Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.967
Filter
1.
Sci Transl Med ; 16(754): eadl3848, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959329

ABSTRACT

Autoantibodies to nuclear antigens are hallmarks of systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to this autoimmune disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second-most prevalent isotype in serum and, along with IgG, is deposited in glomeruli in individuals with lupus nephritis. We show that individuals with SLE have serum IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoprotein (Sm/RNP), played a role in IC activation of pDCs. We found that pDCs expressed the IgA-specific Fc receptor, FcαR, and IgA1 autoantibodies synergized with IgG in RNA-containing ICs to generate robust primary blood pDC IFN-α responses in vitro. pDC responses to these ICs required both FcαR and FcγRIIa, showing synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. Circulating pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Although pDC FcαR expression correlated with the blood IFN-stimulated gene signature in SLE, Toll-like receptor 7 agonists, but not IFN-α, up-regulated pDC FcαR expression in vitro. Together, we show a mechanism by which IgA1 autoantibodies contribute to SLE pathogenesis.


Subject(s)
Antigen-Antibody Complex , Autoantibodies , Dendritic Cells , Immunoglobulin A , Immunoglobulin G , Lupus Erythematosus, Systemic , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin A/blood , Autoantibodies/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/blood , RNA/metabolism , Female , Interferon-alpha/metabolism , Adult , Receptors, Fc/metabolism , Receptors, Fc/immunology , Toll-Like Receptor 7/metabolism , Male , Receptors, IgG/metabolism
2.
Immunohorizons ; 8(6): 457-463, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38922287

ABSTRACT

The underlying contribution of immune complexes in modulating adaptive immunity in mucosal tissues remains poorly understood. In this report, we examined, in mice, the proinflammatory response elicited by intranasal delivery of the biothreat agent ricin toxin (RT) in association with two toxin-neutralizing mAbs, SylH3 and PB10. We previously demonstrated that ricin-immune complexes (RICs) induce the rapid onset of high-titer toxin-neutralizing Abs that persist for months. We now demonstrate that such responses are dependent on CD4+ T cell help, because treatment of mice with an anti-CD4 mAb abrogated the onset of RT-specific Abs following intranasal RICs exposure. To define the inflammatory environment associated with RIC exposure, we collected bronchoalveolar lavage fluid (BALF) and sera from mice 6, 12, and 18 h after they had received RT or RICs by the intranasal route. A 32-plex cytometric bead array revealed an inflammatory profile elicited by RT that was dominated by IL-6 (>1500-fold increase in BALF) and secondarily by KC (CXCL1), G-CSF, GM-CSF, and MCP-1. RICs induced inflammatory profiles in both BALF and serum response that were similar to RT, albeit at markedly reduced levels. These results demonstrate that RICs retain the capacity to induce local and systemic inflammatory cytokines/chemokines that, in turn, may influence Ag sampling and presentation in the lung mucosa and draining lymph nodes. A better understanding of the fate of immune complexes following intranasal delivery has implications for the development of mucosal vaccines for biothreats and emerging infectious diseases.


Subject(s)
Administration, Intranasal , Antigen-Antibody Complex , Bronchoalveolar Lavage Fluid , Ricin , Animals , Ricin/immunology , Ricin/administration & dosage , Mice , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Female , Antigen-Antibody Complex/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Immunization/methods , Inflammation/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/administration & dosage , Cytokines/metabolism , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL
3.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828725

ABSTRACT

Although antibody-mediated lung damage is a major factor in transfusion-related acute lung injury (ALI), autoimmune lung disease (for example, coatomer subunit α [COPA] syndrome), and primary graft dysfunction following lung transplantation, the mechanism by which antigen-antibody complexes activate complement to induce lung damage remains unclear. In this issue of the JCI, Cleary and colleagues utilized several approaches to demonstrate that IgG forms hexamers with MHC class I alloantibodies. This hexamerization served as a key pathophysiological mechanism in alloimmune lung injury models and was mediated through the classical pathway of complement activation. Additionally, the authors provided avenues for exploring therapeutics for this currently hard-to-treat clinical entity that has several etiologies but a potentially focused mechanism.


Subject(s)
Acute Lung Injury , Complement Activation , Immunoglobulin G , Humans , Immunoglobulin G/immunology , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Complement Activation/immunology , Animals , Isoantibodies/immunology , Protein Multimerization/immunology , Histocompatibility Antigens Class I/immunology , Antigen-Antibody Complex/immunology
4.
Curr Microbiol ; 81(8): 242, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913141

ABSTRACT

Chikungunya virus (CHIKV) is a causative agent of a disease continuum, ranging from an acute transient chikungunya fever to chronic incapacitating viral arthralgia. The interaction between anti-CHIKV antibodies and the complement system has recently received attention. However, the contribution of complement activation in CHIKV-induced pathologies has not been fully elucidated. The present study was undertaken to delineate the possible contribution of complement activation in CHIKV-induced disease progression. In this study, using plasma specimens of chikungunya patients in the acute, chronic, and recovered phases of infection, we explicated the involvement of complement activation in CHIKV disease progression by ELISAs and Bio-Plex assays. Correlation analysis was carried out to demonstrate interrelation among C1q-binding IgG-containing circulating immune complexes (CIC-C1q), complement activation fragments (C3a, C5a, sC5b-9), and complement-modulated pro-inflammatory cytokines (IL-1ß, IL-18, IL-6, and TNF-α). We detected elevated complement activation fragments, CIC-C1q, and complement-modulated cytokines in the varied patient groups compared with the healthy controls, indicating persistent activation of the complement system. Furthermore, we observed statistically significant correlations among CIC-C1q with complement activation fragments and C3a with complement modulatory cytokines IL-1ß, IL-6, and IL-18 during the CHIKV disease progression. Taken together, the current data provide insight into the plausible association between CICs, complement activation, subsequent complement modulatory cytokine expression, and CHIKV etiopathology.


Subject(s)
Antigen-Antibody Complex , Chikungunya Fever , Chikungunya virus , Complement Activation , Complement C1q , Cytokines , Humans , Complement C1q/metabolism , Complement C1q/immunology , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya Fever/blood , Antigen-Antibody Complex/blood , Antigen-Antibody Complex/immunology , Chikungunya virus/immunology , Male , Cytokines/blood , Cytokines/metabolism , Middle Aged , Adult , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Aged , Young Adult
5.
J Am Chem Soc ; 146(19): 13455-13466, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703132

ABSTRACT

The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen-antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system.


Subject(s)
Complement Activation , DNA , Immunoglobulin G , Nanostructures , Nanostructures/chemistry , Humans , DNA/chemistry , DNA/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/immunology
6.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791470

ABSTRACT

Antibodies play a central role in the adaptive immune response of vertebrates through the specific recognition of exogenous or endogenous antigens. The rational design of antibodies has a wide range of biotechnological and medical applications, such as in disease diagnosis and treatment. However, there are currently no reliable methods for predicting the antibodies that recognize a specific antigen region (or epitope) and, conversely, epitopes that recognize the binding region of a given antibody (or paratope). To fill this gap, we developed ImaPEp, a machine learning-based tool for predicting the binding probability of paratope-epitope pairs, where the epitope and paratope patches were simplified into interacting two-dimensional patches, which were colored according to the values of selected features, and pixelated. The specific recognition of an epitope image by a paratope image was achieved by using a convolutional neural network-based model, which was trained on a set of two-dimensional paratope-epitope images derived from experimental structures of antibody-antigen complexes. Our method achieves good performances in terms of cross-validation with a balanced accuracy of 0.8. Finally, we showcase examples of application of ImaPep, including extensive screening of large libraries to identify paratope candidates that bind to a selected epitope, and rescoring and refining antibody-antigen docking poses.


Subject(s)
Epitopes , Neural Networks, Computer , Epitopes/immunology , Epitopes/chemistry , Machine Learning , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/immunology , Humans , Molecular Docking Simulation , Antibodies/immunology , Antibodies/chemistry , Antigens/immunology , Binding Sites, Antibody
7.
N Engl J Med ; 390(18): 1690-1698, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38718359

ABSTRACT

In patients with immune thrombotic thrombocytopenic purpura (iTTP), autoantibodies against the metalloprotease ADAMTS13 lead to catastrophic microvascular thrombosis. However, the potential benefits of recombinant human ADAMTS13 (rADAMTS13) in patients with iTTP remain unknown. Here, we report the clinical use of rADAMTS13, which resulted in the rapid suppression of disease activity and complete recovery in a critically ill patient whose condition had proved to be refractory to all available treatments. We also show that rADAMTS13 causes immune complex formation, which saturates the autoantibody and may promote its clearance. Our data support the role of rADAMTS13 as a novel adjunctive therapy in patients with iTTP.


Subject(s)
ADAMTS13 Protein , Purpura, Thrombotic Thrombocytopenic , Female , Humans , ADAMTS13 Protein/immunology , ADAMTS13 Protein/therapeutic use , Antigen-Antibody Complex/blood , Antigen-Antibody Complex/immunology , Autoantibodies/blood , Autoantibodies/immunology , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/drug therapy , Purpura, Thrombotic Thrombocytopenic/immunology , Purpura, Thrombotic Thrombocytopenic/therapy , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Adult , Black or African American , Plasma Exchange , Treatment Outcome
8.
Bioanalysis ; 16(10): 431-442, 2024.
Article in English | MEDLINE | ID: mdl-38497775

ABSTRACT

Aim: To develop an assay format for detection of total anti-adeno-associated virus 2 (AAV2) antibodies with low capsid material consumption. Methods: An immune complex (IC) assay format was developed. The format is based on the formation of ICs in solution and their subsequent detection using an anti-AAV2 antibody for capture and an antibody against the study species IgG for detection. Results: The feasibility of the IC assay for detection of preexisting and treatment-emergent anti-AAV2 antibodies was demonstrated in cynomolgus monkey and human serum samples, including samples from a preclinical study with AAV2-based therapies. Conclusion: The presented IC assay is an easy-to-perform total anti-AAV2 antibody assay that requires a small amount of unlabeled capsid material and provides an intrinsic specificity control.


[Box: see text].


Subject(s)
Antibodies, Viral , Dependovirus , Macaca fascicularis , Humans , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Dependovirus/immunology , Dependovirus/genetics , Capsid/immunology , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/blood
10.
J Virol ; 96(2): e0168921, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34730392

ABSTRACT

The low abundance of envelope spikes and the inability of IgG to aggregate virions render HIV-1 an inadequate target for antibody-mediated clearance by phagocytes. In an attempt to improve the ability of antibody to mediate the internalization of HIV-1 virions, we generated multimers of the broadly neutralizing HIV-1-specific monoclonal antibody (MAb) VRC01 using site-directed mutagenesis of the Fc segment. We then measured virion internalization using primary human monocytes and neutrophils. We found that, in the absence of complement, immune complexes consisting of HIV-1 virions and VRC01 multimers were slightly more efficiently internalized than were complexes formed with monomeric VRC01. The presence of complement, however, greatly augmented internalization of immune complexes formed with the multimeric MAb but had little impact on monomeric MAb-mediated internalization. Multimerization and the presence of complement overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions and may thus provide a therapeutic approach to clearing virus. IMPORTANCE Antibody-mediated internalization of HIV-1 by phagocytes, a potential mechanism for clearing virus, is very inefficient. In an effort to improve viral clearance, we produced a multimeric form of the broadly neutralizing monoclonal antibody VRC01. We found that VRC01 antibody multimers (primarily hexamers) were only slightly more efficient in mediating HIV-1 internalization than was monomeric VRC01. However, the addition of complement resulted in substantially greater internalization of multimer-opsonized virus. In contrast, complement had little if any impact on internalization of monomer-opsonized virus. Therefore, antibody multimerization in combination with complement may overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions. Our findings may provide a therapeutic approach to clearing virus.


Subject(s)
Complement System Proteins/immunology , HIV Antibodies/immunology , HIV-1/immunology , Phagocytosis/immunology , Virion/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Complex/immunology , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Envelope Protein gp41/immunology , Humans , Monocytes/immunology , Mutation , Neutrophils/immunology , Protein Multimerization , Receptors, Fc/genetics , Receptors, Fc/immunology
11.
Biomed Pharmacother ; 146: 112502, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891120

ABSTRACT

Antibodies that bind polyethylene glycol (PEG) can be induced by pegylated biomolecules and also exist in a significant fraction of healthy individuals who have never received pegylated medicines. The binding affinity of antibodies against PEG (anti-PEG antibodies) likely varies depending on if they are induced or naturally occurring. Anti-PEG antibodies can accelerate the clearance of pegylated medicines from the circulation, resulting in loss of drug efficacy, but it is unknown how accelerated blood clearance is affected by anti-PEG antibody affinity. We identified a panel of anti-PEG IgG and IgM antibodies with binding avidities ranging over several orders of magnitude to methoxy polyethylene glycol-epoetin beta (PEG-EPO), which is used to treat patients suffering from anemia. Formation of in vitro immune complexes between PEG-EPO and anti-PEG IgG or IgM antibodies was more obvious as antibody affinity increased. Likewise, high affinity anti-PEG antibodies produced greater accelerated blood clearance of PEG-EPO as compared to low affinity antibodies. The molar ratio of anti-PEG antibody to PEG-EPO that accelerates drug clearance in mice correlates with antibody binding avidity. Our study indicates that the bioactivity of PEG-EPO may be reduced due to rapid clearance in patients with either high concentrations of low affinity or low concentrations of high affinity anti-PEG IgG and IgM antibodies.


Subject(s)
Antibody Affinity/immunology , Erythropoietin/immunology , Erythropoietin/pharmacokinetics , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Polyethylene Glycols/pharmacokinetics , Animals , Antigen-Antibody Complex/immunology , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Female , Gene Editing , Metabolic Clearance Rate , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , Recombinant Proteins/pharmacokinetics
12.
Front Immunol ; 12: 782788, 2021.
Article in English | MEDLINE | ID: mdl-34970265

ABSTRACT

AMG 966 is a bi-specific, heteroimmunoglobulin molecule that binds both tumor necrosis factor alpha (TNFα) and TNF-like ligand 1A (TL1A). In a first-in-human clinical study in healthy volunteers, AMG 966 elicited anti-drug antibodies (ADA) in 53 of 54 subjects (98.1%), despite a paucity of T cell epitopes observed in T cell assays. ADA were neutralizing and bound to all domains of AMG 966. Development of ADA correlated with loss of exposure. In vitro studies demonstrated that at certain drug-to-target ratios, AMG 966 forms large immune complexes with TNFα and TL1A, partially restoring the ability of the aglycosylated Fc domain to bind FcγRIa and FcγRIIa, leading to the formation of ADA. In addition to ADA against AMG 966, antibodies to endogenous TNFα were also detected in the sera of subjects dosed with AMG 966. This suggests that the formation of immune complexes between a therapeutic and target can cause loss of tolerance and elicit an antibody response against the target.


Subject(s)
Antibodies, Bispecific/adverse effects , Antibody Formation , Antigen-Antibody Complex/immunology , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/etiology , Immune Tolerance , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Biomarkers/blood , Drug-Related Side Effects and Adverse Reactions/blood , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Immunoassay , Isoantibodies/immunology , Protein Binding/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
13.
Front Immunol ; 12: 743704, 2021.
Article in English | MEDLINE | ID: mdl-34721411

ABSTRACT

Objective: Anti-melanoma differentiation-associated gene 5 (MDA5) autoantibody is a distinctive serology hallmark of dermatomyositis (DM). As an autoantigen, MDA5 is a cytoplasmic RNA recognition receptor. The aim of this study was to address the question of whether the RNA-containing immune complex (IC) formed by MDA5 and anti-MDA5 could activate type I interferon (IFN) response. Method: Patients with anti-MDA5+ DM (n = 217), anti-MDA5- DM (n = 68), anti-synthase syndrome (ASyS, n = 57), systemic lupus erythematosus (SLE, n = 245), rheumatoid arthritis (RA, n = 89), and systemic sclerosis (SSc, n = 30) and healthy donors (HD, n = 94) were enrolled in our studies. Anti-MDA5 antibody was detected by line blotting, enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, and Western blotting. Cytokine profiling was determined by multiplex flow cytometry, and IFN-α was further measured by ELISA. Type I IFN-inducible genes were detected by quantitative PCR (qPCR). RNA-IC binding was analyzed by RNA immunoprecipitation. Plasmacytoid dendritic cells (pDCs) derived from healthy donors were cultivated and stimulated with MDA5 ICs with or without RNase and Toll-like receptor 7 (TLR-7) agonist. The interaction between MDA5 ICs and TLR7 was evaluated by immunoprecipitation and confocal microscopy. Results: According to our in-house ELISA, the presence of anti-MDA5 antibody in 76.1% of DM patients, along with 14.3% of SLE patients who had a lower titer yet positive anti-MDA5 antibody, was related to the high level of peripheral IFN-α. ICs formed by MDA5 and anti-MDA5 were potent inducers of IFN-α via TLR-7 in an RNA-dependent manner in vitro. Conclusion: Our data provided evidence of the mechanistic relevance between the anti-MDA5 antibody and type I IFN pathway.


Subject(s)
Antigen-Antibody Complex/immunology , Autoantibodies/immunology , Dermatomyositis/immunology , Interferon-Induced Helicase, IFIH1/immunology , Interferon-alpha/immunology , RNA/immunology , Adult , Aged , Autoantigens/immunology , Female , Humans , Male , Middle Aged
14.
Nat Commun ; 12(1): 6470, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753907

ABSTRACT

Antibody-Framework-to-Antigen Distance (AFAD) - the distance between the body of an antibody and a protein antigen - is an important parameter governing antibody recognition. Here, we quantify AFAD for ~2,000 non-redundant antibody-protein-antigen complexes in the Protein Data Bank. AFADs showed a gaussian distribution with mean of 16.3 Å and standard deviation (σ) of 2.4 Å. Notably, antibody-antigen complexes with extended AFADs (>3σ) were exclusively human immunodeficiency virus-type 1 (HIV-1)-neutralizing antibodies. High correlation (R2 = 0.8110) was observed between AFADs and glycan coverage, as assessed by molecular dynamics simulations of the HIV-1-envelope trimer. Especially long AFADs were observed for antibodies targeting the glycosylated trimer apex, and we tested the impact of introducing an apex-glycan hole (N160K); the cryo-EM structure of the glycan hole-targeting HIV-1-neutralizing antibody 2909 in complex with an N160K-envelope trimer revealed a substantially shorter AFAD. Overall, extended AFADs exclusively recognized densely glycosylated surfaces, with the introduction of a glycan hole enabling closer recognition.


Subject(s)
Antigen-Antibody Complex/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antigen-Antibody Complex/metabolism , Epitopes/immunology , Epitopes/metabolism , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , HIV-1/metabolism , Humans , Molecular Dynamics Simulation
15.
Front Immunol ; 12: 757302, 2021.
Article in English | MEDLINE | ID: mdl-34790199

ABSTRACT

Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501ß, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.


Subject(s)
Endogenous Retroviruses/pathogenicity , Herpesvirus 4, Human/pathogenicity , Herpesvirus 6, Human/pathogenicity , Multiple Sclerosis/etiology , Neuroinflammatory Diseases/virology , Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , Autoimmunity , B-Lymphocytes/immunology , Blood-Brain Barrier , Brain/virology , Coinfection , DNA, Viral/immunology , Endogenous Retroviruses/physiology , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/immunology , Gene Products, env/physiology , Genetic Predisposition to Disease , Herpesviridae Infections/complications , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Herpesvirus 4, Human/immunology , Herpesvirus 6, Human/immunology , Humans , Lymph Nodes/virology , Models, Immunological , Molecular Mimicry , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Multiple Sclerosis/virology , Myelin Sheath/immunology , Myelin Sheath/pathology , Neuroinflammatory Diseases/etiology , Pregnancy Proteins/physiology , Transcriptional Activation , Virus Activation , Virus Latency
16.
PLoS Pathog ; 17(11): e1010017, 2021 11.
Article in English | MEDLINE | ID: mdl-34724007

ABSTRACT

The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3's targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3's unusual capacity to modify histidine in addition to serine, threonine and lysine residues.


Subject(s)
Acetyltransferases/metabolism , Antigen-Antibody Complex/immunology , Bacterial Proteins/antagonists & inhibitors , Plant Diseases/immunology , Plant Proteins/metabolism , Pseudomonas syringae/pathogenicity , Solanum lycopersicum/immunology , Acetylation , Acetyltransferases/genetics , Acetyltransferases/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/immunology , Virulence , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism
17.
Front Immunol ; 12: 720183, 2021.
Article in English | MEDLINE | ID: mdl-34566977

ABSTRACT

Background: Factor H-related protein 5 (FHR-5) is a member of the complement Factor H protein family. Due to the homology to Factor H, the main complement regulator of the alternative pathway, it may also be implicated in the pathomechanism of kidney diseases where Factor H and alternative pathway dysregulation play a role. Here, we report the first observational study on CFHR5 variations along with serum FHR-5 levels in immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) and C3 glomerulopathy (C3G) patients together with the clinical, genetic, complement, and follow-up data. Methods: A total of 120 patients with a histologically proven diagnosis of IC-MPGN/C3G were enrolled in the study. FHR-5 serum levels were measured in ELISA, the CFHR5 gene was analyzed by Sanger sequencing, and selected variants were studied as recombinant proteins in ELISA and surface plasmon resonance (SPR). Results: Eight exonic CFHR5 variations in 14 patients (12.6%) were observed. Serum FHR-5 levels were lower in patients compared to controls. Low serum FHR-5 concentration at presentation associated with better renal survival during the follow-up period; furthermore, it showed clear association with signs of complement overactivation and clinically meaningful clusters. Conclusions: Our observations raise the possibility that the FHR-5 protein plays a fine-tuning role in the pathogenesis of IC-MPGN/C3G.


Subject(s)
Antigen-Antibody Complex/immunology , Biomarkers , Complement C3/immunology , Complement System Proteins/genetics , Complement System Proteins/metabolism , Genetic Variation , Glomerulonephritis, Membranoproliferative/blood , Glomerulonephritis, Membranoproliferative/etiology , Adolescent , Adult , Alleles , Case-Control Studies , Complement Activation , Disease Management , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Female , Genetic Predisposition to Disease , Glomerulonephritis, Membranoproliferative/diagnosis , Glomerulonephritis, Membranoproliferative/mortality , Humans , Kidney Function Tests , Male , Polymorphism, Single Nucleotide , Prognosis , ROC Curve , Symptom Assessment , Young Adult
18.
Blood ; 138(22): 2256-2268, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34587242

ABSTRACT

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Subject(s)
Antigen-Antibody Complex/immunology , Autoantibodies/immunology , COVID-19/prevention & control , Capsid Proteins/adverse effects , ChAdOx1 nCoV-19/adverse effects , Drug Contamination , Genetic Vectors/adverse effects , HEK293 Cells/immunology , Immunoglobulin G/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/adverse effects , Adenoviridae/immunology , Animals , Antigen-Antibody Complex/ultrastructure , Autoantibodies/biosynthesis , Capillary Leak Syndrome/etiology , Capsid Proteins/immunology , Cell Line, Transformed , ChAdOx1 nCoV-19/chemistry , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/toxicity , Dynamic Light Scattering , Epitopes/chemistry , Epitopes/immunology , Extracellular Traps/immunology , Extravasation of Diagnostic and Therapeutic Materials/etiology , Genetic Vectors/immunology , HEK293 Cells/chemistry , Humans , Imaging, Three-Dimensional , Immunoglobulin G/biosynthesis , Inflammation , Mice , Microscopy/methods , Platelet Activation , Proteomics , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/immunology , Spike Glycoprotein, Coronavirus/immunology , Virus Cultivation
19.
Biol Futur ; 72(1): 37-44, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34554503

ABSTRACT

Determination of the presence of antibodies against infectious agents, self-antigens, allogeneic antigens and environmental antigens is the goal of medical serology. Along with the standardization of these tests the community also started to use the expression "quantitative serology," referring to the fact that arbitrary units are used for the expression of results. In this review I will argue against the use of the term quantitative serology for current tests. Because each test and each antibody isotype determination uses its own references, the term semiquantitative better describes these methods. The introduction of really quantitative serology could both benefit from and drive forward systems immunological approach to immunity.


Subject(s)
Allergy and Immunology , Antigen-Antibody Complex/immunology , Antigen-Antibody Reactions/immunology , Serologic Tests/methods , Serology/methods , Animals , Antibody Specificity/immunology , Antigens/immunology , Complement Activation/immunology , Humans
20.
Clin Immunol ; 231: 108848, 2021 10.
Article in English | MEDLINE | ID: mdl-34492381

ABSTRACT

Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus. Previous studies have indicated that the phosphodiester backbone is the main antigenic target, with electrostatic interactions important for high avidity. To define further these interactions, the effects of ionic strength on anti-DNA binding of SLE plasmas were assessed in association and dissociation assays by ELISA. As these studies demonstrated, increasing ionic strength to a concentration of 1000 mM NaCl reduced antibody binding although the extent of the reduction varied among samples. In dissociation assays, differences among plasmas were also observed. For one of the plasmas, binding to DNA displayed resistance to dissociation by increasing ionic strength even though these concentrations limited binding in association assays. Time course studies showed a gradual change in binding interactions. These studies indicate that anti-DNA binding can involve both electrostatic and non-electrostatic interactions, with binding in some plasmas showing evidence of hysteresis.


Subject(s)
Antibodies, Antinuclear/immunology , Antibody Affinity/immunology , Antigen-Antibody Complex/immunology , DNA/immunology , Lupus Erythematosus, Systemic/immunology , Antibodies, Antinuclear/chemistry , Antigen-Antibody Complex/chemistry , Autoantigens/immunology , Humans , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...