Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.532
Filter
1.
Cell Rep ; 43(7): 114455, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38990717

ABSTRACT

The molecular mechanisms underlying multi-brain region origins and sexual dimorphism of anxiety remain unclear. Here, we leverage large-scale transcriptomics from seven brain regions in mouse models of anxiety and extensive experiments to dissect brain-region- and sex-specific gene networks. We identify 4,840 genes with sex-specific expression alterations across seven brain regions, organized into ten network modules with sex-biased expression patterns. Modular analysis prioritizes 86 sex-specific mediators of anxiety susceptibility, including myocyte-specific enhancer factor 2c (Mef2c) in the CA3 region of male mice. Mef2c expression is decreased in the pyramidal neurons (PyNs) of susceptible male mice. Up-regulating Mef2c in CA3 PyNs significantly alleviates anxiety-like behavior, whereas down-regulating Mef2c induces anxiety-like behavior in male mice. The anxiolytic effect of Mef2c up-regulation is associated with enhanced neuronal excitability and synaptic transmission. In summary, this study uncovers brain-region- and sex-specific networks and identifies Mef2c in CA3 PyNs as a critical mediator of anxiety in male mice.


Subject(s)
Anxiety , Gene Regulatory Networks , MEF2 Transcription Factors , Animals , MEF2 Transcription Factors/metabolism , MEF2 Transcription Factors/genetics , Anxiety/genetics , Anxiety/metabolism , Male , Mice , Female , Sex Characteristics , Mice, Inbred C57BL , Behavior, Animal , Pyramidal Cells/metabolism , Brain/metabolism
2.
Pharmacol Biochem Behav ; 242: 173822, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996927

ABSTRACT

The volatile compound 2,4,5-trimethylthiazoline (TMT, a synthetic predator scent) triggers fear, anxiety, and defensive responses in rodents that can outlast the encounter. The receptor systems underlying the development and persistence of TMT-induced behavioral changes remain poorly characterized, especially in females. Kappa opioid receptors regulate threat generalization and fear conditioning and alter basal anxiety, but their role in unconditioned fear responses in females has not been examined. Here, we investigated the effects of the long-lasting kappa opioid receptor antagonist, nor-binalthorphinmine dihydrochloride (nor-BNI; 10 mg/kg), on TMT-induced freezing and conditioned place aversion in female mice. We also measured anxiety-like behavior in the elevated plus maze three days after TMT and freezing behavior when returned to the TMT-paired context ten days after the single exposure. We found that 35µl of 10 % TMT elicited a robust freezing response during a five-minute exposure in female mice. TMT evoked persistent fear as measured by conditioned place aversion, reduced entries into the open arm of the elevated plus maze, and increased general freezing behavior long after TMT exposure. In line with the known role of kappa-opioid receptors in threat generalization, we found that kappa-opioid receptor antagonism increased basal freezing but reduced freezing during TMT presentation. Together, these findings indicate that a single exposure to TMT causes long-lasting changes in fear-related behavioral responses in female mice and highlights the modulatory role of kappa-opioid receptor signaling on fear-related behavioral patterns in females.


Subject(s)
Behavior, Animal , Fear , Odorants , Receptors, Opioid, kappa , Thiazoles , Animals , Female , Receptors, Opioid, kappa/metabolism , Mice , Thiazoles/pharmacology , Fear/drug effects , Behavior, Animal/drug effects , Naltrexone/pharmacology , Naltrexone/analogs & derivatives , Signal Transduction/drug effects , Anxiety/psychology , Anxiety/metabolism , Mice, Inbred C57BL , Narcotic Antagonists/pharmacology
3.
Pharmacol Biochem Behav ; 242: 173817, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002806

ABSTRACT

Most cases of anxiety are currently treated with either benzodiazepines or serotonin reuptake inhibitors. These drugs carry with them risks for a multitude of side effects, and patient compliance suffers for this reason. There is thus a need for novel anxiolytics, and among the most compelling prospects in this vein is the study of the TAARs. The anxiolytic potential of ulotaront, a full agonist at the human TAAR1, is currently being investigated in patients with generalized anxiety disorder. Irrespective of whether this compound succeeds in clinical trials, a growing body of preclinical literature underscores the relevance of modulating the TAARs in anxiety. Multiple behavioral paradigms show anxiolytic-like effects in rodents, possibly due to increased neurogenesis and plasticity, in addition to a panoply of interactions between the TAARs and other systems. Crucially, multiple lines of evidence suggest that the TAARs, particularly TAAR1, TAAR2, and TAAR5, are expressed in the extended amygdala and hippocampus. These regions are central in the actuation of anxiety, and are particularly susceptible to neurogenic and neuroplastic effects which the TAARs are now known to regulate. The TAARs also regulate the dopamine and serotonin systems, both of which are implicated in anxiety. Ligands of the TAARs may thus constitute a new class of anxiolytics.


Subject(s)
Anti-Anxiety Agents , Receptors, G-Protein-Coupled , Humans , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Animals , Ligands , Receptors, G-Protein-Coupled/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Anxiety Disorders/drug therapy , Anxiety Disorders/metabolism , Oxazoles/pharmacology , Trace Amine-Associated Receptors
4.
J Neuroinflammation ; 21(1): 166, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956653

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS: A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS: Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS: HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.


Subject(s)
Anxiety , Diabetes Mellitus, Type 2 , Diet, High-Fat , Hypoxia , Membrane Glycoproteins , Mice, Inbred C57BL , Receptor, Interferon alpha-beta , Receptors, Immunologic , Signal Transduction , Animals , Mice , Diet, High-Fat/adverse effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Anxiety/etiology , Anxiety/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Hypoxia/metabolism , Hypoxia/complications , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Microglia/metabolism , STAT1 Transcription Factor/metabolism , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/psychology
5.
Dev Psychobiol ; 66(6): e22523, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970242

ABSTRACT

The current literature suggests that relaxin-3/relaxin/insulin-like family peptide receptor 3 (RLN-3/RXFP-3) system is involved in the pathophysiology of affective disorders because the results of anatomical and pharmacological studies have shown that the RLN-3 signaling pathway plays a role in modulating the stress response, anxiety, arousal, depression-like behavior, and neuroendocrine homeostasis. The risk of developing mental illnesses in adulthood is increased by exposure to stress in early periods of life. The available data indicate that puberty is especially characterized by the development of the neural system and emotionality and is a "stress-sensitive" period. The presented study assessed the short-term changes in the expression of RLN-3 and RXFP-3 mRNA in the stress-dependent brain regions in male pubertal Wistar rats that had been subjected to acute stress. Three stressors were applied from 42 to 44 postnatal days (first day: a single forced swim; second day: stress on an elevated platform that was repeated three times; third day: restraint stress three times). Anxiety (open field, elevated plus maze test) and anhedonic-like behavior (sucrose preference test) were estimated during these tests. The corticosterone (CORT) levels and blood morphology were estimated. We found that the RXFP-3 mRNA expression decreased in the brainstem, whereas it increased in the hypothalamus 72 h after acute stress. These molecular changes were accompanied by the increased levels of CORT and anxiety-like behavior detected in the open field test that had been conducted earlier, that is, 24 h after the stress procedure. These findings shed new light on the neurochemical changes that are involved in the compensatory response to adverse events in pubertal male rats and support other data that suggest a regulatory interplay between the RLN-3 pathway and the hypothalamus-pituitary-adrenal axis activity in the mechanisms of anxiety-like behavior.


Subject(s)
Anxiety , Brain , RNA, Messenger , Rats, Wistar , Receptors, G-Protein-Coupled , Stress, Psychological , Animals , Male , Rats , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Anxiety/metabolism , Anxiety/physiopathology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Brain/metabolism , RNA, Messenger/metabolism , Behavior, Animal/physiology , Relaxin/metabolism , Relaxin/genetics , Receptors, Peptide/metabolism , Receptors, Peptide/genetics , Sexual Maturation/physiology , Nerve Tissue Proteins
6.
Neurochem Int ; 178: 105804, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002759

ABSTRACT

Anxiety is a commonly prevailing psychological disorder that requires effective treatment, wherein phytopharmaceuticals and nutraceuticals could offer a desirable therapeutic profile. Hybanthus enneaspermus (L.) F. Muell. is a powerful medicinal herb, reportedly effective against several ailments, including psychological disorders. The current research envisaged evaluating the anxiolytic potential of the ethanolic extract of Hybanthus enneaspermus (EEHE) and its toluene insoluble biofraction (ITHE) employing experimental and computational approaches. Elevated Plus Maze, Light and Dark Transition, Mirror Chamber, Hole board and Open field tests were used as screening models to assess the antianxiety potential of 100, 200 and 400 mg/kg body weight of EEHE and ITHE in rats subjected to social isolation, using Diazepam as standard. The brains of rats exhibiting significant anxiolytic activity were dissected for histopathological and biochemical studies. Antioxidant enzymes like catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase; and neurotransmitters viz. monoamines (serotonin, noradrenaline, dopamine), Gamma-aminobutyric acid (GABA), and glutamate were quantified in the different regions of rats' brain (cortex, hippocampus, pons, medulla oblongata, cerebellum). Chromatographic techniques were used to isolate phytoconstituents from the fraction exhibiting significant activity that were characterized by spectroscopic methods and subjected to in silico molecular docking. ITHE at 400 mg/kg body weight significantly mitigated anxiety in all the screening models (p < 0.05), reduced the inflammatory vacuoles and necrosis (p < 0.05) and potentiated the antioxidant enzymes (p < 0.05). It enhanced the monoamines and GABA levels while attenuating glutamate levels (p < 0.01) in the brain. Three significant flavonoids viz. Quercitrin, Rutin and Hesperidin were isolated from ITHE. In silico docking studies of these flavonoids revealed that the compounds exhibited substantial binding to the GABAA receptor. ITHE displayed a promising pharmacological profile in combating anxiety and modulating oxidative stress, attributing its therapeutic virtues to the flavonoids present.


Subject(s)
Anti-Anxiety Agents , Anxiety , Plant Extracts , Rats, Wistar , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/isolation & purification , Anti-Anxiety Agents/therapeutic use , Anti-Anxiety Agents/chemistry , Rats , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Anxiety/drug therapy , Anxiety/metabolism , Male , Molecular Docking Simulation , Receptors, GABA-A/metabolism , Receptors, GABA-A/drug effects , Brain/drug effects , Brain/metabolism , Maze Learning/drug effects
7.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38997144

ABSTRACT

Motion-induced anxiety and agoraphobia are more frequent symptoms in patients with vestibular migraine (VM) than migraine without vertigo. The neuropeptide calcitonin gene-related peptide (CGRP) is a therapeutic target for migraine and VM, but the link between motion hypersensitivity, anxiety, and CGRP is relatively unexplored, especially in preclinical mouse models. To further examine this link, we tested the effects of systemic CGRP and off-vertical axis rotation (OVAR) on elevated plus maze (EPM) and rotarod performance in male and female C57BL/6J mice. Rotarod ability was assessed using two different dowel diameters: mouse dowel (r = 1.5 cm) versus rat dowel (r = 3.5 cm). EPM results indicate that CGRP alone or OVAR alone did not increase anxiety indices. However, the combination of CGRP and OVAR did elicit anxiety-like behavior. On the rotarod, CGRP reduced performance in both sexes on a mouse dowel but had no effect on a rat dowel, whereas OVAR had a significant effect on the rat dowel. These results suggest that only the combination of CGRP with vestibular stimulation induces anxiety-like behavior and that CGRP affects the dynamic balance function in mice depending on the type of challenge presented. These findings suggest that anxiety-like behaviors can be teased out from imbalance behaviors in a mouse model of "migraine." Future studies are aimed to determine if CGRP receptor antagonists that have been effective treating migraineurs and mouse "migraine" models may also reduce the anxiety observed in migraine.


Subject(s)
Anxiety , Calcitonin Gene-Related Peptide , Mice, Inbred C57BL , Animals , Calcitonin Gene-Related Peptide/metabolism , Male , Anxiety/metabolism , Female , Disease Models, Animal , Mice , Behavior, Animal/drug effects , Behavior, Animal/physiology , Rotarod Performance Test , Vestibule, Labyrinth/drug effects , Migraine Disorders/metabolism
8.
Proc Natl Acad Sci U S A ; 121(31): e2400078121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39058580

ABSTRACT

Current treatments of anxiety and depressive disorders are plagued by considerable side effects and limited efficacies, underscoring the need for additional molecular targets that can be leveraged to improve medications. Here, we have identified a molecular cascade triggered by chronic stress that exacerbates anxiety- and depressive-like behaviors. Specifically, chronic stress enhances Src kinase activity and tyrosine phosphorylation of calmodulin, which diminishes MyosinVa (MyoVa) interaction with Neuroligin2 (NL2), resulting in decreased inhibitory transmission and heightened anxiety-like behaviors. Importantly, pharmacological inhibition of Src reinstates inhibitory synaptic deficits and effectively reverses heightened anxiety-like behaviors in chronically stressed mice, a process requiring the MyoVa-NL2 interaction. These data demonstrate the reversibility of anxiety- and depressive-like phenotypes at both molecular and behavioral levels and uncover a therapeutic target for anxiety and depressive disorders.


Subject(s)
Anxiety , Calmodulin , Signal Transduction , Stress, Psychological , Animals , Mice , Signal Transduction/drug effects , Anxiety/drug therapy , Anxiety/metabolism , Stress, Psychological/metabolism , Calmodulin/metabolism , src-Family Kinases/metabolism , Phosphorylation , Myosins/metabolism , Male , Mice, Inbred C57BL , Depression/drug therapy , Depression/metabolism , Humans
9.
Behav Brain Funct ; 20(1): 18, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965529

ABSTRACT

BACKGROUND: Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS: In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS: We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS: This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.


Subject(s)
Anxiety , Ghrelin , Nucleus Accumbens , Rats, Sprague-Dawley , Receptors, Ghrelin , Signal Transduction , Stress, Psychological , Animals , Ghrelin/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Male , Anxiety/metabolism , Anxiety/psychology , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Rats , Stress, Psychological/metabolism , Stress, Psychological/psychology , Signal Transduction/drug effects , Signal Transduction/physiology , Behavior, Animal/drug effects
10.
Transl Psychiatry ; 14(1): 239, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834575

ABSTRACT

Prior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress. First, we demonstrated that stress-susceptible mice uniquely express elevated vHipp H1x protein levels following chronic stress. Given that linker histones coordinate heterochromatin compaction, we hypothesize that elevated levels of H1x in the vHipp may impede pro-resilience transcriptional adaptations and prevent development of the resilient phenotype following social stress. To test this, 8-10-week-old male C57BL/6 J mice were randomly assigned to groups undergoing 10 days of chronic social defeat stress (CSDS) or single housing, respectively. Following CSDS, mice were classified as susceptible versus resilient based on their social interaction behaviors. We synthesized a viral overexpression (OE) vector for H1x and transduced all stressed and single housed mice with either H1x or control GFP within vHipp. Following viral delivery, we conducted social, anxiety-like, and memory-reliant behavior tests on distinct cohorts of mice. We found no behavioral adaptations following H1x OE compared to GFP controls in susceptible, resilient, or single housed mice. In sum, although we confirm elevated vHipp protein levels of H1x associate with susceptibility to social stress, we observe no significant behavioral consequence of H1x OE. Thus, we conclude elevated levels of H1x are associated with, but are not singularly sufficient to drive development of behavioral adaptations to stress.


Subject(s)
Behavior, Animal , Hippocampus , Histones , Mice, Inbred C57BL , Stress, Psychological , Animals , Male , Hippocampus/metabolism , Mice , Stress, Psychological/metabolism , Histones/metabolism , Behavior, Animal/physiology , Adaptation, Psychological/physiology , Resilience, Psychological , Social Defeat , Anxiety/metabolism
11.
Exp Brain Res ; 242(8): 1871-1879, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38864869

ABSTRACT

This study aimed to compare the effects of High-Intensity Interval Training (HIIT) performed in a single session(1xHIIT) versus three daily sessions (3xHIIT) on fitness level and behavior of aged rats. Eighteen-month-old Wistar rats were assigned to Untrained (UN), 1xHIIT, or 3xHIIT (n = 12/group). Both groups, 1xHIIT and 3xHIIT, performed 15 min of a treadmill running HIIT protocol during 8 weeks. 1xHIIT protocol consisted of a single daily session of 15 min, while the 3xHIIT performed three daily sessions of 5 min with a 4 h interval between the sessions. Morris Water Maze (MWM) task was used to evaluate spatial learning and memory. Splash test, Forced Swim test, and Elevated Plus Maze task (EPM) were used to evaluate anhedonic, depressive-like, and anxious behaviors, respectively. Rats were euthanized, and the hippocampus was harvested for western blot analyses (CaMKII and BDNF). Both HIIT protocols improved VO2max and spatial memory. Notably, only the 3xHIIT protocol attenuated anxious and depressive-like behaviors. Western blot analyses of the hippocampus revealed that both HIIT protocols increased BDNF levels. BDNF levels were higher in the 3xHIIT when compared with 1xHIIT group, and we observed increasement of the CamKII levels just in the 3x HIIT group. Therefore, this study provides evidence indicating that accumulated HIIT sessions is more effective than traditional daily HIIT sessions in improving fitness level, cognitive function, memory, inhibiting the development of mood disorders, and enhancing BDNF and CaMKII levels in the hippocampus of aged rats.


Subject(s)
Aging , Anxiety , Brain-Derived Neurotrophic Factor , Depression , High-Intensity Interval Training , Hippocampus , Rats, Wistar , Animals , Hippocampus/metabolism , Rats , Depression/metabolism , Depression/therapy , Depression/physiopathology , Aging/physiology , Aging/metabolism , Anxiety/metabolism , Anxiety/therapy , Anxiety/physiopathology , High-Intensity Interval Training/methods , Male , Brain-Derived Neurotrophic Factor/metabolism , Cognition/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Maze Learning/physiology , Physical Conditioning, Animal/physiology , Spatial Memory/physiology
12.
Behav Brain Res ; 470: 115094, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38844057

ABSTRACT

Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 µg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERß agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.


Subject(s)
Anxiety , Brain Ischemia , CA1 Region, Hippocampal , Microglia , Phenols , Pyrazoles , Rats, Wistar , Animals , Female , Microglia/metabolism , Microglia/drug effects , Rats , Anxiety/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Brain Ischemia/metabolism , Pyrazoles/pharmacology , Phenols/pharmacology , Ovariectomy , Neurons/metabolism , Neurons/drug effects , Propionates/pharmacology , Propionates/administration & dosage , Behavior, Animal/drug effects , Behavior, Animal/physiology , Estradiol/pharmacology , Disease Models, Animal , Receptors, Estrogen/metabolism , Nitriles/pharmacology
13.
PLoS One ; 19(6): e0304261, 2024.
Article in English | MEDLINE | ID: mdl-38870197

ABSTRACT

PURPOSE: Patients with Retinitis Pigmentosa (RP) commonly experience sleep-related issues and are susceptible to stress. Moreover, variatiaons in their vision are often linked to anxiety, stress and drowsiness, indicating that stress and sleep deprivation lead to a decline in vision, and vision improves when both are mitigated. The objective of this study was to investigate the utility of salivary biomarkers as biochemical indicators of anxiety and sleep deprivation in RP patients. METHODS: Seventy-eight RP patients and 34 healthy controls were included in this observational study. Anxiety and sleep-quality questionnaires, a complete ophthalmological exam for severity grading and, the collection of salivary samples from participants were assessed for participants. The activity of biomarkers was estimated by ELISA, and statistical analysis was performed to determine associations between the parameters. Associations between underlying psychological factors, grade of disease severity, and biomarkers activity were also examined. RESULTS: Fifty-two (67%) of patients had a severe RP, and 26 (33%) had a mild-moderate grade. Fifty-eight (58,9%) patients reported severe levels of anxiety and 18 (23.,1%) a high level. Forty-six (59%) patients obtained pathological values in sleep-quality questionaries and 43 (55.1%) in sleepiness. Patients with RP exhibited significant differences in testosterone, cortisol, sTNFαRII, sIgA and melatonin as compared to controls and patients with a mild-moderate and advanced stage of disease showed greater differences. In covariate analysis, patients with a severe anxiety level also showed greater differences in mean salivary cortisol, sTNFαRII and melatonin and male patients showed lower IgA levels than female. CONCLUSIONS: The present findings suggest that salivary biomarkers could be suitable non-invasive biochemical markers for the objective assessment of sleep deprivation and anxiety in RP patients. Further research is needed to characterize the effects of untreated negative psychological states and sleep deprivation on increased variability of vision and disease progression, if any.


Subject(s)
Biomarkers , Retinitis Pigmentosa , Saliva , Sleep Deprivation , Humans , Male , Female , Saliva/chemistry , Saliva/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Retinitis Pigmentosa/metabolism , Adult , Middle Aged , Sleep Deprivation/metabolism , Stress, Psychological/metabolism , Anxiety/metabolism , Case-Control Studies , Hydrocortisone/analysis , Hydrocortisone/metabolism
14.
Adv Neurobiol ; 35: 157-182, 2024.
Article in English | MEDLINE | ID: mdl-38874723

ABSTRACT

Pain, fear, stress, and anxiety are separate yet interrelated phenomena. Each of these concepts has an extensive individual body of research, with some more recent work focusing on points of conceptual overlap. The role of the endogenous opioid system in each of these phenomena is only beginning to be examined and understood. Research examining the ways in which endogenous opioids (e.g., beta-endorphin; ßE) may mediate the relations among pain, fear, stress, and anxiety is even more nascent. This chapter explores the extant evidence for endogenous opioid activity as an underpinning mechanism of these related constructs, with an emphasis on research examining ßE.


Subject(s)
Anxiety , Fear , Pain , Stress, Psychological , Animals , Humans , Anxiety/metabolism , beta-Endorphin/metabolism , Fear/physiology , Opioid Peptides/metabolism , Pain/psychology , Pain/metabolism , Stress, Psychological/metabolism
15.
Drug Des Devel Ther ; 18: 2227-2248, 2024.
Article in English | MEDLINE | ID: mdl-38882046

ABSTRACT

Purpose: The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods: First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results: BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion: BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.


Subject(s)
Anti-Anxiety Agents , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Metabolomics , Rats, Sprague-Dawley , Animals , Rats , Anti-Anxiety Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Restraint, Physical , Hippocampus/drug effects , Hippocampus/metabolism
16.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892090

ABSTRACT

Fetal hypoxia and maternal stress frequently culminate in neuropsychiatric afflictions in life. To replicate this condition, we employed a model of prenatal severe hypoxia (PSH) during days 14-16 of rat gestation. Subsequently, both control and PSH rats at 3 months old were subjected to episodes of inescapable stress to induce learned helplessness (LH). The results of the open field test revealed an inclination towards depressive-like behavior in PSH rats. Following LH episodes, control (but not PSH) rats displayed significant anxiety. LH induced an increase in glucocorticoid receptor (GR) levels in extrahypothalamic brain structures, with enhanced nuclear translocation in the hippocampus (HPC) observed both in control and PSH rats. However, only control rats showed an increase in GR nuclear translocation in the amygdala (AMG). The decreased GR levels in the HPC of PSH rats correlated with elevated levels of hypothalamic corticotropin-releasing hormone (CRH) compared with the controls. However, LH resulted in a reduction of the CRH levels in PSH rats, aligning them with those of control rats, without affecting the latter. This study presents evidence that PSH leads to depressive-like behavior in rats, associated with alterations in the glucocorticoid system. Notably, these impairments also contribute to increased resistance to severe stressors.


Subject(s)
Anxiety , Depression , Glucocorticoids , Prenatal Exposure Delayed Effects , Receptors, Glucocorticoid , Animals , Rats , Female , Anxiety/metabolism , Pregnancy , Glucocorticoids/metabolism , Depression/metabolism , Depression/etiology , Receptors, Glucocorticoid/metabolism , Prenatal Exposure Delayed Effects/metabolism , Stress, Psychological/metabolism , Male , Corticotropin-Releasing Hormone/metabolism , Hippocampus/metabolism , Hypoxia/metabolism , Phenotype , Behavior, Animal , Helplessness, Learned , Disease Models, Animal , Amygdala/metabolism , Fetal Hypoxia/metabolism , Fetal Hypoxia/complications
17.
Neurosci Biobehav Rev ; 163: 105748, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857667

ABSTRACT

Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.


Subject(s)
Anxiety , Corticotropin-Releasing Hormone , Receptors, Corticotropin-Releasing Hormone , Receptors, Corticotropin-Releasing Hormone/metabolism , Humans , Animals , Corticotropin-Releasing Hormone/metabolism , Anxiety/metabolism , Anxiety/physiopathology , Brain Injuries/metabolism , Brain Injuries/physiopathology , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Depression/metabolism , Depression/physiopathology , Brain/metabolism , Brain/physiopathology
18.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892044

ABSTRACT

Anxiety is a common comorbidity of obesity, resulting from prescribing long-term caloric restriction diets (CRDs); patients with a reduced food intake lose weight but present anxious behaviors, poor treatment adherence, and weight regain in the subsequent 5 years. Intermittent fasting (IF) restricts feeding time to 8 h during the activity phase, reducing patients' weight even with no caloric restriction; it is unknown whether an IF regime with ad libitum feeding avoids stress and anxiety development. We compared the corticosterone blood concentration between male Wistar rats fed ad libitum or calorie-restricted with all-day or IF food access after 4 weeks, along with their anxiety parameters when performing the elevated plus maze (EPM). As the amygdalar thyrotropin-releasing hormone (TRH) is believed to have anxiolytic properties, we evaluated its expression changes in association with anxiety levels. The groups formed were the following: a control which was offered food ad libitum (C-adlib) or 30% of C-adlib's energy requirements (C-CRD) all day, and IF groups provided food ad libitum (IF-adlib) or 30% of C-adlib's requirements (IF-CRD) with access from 9:00 to 17:00 h. On day 28, the rats performed the EPM and, after 30 min, were decapitated to analyze their amygdalar TRH mRNA expression by in situ hybridization and corticosterone serum levels. Interestingly, circadian feeding synchronization reduced the body weight, food intake, and animal anxiety levels in both IF groups, with ad libitum (IF-adlib) or restricted (IF-CRD) food access. The anxiety levels of the experimental groups resulted to be negatively associated with TRH expression, which supported its anxiolytic role. Therefore, the low anxiety levels induced by synchronizing feeding with the activity phase would help patients who are dieting to improve their diet therapy adherence.


Subject(s)
Amygdala , Anxiety , Caloric Restriction , Circadian Rhythm , Corticosterone , Rats, Wistar , Thyrotropin-Releasing Hormone , Animals , Anxiety/metabolism , Rats , Male , Amygdala/metabolism , Thyrotropin-Releasing Hormone/metabolism , Thyrotropin-Releasing Hormone/genetics , Caloric Restriction/methods , Corticosterone/blood , Down-Regulation , Feeding Behavior , Fasting , Eating , Body Weight
19.
Neurosci Lett ; 835: 137851, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38838971

ABSTRACT

Chronic psychosocial stress stands as a significant heterogeneous risk factor for psychiatric disorders. The brain's physiological response to such stress varies based on the frequency and intensity of stress episodes. However, whether stress episodes divergently could affect hippocampal cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling remains unclear, a key regulator of psychiatric symptoms. We aimed to assess how two distinct patterns of social defeat stress exposure impact anxiety- and depression-like behaviors, fear, and hippocampal CREB-BDNF signaling in adult male rats. To explore this, adult male Sprague-Dawley rats were subjected to psychosocial stress using a Resident/Intruder paradigm for ten consecutive days (continuous social defeat stress: [CS]) or ten social defeat stress over the course of 21 days (intermittent social defeat stress [IS]). Behavioral tests (including novelty-suppressed feeding test, forced swimming test, and contextually conditioned fear) were conducted. Protein expression levels of phosphorylated CREB and BDNF in the dorsal and ventral hippocampi were examined. CS led to heightened anxiety-like behavior, fear, and increased levels of phosphorylated CREB in both the dorsal and ventral hippocampi. Conversely, IS resulted in increased anxiety-like behavior and behavioral despair alongside decreased levels of phosphorylated CREB and BDNF, particularly in the dorsal hippocampus. These findings indicate that chronic psychosocial stress divergently affects hippocampal CREB-BDNF signaling and emotional regulation depending on the stress episode. Such insights could enhance our understanding of the molecular basis of the heterogeneity of psychiatric disorders and facilitate the development of innovative treatment approaches to patients with psychiatric disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Cyclic AMP Response Element-Binding Protein , Hippocampus , Rats, Sprague-Dawley , Stress, Psychological , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Male , Stress, Psychological/metabolism , Stress, Psychological/psychology , Phosphorylation , Cyclic AMP Response Element-Binding Protein/metabolism , Social Defeat , Rats , Anxiety/metabolism , Anxiety/psychology , Behavior, Animal/physiology , Fear/physiology , Fear/psychology , Emotions/physiology , Depression/metabolism , Depression/psychology
20.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38839305

ABSTRACT

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.


Subject(s)
Anxiety , Mice, Knockout , Social Behavior , Animals , Male , Humans , Anxiety/metabolism , Raphe Nuclei/metabolism , Mice , Neurons/metabolism , Mice, Inbred C57BL , Behavior, Animal/physiology , Mice, Transgenic , Amino Acid Transport Systems, Acidic/metabolism , Amino Acid Transport Systems, Acidic/genetics , Proto-Oncogene Proteins c-fos/metabolism , Aggression/physiology
SELECTION OF CITATIONS
SEARCH DETAIL