Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.460
Filter
1.
Nat Commun ; 15(1): 5636, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965232

ABSTRACT

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical ß-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.


Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Microbial Sensitivity Tests , Nanotubes/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Lipid Peroxidation/drug effects , Peptides/pharmacology , Peptides/chemistry
2.
PLoS Biol ; 22(7): e3002692, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954678

ABSTRACT

The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Drug Resistance, Bacterial/genetics , Biofilms/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
3.
Sci Rep ; 14(1): 15093, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956179

ABSTRACT

2K4L is a rationally designed analog of the short α-helical peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L displayed improved and broad-spectrum antibacterial activity than temporin-1CEc in vitro. Here, the antibacterial and anti-inflammatory activities of 2K4L in macrophages, C. elegans and mice were investigated. The results demonstrated that 2K4L could enter THP-1 cells to kill a multidrug-resistant Acinetobacter baumannii strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22933), as well as reduce proinflammatory responses induced by MRAB 0227 by inhibiting NF-κB signaling pathway. Similarly, 2K4L exhibited strong bactericidal activity against A. baumannii uptake into C. elegans, extending the lifespan and healthspan of the nematodes. Meanwhile, 2K4L alleviated the oxidative stress response by inhibiting the expression of core genes in the p38 MAPK/PMK-1 signaling pathway and downregulating the phosphorylation level of p38, thereby protecting the nematodes from damage by A. baumannii. Finally, in an LPS-induced septic model, 2K4L enhanced the survival of septic mice and decreased the production of proinflammatory cytokines by inhibiting the signaling protein expression of the MAPK and NF-κB signaling pathways and protecting LPS-induced septic mice from a lethal inflammatory response. In conclusion, 2K4L ameliorated LPS-induced inflammation both in vitro and in vivo.


Subject(s)
Acinetobacter baumannii , Caenorhabditis elegans , Lipopolysaccharides , Macrophages , Shock, Septic , Animals , Caenorhabditis elegans/drug effects , Mice , Acinetobacter baumannii/drug effects , Macrophages/drug effects , Macrophages/metabolism , Shock, Septic/drug therapy , Shock, Septic/chemically induced , Shock, Septic/metabolism , NF-kappa B/metabolism , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Oxidative Stress/drug effects , Mitogen-Activated Protein Kinases , Caenorhabditis elegans Proteins
4.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970675

ABSTRACT

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Escherichia coli O157 , Escherichia coli O157/isolation & purification , Escherichia coli O157/immunology , Biosensing Techniques/methods , Immunoassay/methods , Immunoassay/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Nanostructures/chemistry , Electrodes , Ferrous Compounds/chemistry , Antibodies, Immobilized/immunology , Metallocenes/chemistry , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antimicrobial Peptides/chemistry
5.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999788

ABSTRACT

Human milk reduces risk for necrotizing enterocolitis in preterm infants. Necrotizing enterocolitis occurs in the ileocecal region where thousands of milk protein-derived peptides have been released from digestion. Digestion-released peptides may exert bioactivity, such as antimicrobial and immunomodulatory activities, in the gut. In this study, we applied mass spectrometry-based peptidomics to characterize peptides present in colostrum before and after in vitro digestion. Sequence-based computational modeling was applied to predict peptides with antimicrobial activity. We identified more peptides in undigested samples, yet the abundances were much higher in the digested samples. Heatmapping demonstrated highly different peptide profiles between undigested and digested samples. Four peptides (αS1-casein [157-163], αS1-casein [157-165], ß-casein [153-159] and plasminogen [591-597]) were selected, synthesized and tested against common pathogenic bacteria associated with necrotizing enterocolitis. All four exhibited bacteriostatic, though not bactericidal, activities against Klebsiella aerogenes, Citrobacter freundii and Serratia marcescens, but not Escherichia coli.


Subject(s)
Colostrum , Enterocolitis, Necrotizing , Milk, Human , Humans , Colostrum/chemistry , Infant, Newborn , Enterocolitis, Necrotizing/prevention & control , Milk, Human/chemistry , Antimicrobial Peptides/pharmacology , Peptides/pharmacology , Female , Caseins/pharmacology , Anti-Bacterial Agents/pharmacology , Digestion , Milk Proteins/pharmacology
6.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999961

ABSTRACT

Skin wound healing is coordinated by a delicate balance between proinflammatory and anti-inflammatory responses, which can be affected by opportunistic pathogens and metabolic or vascular diseases. Several antimicrobial peptides (AMPs) possess immunomodulatory properties, suggesting their potential to support skin wound healing. Here, we evaluated the proregenerative activity of three recently described AMPs (Clavanin A, Clavanin-MO, and Mastoparan-MO). Human primary dermal fibroblasts (hFibs) were used to determine peptide toxicity and their capacity to induce cell proliferation and migration. Furthermore, mRNA analysis was used to investigate the modulation of genes associated with skin regeneration. Subsequently, the regenerative potential of the peptides was further confirmed using an ex vivo organotypic model of human skin (hOSEC)-based lesion. Our results indicate that the three molecules evaluated in this study have regenerative potential at nontoxic doses (i.e., 200 µM for Clavanin-A and Clavanin-MO, and 6.25 µM for Mastoparan-MO). At these concentrations, all peptides promoted the proliferation and migration of hFibs during in vitro assays. Such processes were accompanied by gene expression signatures related to skin regenerative processes, including significantly higher KI67, HAS2 and CXCR4 mRNA levels induced by Clavanin A and Mastoparan-MO. Such findings translated into significantly accelerated wound healing promoted by both Clavanin A and Mastoparan-MO in hOSEC-based lesions. Overall, the data demonstrate the proregenerative properties of these peptides using human experimental skin models, with Mastoparan-MO and Clavanin A showing much greater potential for inducing wound healing compared to Clavanin-MO.


Subject(s)
Cell Movement , Cell Proliferation , Fibroblasts , Regeneration , Skin , Wound Healing , Humans , Wound Healing/drug effects , Skin/metabolism , Skin/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Regeneration/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Antimicrobial Peptides/pharmacology , Cells, Cultured , Peptides/pharmacology
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000138

ABSTRACT

The ongoing battle against viral pandemics continues, with the possibility of future outbreaks. The search for effective antiviral compounds that can combat a diverse range of viruses continues to be a focal point of research. This study investigated the efficacy of two natural antimicrobial peptides (AMPs) (lactoferricin and LL-37), two synthetic AMPs (melimine and Mel4), and nine AMP mimics (758, 1091, 1096, 1083, 610, NAPL, 3-BIPL, 4-BIPL, and Sau-22) against influenza A virus strains H1N1 and H3N2, human adenovirus 5 (HAdV-5), and murine norovirus 1 (MNV-1). These compounds were tested using virus pre-treatment, cell pre-treatment, or post-cell entry treatment assays, electron microscopy, and circular dichroism (CD), alongside evaluations of cytotoxicity against the host cells. After virus pre-treatment, the AMP mimics 610 and Sau-22 had relatively low IC50 values for influenza strains H1N1 (2.35 and 6.93 µM, respectively) and H3N2 (3.7 and 5.34 µM, respectively). Conversely, natural and synthetic AMPs were not active against these strains. For the non-enveloped viruses, the AMP Mel4 and mimic 1083 had moderate activity against HAdV-5 (Mel4 IC50 = 47.4 µM; 1083 IC50 = 47.2 µM), whereas all AMPs, but none of the mimics, were active against norovirus (LL-37 IC50 = 4.2 µM; lactoferricin IC50 = 23.18 µM; melimine IC50 = 4.8 µM; Mel4 IC50 = 8.6 µM). Transmission electron microscopy demonstrated that the mimics targeted the outer envelope of influenza viruses, while the AMPs targeted the capsid of non-enveloped viruses. CD showed that Mel4 adopted an α-helical structure in a membrane mimetic environment, but mimic 758 remained unstructured. The diverse activity against different virus groups is probably influenced by charge, hydrophobicity, size, and, in the case of natural and synthetic AMPs, their secondary structure. These findings underscore the potential of peptides and mimics as promising candidates for antiviral therapeutics against both enveloped and non-enveloped viruses.


Subject(s)
Antiviral Agents , Norovirus , Norovirus/drug effects , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Influenza A virus/physiology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Influenza A Virus, H3N2 Subtype/drug effects , Dogs , Adenoviridae/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
8.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000421

ABSTRACT

This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Peptides/chemistry , Peptides/pharmacology
9.
Nat Commun ; 15(1): 5778, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987259

ABSTRACT

Antimicrobial proteins contribute to host-microbiota interactions and are associated with inflammatory bowel disease (IBD), but our understanding on antimicrobial protein diversity and functions remains incomplete. Ribonuclease 4 (Rnase4) is a potential antimicrobial protein with no known function in the intestines. Here we find that RNASE4 is expressed in intestinal epithelial cells (IEC) including Paneth and goblet cells, and is detectable in human and mouse stool. Results from Rnase4-deficient mice and recombinant protein suggest that Rnase4 kills Parasutterella to modulate intestinal microbiome, thereby enhancing indoleamine-2,3-dioxygenase 1 (IDO1) expression and subsequently kynurenic and xanthurenic acid production in IECs to reduce colitis susceptibility. Furthermore, deceased RNASE4 levels are observed in the intestinal tissues and stool from patients with IBD, correlating with increased stool Parasutterella. Our results thus implicate Rnase4 as an intestinal antimicrobial protein regulating gut microbiota and metabolite homeostasis, and as a potential diagnostic biomarker and therapeutic target for IBD.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Inflammatory Bowel Diseases , Mice, Inbred C57BL , Gastrointestinal Microbiome/physiology , Animals , Humans , Mice , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Colitis/microbiology , Colitis/metabolism , Colitis/chemically induced , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Knockout , Ribonucleases/metabolism , Male , Feces/microbiology , Female , Intestines/microbiology , Antimicrobial Peptides/metabolism
10.
Protein Sci ; 33(8): e5088, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38988311

ABSTRACT

Antibiotic resistance is recognized as an imminent and growing global health threat. New antimicrobial drugs are urgently needed due to the decreasing effectiveness of conventional small-molecule antibiotics. Antimicrobial peptides (AMPs), a class of host defense peptides, are emerging as promising candidates to address this need. The potential sequence space of amino acids is combinatorially vast, making it possible to extend the current arsenal of antimicrobial agents with a practically infinite number of new peptide-based candidates. However, mining naturally occurring AMPs, whether directly by wet lab screening methods or aided by bioinformatics prediction tools, has its theoretical limit regarding the number of samples or genomic/transcriptomic resources researchers have access to. Further, manually designing novel synthetic AMPs requires prior field knowledge, restricting its throughput. In silico sequence generation methods are gaining interest as a high-throughput solution to the problem. Here, we introduce AMPd-Up, a recurrent neural network based tool for de novo AMP design, and demonstrate its utility over existing methods. Validation of candidates designed by AMPd-Up through antimicrobial susceptibility testing revealed that 40 of the 58 generated sequences possessed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. These results illustrate that AMPd-Up can be used to design novel synthetic AMPs with potent activities.


Subject(s)
Antimicrobial Peptides , Neural Networks, Computer , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Drug Design , Escherichia coli/drug effects , Escherichia coli/genetics , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
11.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000180

ABSTRACT

The antimicrobial peptide LRGG (LLRLLRRGGRRLLRLL-NH2) was designed and chemically synthesized in a study conducted by Jia et al. Gram-negative bacteria were found to be sensitive to LRGG and exhibited a high therapeutic index. Genetic engineering methods were used to create the prokaryotic fusion expression vector pQE-GFP-LRGG, and the resulting corresponding fusion protein GFP-LRGG was subsequently expressed and purified. The precursor GFP was then removed by TEV proteolysis, and pure LRGG was obtained after another round of purification and endotoxin removal. The prokaryotic-expressed antimicrobial peptide LRGG displays a broad-spectrum antibacterial effect on Gram-negative bacteria, and its minimum inhibitory activity (MIC) against Escherichia coli can reach 2 µg/mL. Compared to the chemically synthesized LRGG, the prokaryotic-expressed LRGG exhibits similar temperature, pH, salt ion, serum stability, and cell selectivity. Furthermore, prokaryotic-expressed LRGG showed excellent therapeutic effects in both the infection model of cell selectivity and no embryotoxicity in a Galleria mellonella infection model. The mechanism by which LRGG causes bacterial death was found to be the disruption of the Gram-negative cell membrane.


Subject(s)
Antimicrobial Peptides , Microbial Sensitivity Tests , Animals , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/genetics , Humans
12.
Sci Rep ; 14(1): 16274, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009614

ABSTRACT

The α-helical antimicrobial peptide Kn2-7 enhances the activation of mouse macrophage-like RAW264.7 induced by DNA containing unmethylated cytosine-guanine motifs (CpG DNA). This enhancement is related to increased cellular uptake of DNA by Kn2-7, but the relevant properties of Kn2-7 are unknown. Physicochemical property analysis revealed that Kn2-7 has high amphipathicity. In contrast, the α-helical antimicrobial peptide L5, which increases the cellular uptake of CpG DNA but does not enhance CpG DNA-induced activation, has low amphipathicity. Kn2-7 derivatives with decreased amphipathicity but the same amino acid composition as Kn2-7 did not enhance CpG DNA-induced activation. On the other hand, L5 derivatives with high amphipathicity but the same amino acid composition as L5 enhanced CpG DNA-induced activation. Cellular uptake of DNA was not increased by the L5 derivatives, indicating that high amphipathicity does not affect DNA uptake. Furthermore, α-helical peptides with reversed sequences relative to the Kn2-7 and L5 derivatives with high amphipathicity were synthesized. The reversed-sequence peptides, which had the same amphipathicity but different amino acid sequences from their counterparts, enhanced CpG DNA-induced activation. Taken together, these observations indicate that the high amphipathicity of α-helical peptides enhances the CpG DNA-induced activation of RAW264.7.


Subject(s)
CpG Islands , Macrophages , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , DNA/chemistry , DNA/metabolism , Macrophage Activation/drug effects , Protein Conformation, alpha-Helical , DNA Methylation/drug effects , Peptides/chemistry , Peptides/pharmacology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry
13.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920345

ABSTRACT

Bioactive peptide therapeutics has been a long-standing research topic. Notably, the antimicrobial peptides (AMPs) have been extensively studied for its therapeutic potential. Meanwhile, the demand for annotating other therapeutic peptides, such as antiviral peptides (AVPs) and anticancer peptides (ACPs), also witnessed an increase in recent years. However, we conceive that the structure of peptide chains and the intrinsic information between the amino acids is not fully investigated among the existing protocols. Therefore, we develop a new graph deep learning model, namely TP-LMMSG, which offers lightweight and easy-to-deploy advantages while improving the annotation performance in a generalizable manner. The results indicate that our model can accurately predict the properties of different peptides. The model surpasses the other state-of-the-art models on AMP, AVP and ACP prediction across multiple experimental validated datasets. Moreover, TP-LMMSG also addresses the challenges of time-consuming pre-processing in graph neural network frameworks. With its flexibility in integrating heterogeneous peptide features, our model can provide substantial impacts on the screening and discovery of therapeutic peptides. The source code is available at https://github.com/NanjunChen37/TP_LMMSG.


Subject(s)
Amino Acids , Neural Networks, Computer , Peptides , Amino Acids/chemistry , Peptides/chemistry , Computational Biology/methods , Deep Learning , Antimicrobial Peptides/chemistry , Algorithms
14.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928389

ABSTRACT

Antimicrobial peptides (AMPs) are crucial components of the innate immune system in various organisms, including humans. Beyond their direct antimicrobial effects, AMPs play essential roles in various physiological processes. They induce angiogenesis, promote wound healing, modulate immune responses, and serve as chemoattractants for immune cells. AMPs regulate the microbiome and combat microbial infections on the skin, lungs, and gastrointestinal tract. Produced in response to microbial signals, AMPs help maintain a balanced microbial community and provide a first line of defense against infection. In preterm infants, alterations in microbiome composition have been linked to various health outcomes, including sepsis, necrotizing enterocolitis, atopic dermatitis, and respiratory infections. Dysbiosis, or an imbalance in the microbiome, can alter AMP profiles and potentially lead to inflammation-mediated diseases such as chronic lung disease and obesity. In the following review, we summarize what is known about the vital role of AMPs as multifunctional peptides in protecting newborn infants against infections and modulating the microbiome and immune response. Understanding their roles in preterm infants and high-risk populations offers the potential for innovative approaches to disease prevention and treatment.


Subject(s)
Antimicrobial Peptides , Infant, Premature , Microbiota , Humans , Infant, Newborn , Immunity, Innate , Animals , Dysbiosis/microbiology
15.
Nat Commun ; 15(1): 4901, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851779

ABSTRACT

Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 µg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Humans , Multigene Family , Mice , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , Genome, Bacterial/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Computational Biology/methods , Cysteine/metabolism , Cysteine/chemistry
16.
Phys Chem Chem Phys ; 26(23): 16529-16539, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38828872

ABSTRACT

This study reports on the effects of conformationally controlled amphiphilicity of antimicrobial peptides (AMPs) on their ability to coat TiO2 nanoparticles (NPs) and boost the photocatalytic antimicrobial effects of such NPs. For this, TiO2 NPs were combined with AMP EFK17 (EFKRIVQRIKDFLRNLV), displaying a disordered conformation in aqueous solution but helix formation on interaction with bacterial membranes. The membrane-bound helix is amphiphilic, with all polar and charged amino acid residues located at one side and all non-polar and hydrophobic residues on the other. In contrast, the d-enantiomer variant EFK17-d (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV) is unable to form the amphiphilic helix on bacterial membrane interaction, whereas the W-residues in EFK17-W (EWKRWVQRWKDFLRNLV) boost hydrophobic interactions of the amphiphilic helix. Circular dichroism results showed the effects displayed for the free peptide, to also be present for peptide-coated TiO2 NPs, causing peptide binding to decrease in the order EFK17-W > EFK17 > EFK17-d. Notably, the formation of reactive oxygen species (ROS) by the TiO2 NPs was essentially unaffected by the presence of peptide coating, for all the peptides investigated, and the coatings stabilized over hours of UV exposure. Photocatalytic membrane degradation from TiO2 NPs coated with EFK17-W and EFK17 was promoted for bacteria-like model bilayers containing anionic phosphatidylglycerol but suppressed in mammalian-like bilayers formed by zwitterionic phosphatidylcholine and cholesterol. Structural aspects of these effects were further investigated by neutron reflectometry with clear variations observed between the bacteria- and mammalian-like model bilayers for the three peptides. Mirroring these results in bacteria-like model membranes, combining TiO2 NPs with EFK17-W and EFK17, but not with non-adsorbing EFK17-d, resulted in boosted antimicrobial effects of the resulting cationic composite NPs already in darkness, effects enhanced further on UV illumination.


Subject(s)
Titanium , Titanium/chemistry , Titanium/pharmacology , Catalysis , Nanoparticles/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Reactive Oxygen Species/metabolism , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
17.
Nano Lett ; 24(23): 6906-6915, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829311

ABSTRACT

Herein, a multifunctional nanohybrid (PL@HPFTM nanoparticles) was fabricated to perform the integration of chemodynamic therapy, photothermal therapy, and biological therapy over the long term at a designed location for continuous antibacterial applications. The PL@HPFTM nanoparticles consisted of a polydopamine/hemoglobin/Fe2+ nanocomplex with comodification of tetrazole/alkene groups on the surface as well as coloading of antimicrobial peptides and luminol in the core. During therapy, the PL@HPFTM nanoparticles would selectively cross-link to surrounding bacteria via tetrazole/alkene cycloaddition under chemiluminescence produced by the reaction between luminol and overexpressed H2O2 at the infected area. The resulting PL@HPFTM network not only significantly damaged bacteria by Fe2+-catalyzed ROS production, effective photothermal conversion, and sustained release of antimicrobial peptides but dramatically enhanced the retention time of these therapeutic agents for prolonged antibacterial therapy. Both in vitro and in vivo results have shown that our PL@HPFTM nanoparticles have much higher bactericidal efficiency and remarkably longer periods of validity than free antibacterial nanoparticles.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Nanoparticles/chemistry , Mice , Escherichia coli/drug effects , Polymers/chemistry , Indoles/chemistry , Indoles/pharmacology , Photothermal Therapy , Humans , Staphylococcus aureus/drug effects , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology
18.
J Agric Food Chem ; 72(23): 13360-13370, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830379

ABSTRACT

This study reports a peptide design model for engineering fusion-expressed antimicrobial peptides (AMPs) with the AflR dinuclear zinc finger motif to improve the defense against aflatoxins and Aspergillus flavus. The study identified AflR, a Zn2Cys6-type sequence-specific DNA-binding protein, as a key player in the regulation of aflatoxin biosynthesis. By integrating the AflR motif into AMPs, we demonstrate that these novel fusion peptides significantly lower the minimum inhibitory concentrations (MICs) and reduce aflatoxin B1 and B2 levels, outperforming traditional AMPs. Comprehensive analysis, including bioinformatics and structural determination, elucidates the enhanced structure-function relationship underlying their efficacy. Furthermore, the study reveals the possibility that the fusion peptides have the potential to bind to the DNA binding sites of transcriptional regulators, binding DNA sites of key transcriptional regulators, thereby inhibiting genes critical for aflatoxin production. This research not only deepens our understanding of aflatoxin inhibition mechanisms but also presents a promising avenue for developing advanced antifungal agents, which are essential for global food safety and crop protection.


Subject(s)
Aspergillus flavus , Zinc Fingers , Aspergillus flavus/drug effects , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aspergillus flavus/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Aflatoxins/biosynthesis , Aflatoxins/chemistry , Aflatoxins/genetics , Protein Engineering , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
19.
Arch Microbiol ; 206(7): 302, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874634

ABSTRACT

Host-generated antimicrobial peptides (AMPs) play a pivotal role in defense against bacterial pathogens. AMPs kill invading bacteria majorly by disrupting the bacterial cell walls. AMPs are actively synthesized and released into the lumen of the gastrointestinal tract to limit colonization of enteric pathogens like Salmonella typhimurium (S. typhimurium). However, S. typhimurium has evolved several resistance mechanisms to defend AMPs. The multicomponent SapABCDF uptake transporter is one such system that helps in resisting AMPs. In the current study, we analyzed the role of S. typhimurium SapA against stress survival and virulence of this bacterium. ∆sapA mutant strain showed hypersensitivity to AMPs, like melittin and mastoparan. Further, ∆sapA mutant showed more than 22 folds (p = 0.019) hypersensitivity to neutrophils as compared to the WT strain of S. typhimurium. In addition, ∆sapA strain showed defective survival in mice. In conclusion, the results of the current study suggest that the SapA is essential for survival against AMPs and virulence of S. typhimurium.


Subject(s)
Neutrophils , Salmonella typhimurium , Animals , Salmonella typhimurium/drug effects , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/genetics , Mice , Neutrophils/immunology , Neutrophils/microbiology , Virulence , Antimicrobial Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Mice, Inbred BALB C , Salmonella Infections/microbiology , Antimicrobial Cationic Peptides/pharmacology
20.
Sci Rep ; 14(1): 13818, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879638

ABSTRACT

The hematophagous common bed bug, Cimex lectularius, is not known to transmit human pathogens outside laboratory settings, having evolved various immune defense mechanisms including the expression of antimicrobial peptides (AMPs). We unveil three novel prolixicin AMPs in bed bugs, exhibiting strong homology to the prolixicin of kissing bugs, Rhodnius prolixus, and to diptericin/attacin AMPs. We demonstrate for the first time sex-specific and immune mode-specific upregulation of these prolixicins in immune organs, the midgut and rest of body, following injection and ingestion of Gr+ (Bacillus subtilis) and Gr- (Escherichia coli) bacteria. Synthetic CL-prolixicin2 significantly inhibited growth of E. coli strains and killed or impeded Trypanosoma cruzi, the Chagas disease agent. Our findings suggest that prolixicins are regulated by both IMD and Toll immune pathways, supporting cross-talk and blurred functional differentiation between major immune pathways. The efficacy of CL-prolixicin2 against T. cruzi underscores the potential of AMPs in Chagas disease management.


Subject(s)
Bedbugs , Escherichia coli , Trypanosoma cruzi , Animals , Trypanosoma cruzi/drug effects , Bedbugs/microbiology , Bedbugs/drug effects , Escherichia coli/drug effects , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Female , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Male , Chagas Disease/parasitology , Insect Proteins/metabolism , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL
...