Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Braz Oral Res ; 34: e005, 2020.
Article in English | MEDLINE | ID: mdl-32022224

ABSTRACT

The purpose of this study was to evaluate the effect of ionizing radiation from high energy X-ray on fluoride release, surface roughness, flexural strength, and surface chemical composition of the materials. The study groups comprised five different restorative materials: Beautifil II, GCP Glass Fill, Amalgomer CR, Zirconomer, and Fuji IX GP. Twenty disk-shaped specimens (8x2 mm) for fluoride release and 20 bar-shaped specimens (25 x 2x 2 mm) for flexural strength were prepared from each material. Each material group was divided into two subgroups: irradiated (IR) and non-irradiated (Non-IR). The specimens from IR groups were irradiated with 1.8 Gy/day for 39 days (total IR = 70.2 Gy). The amount of fluoride released into deionized water was measured using a fluoride ion-selective electrode and ion analyzer after 24 hours and on days 2, 3, 7, 15, 21, 28, 35, and 39 (n = 10). The flexural strength was evaluated using the three-point bending test (n = 10). After the period of measurement of fluoride release, seven specimens (n = 7) from each group were randomly selected to evaluate surface roughness using AFM and one specimen was randomly selected for the SEM and EDS analyses. Data were analyzed with two-way ANOVA and Tukey tests (p = 0.05). The irradiation significantly increased fluoride release and surface roughness for Amalgomer CR and Zirconomer groups (p < 0.05). No significant change in flexural strength of the materials was observed after irradiation (p > 0.05). The ionizing radiation altered the amount of fluoride release and surface roughness of only Amalgomer CR and Zirconomer. The effect could be related to the chemical compositions of materials.


Subject(s)
Apatites/radiation effects , Bisphenol A-Glycidyl Methacrylate/radiation effects , Composite Resins/radiation effects , Fluorides/chemistry , Glass Ionomer Cements/radiation effects , Radiation, Ionizing , Zirconium/radiation effects , Analysis of Variance , Apatites/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Composite Resins/chemistry , Flexural Strength , Glass Ionomer Cements/chemistry , Materials Testing , Microscopy, Electron, Scanning , Reference Values , Reproducibility of Results , Spectrometry, X-Ray Emission , Statistics, Nonparametric , Surface Properties/radiation effects , Time Factors , Zirconium/chemistry
2.
Braz. oral res. (Online) ; 34: e005, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055521

ABSTRACT

Abstract The purpose of this study was to evaluate the effect of ionizing radiation from high energy X-ray on fluoride release, surface roughness, flexural strength, and surface chemical composition of the materials. The study groups comprised five different restorative materials: Beautifil II, GCP Glass Fill, Amalgomer CR, Zirconomer, and Fuji IX GP. Twenty disk-shaped specimens (8x2 mm) for fluoride release and 20 bar-shaped specimens (25 x 2x 2 mm) for flexural strength were prepared from each material. Each material group was divided into two subgroups: irradiated (IR) and non-irradiated (Non-IR). The specimens from IR groups were irradiated with 1.8 Gy/day for 39 days (total IR = 70.2 Gy). The amount of fluoride released into deionized water was measured using a fluoride ion-selective electrode and ion analyzer after 24 hours and on days 2, 3, 7, 15, 21, 28, 35, and 39 (n = 10). The flexural strength was evaluated using the three-point bending test (n = 10). After the period of measurement of fluoride release, seven specimens (n = 7) from each group were randomly selected to evaluate surface roughness using AFM and one specimen was randomly selected for the SEM and EDS analyses. Data were analyzed with two-way ANOVA and Tukey tests (p = 0.05). The irradiation significantly increased fluoride release and surface roughness for Amalgomer CR and Zirconomer groups (p < 0.05). No significant change in flexural strength of the materials was observed after irradiation (p > 0.05). The ionizing radiation altered the amount of fluoride release and surface roughness of only Amalgomer CR and Zirconomer. The effect could be related to the chemical compositions of materials.


Subject(s)
Apatites/radiation effects , Radiation, Ionizing , Bisphenol A-Glycidyl Methacrylate/radiation effects , Composite Resins/radiation effects , Fluorides/chemistry , Glass Ionomer Cements/radiation effects , Apatites/chemistry , Reference Values , Spectrometry, X-Ray Emission , Surface Properties/radiation effects , Time Factors , Zirconium/radiation effects , Zirconium/chemistry , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Bisphenol A-Glycidyl Methacrylate/chemistry , Statistics, Nonparametric , Composite Resins/chemistry , Flexural Strength , Glass Ionomer Cements/chemistry
3.
Caries Res ; 46(5): 441-51, 2012.
Article in English | MEDLINE | ID: mdl-22739669

ABSTRACT

This study evaluated the effect of Er,Cr:YSGG laser irradiation and professional fluoride application on enamel demineralization and on fluoride formation and retention. In a blind in vitro study, 264 human enamel slabs were distributed into 8 groups: G1--untreated; G2--treated with acidulated phosphate fluoride gel (APF gel, 1.23% F) for 4 min; G3, G4 and G5--irradiated with Er,Cr:YSGG at 2.8, 5.6 and 8.5 J/cm2, respectively; G6, G7 and G8--preirradiated with Er,Cr:YSGG at 2.8, 5.6 and 8.5 J/cm2, respectively, and subjected to APF gel application. Twenty slabs of each group were submitted to a pH-cycling regimen, and enamel demineralization was evaluated in 10 slabs of each group. In the other 10 slabs, CaF2-like material was determined. To evaluate F formed, 10 additional slabs of each group, not subjected to the pH cycling, were submitted to analysis of CaF2-like material and fluorapatite, while the other 3 slabs of each group were evaluated by scanning electron microscopy. The F content was also measured in all pH-cycling solutions. Laser at 8.5 J/cm2 and APF treatment reduced enamel demineralization compared to the control (p < 0.05), but the combination of these treatments was not more efficient than their isolated effect. A higher concentration of retained CaF2-like material was found in laser groups followed by APF in comparison with the APF gel treatment group. The findings suggest that laser treatment at 8.5 J/cm2 was able to decrease hardness loss, even though no additive effect with APF was observed. In addition, laser treatment increased the formation and retention of CaF2 on dental enamel.


Subject(s)
Cariostatic Agents/therapeutic use , Dental Enamel/radiation effects , Fluorides/therapeutic use , Lasers, Solid-State/therapeutic use , Tooth Demineralization/prevention & control , Acidulated Phosphate Fluoride/analysis , Acidulated Phosphate Fluoride/therapeutic use , Apatites/analysis , Apatites/radiation effects , Calcium Fluoride/analysis , Calcium Fluoride/radiation effects , Cariostatic Agents/analysis , Dental Enamel/drug effects , Dental Enamel/ultrastructure , Fluorides/analysis , Hardness , Humans , Hydrogen-Ion Concentration , Ion-Selective Electrodes , Microscopy, Electron, Scanning , Single-Blind Method , Tooth Demineralization/metabolism , Tooth Remineralization
4.
Radiat Prot Dosimetry ; 101(1-4): 539-44, 2002.
Article in English | MEDLINE | ID: mdl-12382807

ABSTRACT

Synthetic A-type carbonated apatite prepared in controlled conditions was irradiated at room temperature with 60Co gamma rays. The ESR spectrum was associated to axial CO2- and orthorhombic CO3- species. Radicals used as dose markers in biological apatites are long-lived paramagnetic species. The stability of the post-irradiation signal of A-type apatite was investigated for almost 2 years. Measurements showed variations in the spectra attributed to unstable CO3- species, which can be eliminated by thermal treatments at 100 degrees C for 24 h. Results indicated the potential use of an A-type carbonated apatite as a dosemeter.


Subject(s)
Apatites/chemistry , Apatites/radiation effects , Carbonates , Electromagnetic Fields , Electron Spin Resonance Spectroscopy/methods , Radiometry/methods , Reproducibility of Results
5.
Appl Radiat Isot ; 52(5): 1093-7, 2000 May.
Article in English | MEDLINE | ID: mdl-10836411

ABSTRACT

Synthetic A-type carbonated apatite samples were irradiated at room temperature with 60Co gamma rays. Their ESR spectra consist of the lines of CO2- and CO3- radicals of orthorhombic and axial symmetry. The measurements carried out immediately after sample irradiation showed that CO2- species are produced by decomposition of CO3- radicals. Intensity of the CO2- lines in the synthetic and enamel samples increases during the first 400 and 200 h after irradiation, respectively. The dependence of the EPR signal on the dose varies with carbonate content of the sample. The dose response curve for tooth enamel is steeper for the synthetic material.


Subject(s)
Apatites/radiation effects , Dental Enamel/radiation effects , Electron Spin Resonance Spectroscopy/methods , Radiometry/methods , Apatites/chemical synthesis , Apatites/chemistry , Dental Enamel/chemistry , Dose-Response Relationship, Radiation , Free Radicals , Gamma Rays , Humans , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL