Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.214
1.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720322

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Cancer Vaccines , Lymph Nodes , Manganese Compounds , Mice, Inbred C57BL , Nanoparticles , Ovalbumin , Oxides , Animals , Cancer Vaccines/immunology , Lymph Nodes/immunology , Mice , Ovalbumin/immunology , Ovalbumin/chemistry , Oxides/chemistry , Nanoparticles/chemistry , Manganese Compounds/chemistry , Immunity, Cellular , Female , Cell Line, Tumor , DNA/chemistry , DNA/immunology , Immunotherapy/methods , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Particle Size , Antigens, Neoplasm/immunology
2.
Cancer Biol Ther ; 25(1): 2356820, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38801069

Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.


Antibodies, Bispecific , Immunotherapy , Prostatic Neoplasms , T-Lymphocytes , Humans , Male , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , T-Lymphocytes/immunology , Immunotherapy/methods , Antigens, Neoplasm/immunology , Animals
3.
Front Immunol ; 15: 1387516, 2024.
Article En | MEDLINE | ID: mdl-38784377

Background: It has been well documented that Takayasu arteritis (TAK) and ulcerative colitis (UC) coexist in the same patients. HLA-B*52 characterizes the co-occurrence, which is one of the common genetic features between these two diseases, indicating shared underlying pathologic mechanisms. Anti-integrin αvß6 antibody (Ab) is present in sera of UC patients in a highly specific manner. We investigated if there were any associations between anti-integrin αvß6 Ab and TAK, considering the risk HLA alleles. Methods: A total of 227 Japanese TAK patients were recruited in the current study and their serum samples were subjected to measurement of anti-integrin αvß6 Ab by ELISA. The clinical information, including the co-occurrence of UC, was collected. The HLA allele carrier status was determined by Luminex or genotype imputation. Results: The information about the presence of UC was available for 165 patients, among which eight (4.84%) patients had UC. Anti-integrin αvß6 antibody was identified in 7 out of 8 TAK subjects with UC (87.5%) while only 5 out of 157 (3.18%) TAK subjects without UC had the antibody (OR 121, p=7.46×10-8). A total of 99 out of 218 (45.4%) patients were HLA-B*52 carriers. There was no significant association between the presence of anti-integrin αvß6 Ab and HLA-B*52 carrier status in those without UC (OR 2.01, 95% CI 0.33-12.4, p = 0.189). Conclusions: The prevalence of anti-integrin αvß6 Ab was high in TAK patients with UC, but not in the absence of concomitant UC. The effect of HLA-B*52 on anti-integrin αvß6 Ab production would be minimal.


Antigens, Neoplasm , Colitis, Ulcerative , Integrins , Takayasu Arteritis , Humans , Colitis, Ulcerative/immunology , Colitis, Ulcerative/genetics , Takayasu Arteritis/immunology , Takayasu Arteritis/genetics , Female , Integrins/immunology , Male , Adult , Middle Aged , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , HLA-B52 Antigen/immunology , HLA-B52 Antigen/genetics , Alleles , Young Adult , Japan/epidemiology , Genotype , Autoantibodies/blood , Autoantibodies/immunology
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38770719

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Algorithms , Cancer Vaccines , Monte Carlo Method , Humans , Cancer Vaccines/immunology , Cancer Vaccines/genetics , HLA Antigens/immunology , HLA Antigens/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Mutation
5.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1365-1379, 2024 May 25.
Article Zh | MEDLINE | ID: mdl-38783803

Globally, colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related fatalities. According to the World Health Organization, there are over 1.9 million annual cases of CRC diagnosed worldwide, resulting in more than 900 000 deaths. In recent years, chimeric antigen receptor T (CAR-T) cell therapy has shown clinical success in treating certain hematological malignancies and is now being explored for its potential in targeting solid tumors like CRC. Currently, CAR-T cell therapies targeting carcinoembryonic antigen (CEA), natural killer group 2, member D ligand (NKG2DL), and other markers have achieved remarkable results in clinical trials, albeit encountering significant challenges. This review summarizes the promising targets of CAR-T cell therapy for CRC and highlights progress made in clinical trials and preclinical studies. Additionally, the review discusses the challenges faced by CAR-T cell therapy in CRC treatment, including a shortage of tumor-specific antigens, cytokine release syndrome, adverse tumor microenvironment, and limited infiltration of CAR-T cells. In summary, this review provides an overview of the latest research progress and challenges in CAR-T cell therapy for CRC, aiming to contribute fresh insights for the clinical treatment of this disease.


Colorectal Neoplasms , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Carcinoembryonic Antigen/immunology , Tumor Microenvironment , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Animals
6.
Nat Immunol ; 25(5): 916-924, 2024 May.
Article En | MEDLINE | ID: mdl-38698238

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


B-Lymphocytes , Breast Neoplasms , Immunologic Surveillance , Humans , Female , Breast Neoplasms/immunology , B-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , Monitoring, Immunologic , Exome Sequencing , Antigens, Neoplasm/immunology , Neoplasm Metastasis , Clone Cells
7.
Front Immunol ; 15: 1389173, 2024.
Article En | MEDLINE | ID: mdl-38745666

Tumor immunotherapy is a promising approach for addressing the limitations of conventional tumor treatments, such as chemotherapy and radiotherapy, which often have side effects and fail to prevent recurrence and metastasis. However, the effectiveness and sustainability of immune activation in tumor immunotherapy remain challenging. Tumor immunogenic cell death, characterized by the release of immunogenic substances, damage associated molecular patterns (DAMPs), and tumor associated antigens, from dying tumor cells (DTCs), offers a potential solution. By enhancing the immunogenicity of DTCs through the inclusion of more immunogenic antigens and stimulating factors, immunogenic cell death (ICD) based cancer vaccines can be developed as a powerful tool for immunotherapy. Integrating ICD nanoinducers into conventional treatments like chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, and radiotherapy presents a novel strategy to enhance treatment efficacy and potentially improve patient outcomes. Preclinical research has identified numerous potential ICD inducers. However, effectively translating these findings into clinically relevant applications remains a critical challenge. This review aims to contribute to this endeavor by providing valuable insights into the in vitro preparation of ICD-based cancer vaccines. We explored established tools for ICD induction, followed by an exploration of personalized ICD induction strategies and vaccine designs. By sharing this knowledge, we hope to stimulate further development and advancement in the field of ICD-based cancer vaccines.


Cancer Vaccines , Immunogenic Cell Death , Neoplasms , Humans , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Immunogenic Cell Death/drug effects , Neoplasms/immunology , Neoplasms/therapy , Animals , Immunotherapy/methods , Antigens, Neoplasm/immunology
8.
Front Immunol ; 15: 1409021, 2024.
Article En | MEDLINE | ID: mdl-38751430

Chimeric antigen receptor-T (CAR-T) cell therapy has made remarkable strides in treating hematological malignancies. However, the widespread adoption of CAR-T cell therapy is hindered by several challenges. These include concerns about the long-term and complex manufacturing process, as well as efficacy factors such as tumor antigen escape, CAR-T cell exhaustion, and the immunosuppressive tumor microenvironment. Additionally, safety issues like the risk of secondary cancers post-treatment, on-target off-tumor toxicity, and immune effector responses triggered by CAR-T cells are significant considerations. To address these obstacles, researchers have explored various strategies, including allogeneic universal CAR-T cell development, infusion of non-activated quiescent T cells within a 24-hour period, and in vivo induction of CAR-T cells. This review comprehensively examines the clinical challenges of CAR-T cell therapy and outlines strategies to overcome them, aiming to chart pathways beyond its current Achilles heels.


Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Animals , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Microenvironment/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Antigens, Neoplasm/immunology , Receptors, Antigen, T-Cell/immunology
9.
Sci Rep ; 14(1): 11254, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755218

Dedifferentiated liposarcoma (DDLS) is an aggressive, recurring sarcoma with limited treatments. T-cell immunotherapies selectively target malignant cells, holding promise against DDLS. The development of successful immunotherapy for DDLS requires a thorough evaluation of the tumor immune microenvironment and the identification and characterization of targetable immunogenic tumor antigens. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens, we used the nCounter NanoString platform, analyzing gene expression profiles across 29 DDLS and 10 healthy adipose tissue samples. Hierarchical clustering of tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumors and 14 non-inflamed tumors, demonstrating tumor heterogeneity within this sarcoma subtype. Among the identified antigens, PBK and TTK exhibited substantial upregulation in mRNA expression compared to healthy adipose tissue controls, further corroborated by positive protein expression by IHC. This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS, and provides a novel targetable antigen in DDLS. The results of this study lay the groundwork for the development of a novel immunotherapy for this highly aggressive sarcoma.


Antigens, Neoplasm , Immunotherapy , Liposarcoma , Humans , Liposarcoma/immunology , Liposarcoma/genetics , Liposarcoma/therapy , Liposarcoma/pathology , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Male , Female , Middle Aged , Aged , Tumor Microenvironment/immunology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Adult
10.
Cancer Immunol Immunother ; 73(7): 129, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744688

Emerging evidence suggests that tumor-specific neoantigens are ideal targets for cancer immunotherapy. However, how to predict tumor neoantigens based on translatome data remains obscure. Through the extraction of ribosome-nascent chain complexes (RNCs) from LLC cells, followed by RNC-mRNA extraction, RNC-mRNA sequencing, and comprehensive bioinformatic analysis, we successfully identified proteins undergoing translatome and exhibiting mutations in the cells. Subsequently, novel antigens identification was analyzed by the interaction between their high affinity and the Major Histocompatibility Complex (MHC). Neoantigens immunogenicity was analyzed by enzyme-linked immunospot assay (ELISpot). Finally, in vivo experiments in mice were conducted to evaluate the antitumor effects of translatome-derived neoantigen peptides on lung cancer. The results showed that ten neoantigen peptides were identified and synthesized by translatome data from LLC cells; 8 out of the 10 neoantigens had strong immunogenicity. The neoantigen peptide vaccine group exhibited significant tumor growth inhibition effect. In conclusion, neoantigen peptide vaccine derived from the translatome of lung cancer exhibited significant tumor growth inhibition effect.


Antigens, Neoplasm , Cancer Vaccines , Lung Neoplasms , Vaccines, Subunit , Animals , Antigens, Neoplasm/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Mice , Cancer Vaccines/immunology , Vaccines, Subunit/immunology , Humans , Mice, Inbred C57BL , Female , Immunotherapy/methods , Cell Line, Tumor , Protein Subunit Vaccines
11.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728394

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Antigens, Neoplasm , CD8-Positive T-Lymphocytes , HLA-E Antigens , Histocompatibility Antigens Class I , Macaca mulatta , Animals , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Antigens, Neoplasm/immunology , Humans , Cancer Vaccines/immunology , Antigen Presentation/immunology , Cell Line, Tumor , Male , Cytomegalovirus/immunology , Mesothelin , Acid Phosphatase
12.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731892

With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.


Antigens, Neoplasm , Epitopes , Immunotherapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy/methods , Epitopes/immunology , Epitopes/genetics , Exome/genetics , Mutation
13.
Cell Immunol ; 399-400: 104827, 2024.
Article En | MEDLINE | ID: mdl-38733699

The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.


Antigens, Neoplasm , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Antigens, Neoplasm/immunology , Humans , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology , Animals , Epitopes, T-Lymphocyte/immunology , Neoplasms/immunology , Neoplasms/therapy , Mice , Cell Line, Tumor , T-Lymphocytes/immunology , Epitopes/immunology
14.
Ups J Med Sci ; 1292024.
Article En | MEDLINE | ID: mdl-38716077

Dendritic cells (DCs) possess a specialized function in presenting antigens and play pivotal roles in both innate and adaptive immune responses. Their ability to cross-present antigens from tumor cells to naïve T cells is instrumental in generating specific T-cell-mediated antitumor responses, crucial for controlling tumor growth and preventing tumor cell dissemination. However, within a tumor immune microenvironment (TIME), the functions of DCs can be significantly compromised. This review focuses on the profile, function, and activation of DCs, leveraging recent studies that reveal insights into their phenotype acquisition, transcriptional state, and functional programs through single-cell RNA sequence (scRNA-seq) analysis. Additionally, the therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is discussed.


Dendritic Cells , Immunotherapy , Neoplasms , Tumor Microenvironment , Dendritic Cells/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Tumor Microenvironment/immunology , Antigens, Neoplasm/immunology , Animals
15.
Front Immunol ; 15: 1384039, 2024.
Article En | MEDLINE | ID: mdl-38726000

Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.


Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology , Animals , Tumor Microenvironment/immunology , Clinical Trials as Topic , Antigens, Neoplasm/immunology
16.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727261

Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.


Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Tumor Microenvironment/immunology , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , Animals
17.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732150

Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.


Antigens, Neoplasm , Cancer Vaccines , Neoplasms , Peptides , Humans , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/prevention & control , Peptides/immunology , Peptides/chemistry , Vaccines, Subunit/immunology , Animals , Clinical Trials as Topic
18.
Sci Immunol ; 9(95): eade2094, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787961

Immunotherapy advances have been hindered by difficulties in tracking the behaviors of lymphocytes after antigen signaling. Here, we assessed the behavior of T cells active within tumors through the development of the antigen receptor signaling reporter (AgRSR) mouse, fate-mapping lymphocytes responding to antigens at specific times and locations. Contrary to reports describing the ready egress of T cells out of the tumor, we find that intratumoral antigen signaling traps CD8+ T cells in the tumor. These clonal populations expand and become increasingly exhausted over time. By contrast, antigen-signaled regulatory T cell (Treg) clonal populations readily recirculate out of the tumor. Consequently, intratumoral antigen signaling acts as a gatekeeper to compartmentalize CD8+ T cell responses, even within the same clonotype, thus enabling exhausted T cells to remain confined to a specific tumor tissue site.


CD8-Positive T-Lymphocytes , Signal Transduction , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Signal Transduction/immunology , Mice, Inbred C57BL , Mice, Transgenic , Antigens, Neoplasm/immunology , Neoplasms/immunology
19.
J Immunother Cancer ; 12(5)2024 May 23.
Article En | MEDLINE | ID: mdl-38782542

BACKGROUND: Neoantigens can serve as targets for T cell-mediated antitumor immunity via personalized neopeptide vaccines. Interim data from our clinical study NCT03715985 showed that the personalized peptide-based neoantigen vaccine EVX-01, formulated in the liposomal adjuvant, CAF09b, was safe and able to elicit EVX-01-specific T cell responses in patients with metastatic melanoma. Here, we present results from the dose-escalation part of the study, evaluating the feasibility, safety, efficacy, and immunogenicity of EVX-01 in addition to anti-PD-1 therapy. METHODS: Patients with metastatic melanoma on anti-PD-1 therapy were treated in three cohorts with increasing vaccine dosages (twofold and fourfold). Tumor-derived neoantigens were selected by the AI platform PIONEER and used in personalized therapeutic cancer peptide vaccines EVX-01. Vaccines were administered at 2-week intervals for a total of three intraperitoneal and three intramuscular injections. The study's primary endpoint was safety and tolerability. Additional endpoints were immunological responses, survival, and objective response rates. RESULTS: Compared with the base dose level previously reported, no new vaccine-related serious adverse events were observed during dose escalation of EVX-01 in combination with an anti-PD-1 agent given according to local guidelines. Two patients at the third dose level (fourfold dose) developed grade 3 toxicity, most likely related to pembrolizumab. Overall, 8 out of the 12 patients had objective clinical responses (6 partial response (PR) and 2 CR), with all 4 patients at the highest dose level having a CR (1 CR, 3 PR). EVX-01 induced peptide-specific CD4+ and/or CD8+T cell responses in all treated patients, with CD4+T cells as the dominating responses. The magnitude of immune responses measured by IFN-γ ELISpot assay correlated with individual peptide doses. A significant correlation between the PIONEER quality score and induced T cell immunogenicity was detected, while better CRs correlated with both the number of immunogenic EVX-01 peptides and the PIONEER quality score. CONCLUSION: Immunization with EVX-01-CAF09b in addition to anti-PD-1 therapy was shown to be safe and well tolerated and elicit vaccine neoantigen-specific CD4+and CD8+ T cell responses at all dose levels. In addition, objective tumor responses were observed in 67% of patients. The results encourage further assessment of the antitumor efficacy of EVX-01 in combination with anti-PD-1 therapy.


Antigens, Neoplasm , Cancer Vaccines , Melanoma , Precision Medicine , Humans , Melanoma/drug therapy , Melanoma/immunology , Cancer Vaccines/therapeutic use , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Female , Male , Middle Aged , Precision Medicine/methods , Aged , Antigens, Neoplasm/immunology , Adult , Vaccines, Subunit/therapeutic use , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Neoplasm Metastasis
20.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791398

Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges. These challenges, particularly pronounced in the treatment of solid tumors, include but are not limited to, the selection of appropriate tumor antigens, managing therapy-related toxicity, overcoming T-cell exhaustion, and addressing the substantial financial costs associated with treatment. Nanomedicine, an interdisciplinary field that merges nanotechnology with medical science, offers novel strategies that could potentially address these limitations. Its application in cancer treatment has already led to significant advancements, including improved specificity in drug targeting, advancements in cancer diagnostics, enhanced imaging techniques, and strategies for long-term cancer prevention. The integration of nanomedicine with (CAR)-T cell therapy could revolutionize the treatment landscape by enhancing the delivery of genes in (CAR)-T cell engineering, reducing systemic toxicity, and alleviating the immunosuppressive effects within the tumor microenvironment. This review aims to explore how far (CAR)-T cell immunotherapy has come alone, and how nanomedicine could strengthen it into the future. Additionally, the review will examine strategies to limit the off-target effects and systemic toxicity associated with (CAR)-T cell therapy, potentially enhancing patient tolerance and treatment outcomes.


Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Nanotechnology/methods , Nanomedicine/methods , Animals , Tumor Microenvironment/immunology , T-Lymphocytes/immunology , Antigens, Neoplasm/immunology
...