green fluorescent protein (E. coli-GFP). We used microfluidics to co-encapsulate and co-culture single cells from different strains within picoliter gel beads and analyzed them using fluorescence-activated cell sorting (FACS). To test the methodology, we used three bacterial isolates obtained from Mexican maize, which exhibit high, moderate, or no antagonistic activity against E. coli-GFP, as determined previously using agar plate assays. Single cells from each strain were separately co-incubated into gel beads with E. coli-GFP. We monitored the development of the maize bacteria microcolonies and tracked the growth or inhibition of E. coli-GFP using bright-field and fluorescent microscopy. We correlated these images with distinctive light scatter and fluorescence signatures of each incubated bead type using FACS. This analysis enabled us to sort gel beads filled with an antagonistic strain, starting from a mixture of the three different types of maize bacteria and E. coli-GFP. Likewise, culturing the FACS-sorted beads on agar plates confirmed the isolation and recovery of the two antagonistic strains. In addition, enrichment assays demonstrated the methodology's effectiveness in isolating rare antibiotic-producer strains (0.01% abundance) present in a mixture of microorganisms. These results show that associating light side scatter and fluorescent flow cytometry signals with microscopy images provides valuable controls to establish successful high-throughput methods for sorting beads in which microbial interaction assays are performed.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Microfluidics , Agar/metabolism , Bacteria , Flow Cytometry/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
15.
Curr Opin Microbiol ; 76: 102385, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804816

ABSTRACT

Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.


Subject(s)
Actinobacteria , Streptomyces , Actinobacteria/genetics , Actinobacteria/metabolism , Actinomyces , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Streptomyces/genetics , Biodiversity
16.
BMC Genomics ; 24(1): 622, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858045

ABSTRACT

Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.


Subject(s)
Brevibacterium , Brevibacterium/genetics , Brevibacterium/metabolism , Ecosystem , Genomics , Phylogeny , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Multigene Family , Phenazines
17.
NPJ Biofilms Microbiomes ; 9(1): 81, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857690

ABSTRACT

The propensity of bacteria to grow collectively in communities known as biofilms and their ability to overcome clinical treatments in this condition has become a major medical problem, emphasizing the need for anti-biofilm strategies. Antagonistic microbial interactions have extensively served as searching platforms for antibiotics, but their potential as sources for anti-biofilm compounds has barely been exploited. By screening for microorganisms that in agar-set pairwise interactions could antagonize Escherichia coli's ability to form macrocolony biofilms, we found that the soil bacterium Bacillus subtilis strongly inhibits the synthesis of amyloid fibers -known as curli-, which are the primary extracellular matrix (ECM) components of E. coli biofilms. We identified bacillaene, a B. subtilis hybrid non-ribosomal peptide/polyketide metabolite, previously described as a bacteriostatic antibiotic, as the effector molecule. We found that bacillaene combines both antibiotic and anti-curli functions in a concentration-dependent order that potentiates the ecological competitiveness of B. subtilis, highlighting bacillaene as a metabolite naturally optimized for microbial inhibition. Our studies revealed that bacillaene inhibits curli by directly impeding the assembly of the CsgB and CsgA curli subunits into amyloid fibers. Moreover, we found that curli inhibition occurs despite E. coli attempts to reinforce its protective ECM by inducing curli genes via a RpoS-mediated competition sensing response trigged by the threatening presence of B. subtilis. Overall, our findings illustrate the relevance of exploring microbial interactions not only for finding compounds with unknown and unique activities, but for uncovering additional functions of compounds previously categorized as antibiotics.


Subject(s)
Biofilms , Escherichia coli , Escherichia coli/physiology , Polyenes/metabolism , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Bacteria/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
18.
Braz J Microbiol ; 54(4): 2651-2661, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37642890

ABSTRACT

Endophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.


Subject(s)
Coffea , Colletotrichum , Coffea/microbiology , Coffee/metabolism , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Endophytes
19.
J Appl Microbiol ; 134(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37353927

ABSTRACT

AIMS: This study aims to characterize the virulence factors of Streptococcus agalactiae strains isolated from bovine mastitis and their potential association with the antibiotic treatment response. METHODS AND RESULTS: Four different profiles were identified among the 181 S. agalactiae strains using polymerase chain reaction, of which hyl B and cylE were found in 100% of the isolated strains, followed by cfb (99.5%), scpB (40.3%), and lmb (15.5%). The cell invasion assay showed that lmb-positive strains exhibited higher invasion ability than lmb-negative. There was a significant association (P = 0.018) between lmb gene and cows that required more than one treatment cycle. CONCLUSIONS: These results showed that intramammary infections caused by lmb-carrier S. agalactiae strains did not adequately respond to the antibiotics administered, likely because of the presence of this virulence factor, which potentially favours the cell invasion capacity of these strains.


Subject(s)
Mastitis, Bovine , Streptococcal Infections , Female , Animals , Cattle , Streptococcus agalactiae/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Mastitis, Bovine/drug therapy , Streptococcal Infections/drug therapy , Streptococcal Infections/veterinary , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/metabolism
20.
J Bacteriol ; 205(7): e0015323, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37347176

ABSTRACT

Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.


Subject(s)
Streptomyces coelicolor , Streptomyces , Anti-Bacterial Agents/metabolism , Streptomyces coelicolor/genetics , Streptomyces/metabolism , Bacterial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL