Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.290
Filter
1.
Chirality ; 36(8): e23702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138008

ABSTRACT

Pistacia palaestina Boiss. is a common tree in the Mediterranean maquis. The leaves of this plant accumulate defensive monoterpenes, whose levels greatly increase in galls induced by the aphid Baizongia pistaciae. We previously found a significant chemopolymorphism in monoterpene content among individual trees, but the chirality of these monoterpenes was unknown. Although most plant species specifically accumulate one enantiomeric form of a given compound, P. palaestina individuals display chemopolymorphism in the chirality of the key monoterpenes accumulated. We report here a marked enantiomeric variation for the limonene, α- and ß-pinene, camphene, sabinene, δ-3-carene, and terpene-4-ol content in leaves and galls of nine different naturally growing P. palaestina trees. Interestingly, insect-induced gall monoterpene composition is an augmentation of the specific enantiopolymorphism originally displayed by each individual tree.


Subject(s)
Monoterpenes , Pistacia , Plant Leaves , Plant Leaves/chemistry , Monoterpenes/chemistry , Pistacia/chemistry , Stereoisomerism , Animals , Aphids , Plant Tumors/parasitology
2.
J Agric Food Chem ; 72(32): 17824-17833, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088303

ABSTRACT

Sitobion miscanthi, the main species of wheat aphids, is one kind of harmful pest. Chemical insecticides are the important agrochemical products to effectively control wheat aphids. However, the broad application has led to serious resistance of pests to several insecticides, and understanding insecticide resistance mechanisms is critical for integrated pest management. In this study, SmUGGT1, a new uridine diphosphate (UDP)-glycosyltransferase (UGT) gene, was cloned and more strongly expressed in the SM-R (the resistant strain to imidacloprid) than in the SM-S (the susceptible strain to imidacloprid). The increased susceptibility to imidacloprid was observed after silencing SmUGGT1, indicating that it can be related to the resistance to imidacloprid. Subsequently, SmUGGT1 regulated post-transcriptionally in the coding sequences (CDs) by miR-81 was verified and involved in the resistance to imidacloprid in S. miscanthi. This finding is crucial in the roles of UGT involved in insecticide resistance management in pests.


Subject(s)
Aphids , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Nitro Compounds/pharmacology , Neonicotinoids/pharmacology , Insecticides/pharmacology , Animals , Insecticide Resistance/genetics , Aphids/genetics , Aphids/drug effects , Triticum/genetics , Triticum/metabolism , Triticum/parasitology , Triticum/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Braz J Biol ; 84: e284320, 2024.
Article in English | MEDLINE | ID: mdl-39166691

ABSTRACT

Piercing sucking pests attacking sweet pepper plants cause significant losses to its yield. Considering the undesirable effects of synthetic pesticides, field studies were conducted to evaluate the impact of new pesticides against piercing sucking insect pests of sweet pepper, as well as, their effects on some predators and pepper yield along two seasons of 2021-2022. The obtained results indicated that all tested pesticides effectively suppressed the sucking insect populations (aphids, white fly, thrips) 1,7,14 and 21 days after treatment along two sprays during two seasons. Imidacloprid proved to be the superior one over all other treatments where it recorded mean reduction% (98.91 and 97.27%) & (94.8 and 95.19%), (86.23 and 76.64%) & (80.92 and 88.55%) and (77.68 and 78.44%) & (90.70 and 68.57%) in white fly, aphids and thrips, respectively at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. As for side effects of tested insecticides on natural enemies, Dimethoate induced the highest decrease (60.85 and 69.33%) & (54.02 and 63.41%), (65.52 and 64.74%) & (59.23 and 58.38%) and (64.24 and 59.48%) & (61.66 and 60.8%) on Chrysoperla carnea, Paederus alfierii and Coccinella spp at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. On contrary, Spintoram induced the lowest effects on Chrysoperla carnea, Paederus alfierii and Coccinella spp, recording decrease percent (25.41 and 19.84%) & (15.02 and 12.50%), (11.94 and 11.24%) (16.99 and 18.02%) and (18.73 and15.07%) & (18.35 and18.38%) at1st and 2nd sprays at 2021 and 2022 seasons, respectively. With respect to the effect of tested insecticides on pepper yield, all tested insecticides increased the yield of green pepper fruits compared with control. Imidacloprid achieved the highest fruit yields along two seasons 6.43 and 6.52 (ton / fed.4200 m2) with increase percent 34.53 and 36.04% in yield over control at 2021 and 2022 seasons, respectively.


Subject(s)
Aphids , Capsicum , Insecticides , Neonicotinoids , Nitro Compounds , Seasons , Animals , Insecticides/pharmacology , Capsicum/drug effects , Capsicum/parasitology , Nitro Compounds/pharmacology , Aphids/drug effects , Aphids/physiology , Neonicotinoids/pharmacology , Imidazoles/pharmacology , Thysanoptera/drug effects , Thysanoptera/physiology , Insecta/drug effects , Insecta/physiology , Time Factors
4.
J Vis Exp ; (209)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39141533

ABSTRACT

Wheat plants infested by Russian wheat aphids (RWA) induce a cascade of defense responses, including the hypersensitive responses (HR) and induction of pathogenesis-related (PR) proteins, such as ß-1,3-glucanase and peroxidase (POD). This study aims to characterize the physicochemical properties of cell wall-associated POD and ß-1,3-glucanase and determine their synergism on the cell wall modification during RWASA2-wheat interaction. The susceptible Tugela, moderately resistant Tugela-Dn1, and resistant Tugela-Dn5 cultivars were pregerminated and planted under greenhouse conditions, fertilized 14 days after planting, and irrigated every 3 days. The plants were infested with 20 parthenogenetic individuals of the same RWASA2 clone at the 3-leaf stage, and leaves were harvested at 1 to 14 days post-infestation. The Intercellular wash fluid (IWF) was extracted using vacuum filtration and stored at -20 °C. Leaf residues were crushed into powder and used for cell wall components. POD activity and characterization were determined using 5 mM guaiacol substrate and H2O2, monitoring change in absorbance at 470 nm. ß-1,3-glucanase activity, pH, and temperature optimum conditions were demonstrated by measuring the total reducing sugars in the hydrolysate with DNS reagent using ß-1,3-glucan and ß-1,3-1,4-glucan substrates, measuring the absorbance at 540 nm, and using glucose standard curve. The pH optimum was determined between pH 4 to 9, temperature optimum between 25 and 50 °C, and thermal stability between 30 °C and 70 °C. ß-1,3-glucanase substrate specificity was determined at 25 °C and 40 °C using curdlan and barley ß-1,3-1,4-glucan substrates. Additionally, the ß-1,3-glucanase mode of action was determined using laminaribiose to laminaripentaose. The oligosaccharide hydrolysis product patterns were qualitatively analyzed with thin-layer chromatography (TLC) and quantitatively analyzed with HPLC. The method presented in this study demonstrates a robust approach for infesting wheat with RWA, extracting peroxidase and ß-1,3-glucanase from the cell wall region and their comprehensive biochemical characterization.


Subject(s)
Aphids , Cell Wall , Triticum , Triticum/chemistry , Cell Wall/chemistry , Cell Wall/metabolism , Animals , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Plant Diseases/parasitology
5.
Arch Insect Biochem Physiol ; 116(3): e22133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054788

ABSTRACT

Multiple species within the order Hemiptera cause severe agricultural losses on a global scale. Aphids and whiteflies are of particular importance due to their role as vectors for hundreds of plant viruses, many of which enter the insect via the gut. To facilitate the identification of novel targets for disruption of plant virus transmission, we compared the relative abundance and composition of the gut plasma membrane proteomes of adult Bemisia tabaci (Hemiptera: Aleyrodidae) and Myzus persicae (Hemiptera: Aphididae), representing the first study comparing the gut plasma membrane proteomes of two different insect species. Brush border membrane vesicles were prepared from dissected guts, and proteins extracted, identified and quantified from triplicate samples via timsTOF mass spectrometry. A total of 1699 B. tabaci and 1175 M. persicae proteins were identified. Following bioinformatics analysis and manual curation, 151 B. tabaci and 115 M. persicae proteins were predicted to localize to the plasma membrane of the gut microvilli. These proteins were further categorized based on molecular function and biological process according to Gene Ontology terms. The most abundant gut plasma membrane proteins were identified. The ten plasma membrane proteins that differed in abundance between the two insect species were associated with the terms "protein binding" and "viral processes." In addition to providing insight into the gut physiology of hemipteran insects, these gut plasma membrane proteomes provide context for appropriate identification of plant virus receptors based on a combination of bioinformatic prediction and protein localization on the surface of the insect gut.


Subject(s)
Aphids , Gastrointestinal Tract , Insect Proteins , Insect Vectors , Plant Viruses , Animals , Insect Proteins/metabolism , Insect Vectors/virology , Insect Vectors/metabolism , Aphids/virology , Aphids/metabolism , Gastrointestinal Tract/virology , Gastrointestinal Tract/metabolism , Membrane Proteins/metabolism , Hemiptera/virology , Hemiptera/metabolism , Proteome , Cell Membrane/metabolism
6.
Sci Data ; 11(1): 803, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033163

ABSTRACT

Slavum lentiscoides and Chaetogeoica ovagalla are two aphid species from the subtribe Fordina of Fordini within the subfamily Eriosomatinae, and they produce galls on their primary host plants Pistacia. We assembled chromosome-level genomes of these two species using Nanopore long-read sequencing and Hi-C technology. A 332 Mb genome assembly of S. lentiscoides with a scaffold N50 of 19.77 Mb, including 11,747 genes, and a 289 Mb genome assembly of C. ovagalla with a scaffold N50 of 11.85 Mb, containing 14,492 genes, were obtained. The Benchmarking Universal Single-Copy Orthologs (BUSCO) benchmark of the two genome assemblies reached 93.7% (91.9% single-copy) and 97.0% (95.3% single-copy), respectively. The high-quality genome assemblies in our study provide valuable resources for future genomic research of galling aphids.


Subject(s)
Aphids , Genome, Insect , Animals , Aphids/genetics , Chromosomes, Insect
7.
New Phytol ; 243(4): 1539-1553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39021237

ABSTRACT

The interactions among plant viruses, insect vectors, and host plants have been well studied; however, the roles of insect viruses in this system have largely been neglected. We investigated the effects of MpnDV infection on aphid and PVY transmission using bioassays, RNA interference (RNAi), and GC-MS methods and green peach aphid (Myzus persicae (Sulzer)), potato virus Y (PVY), and densovirus (Myzus persicae nicotianae densovirus, MpnDV) as model systems. MpnDV increased the activities of its host, promoting population dispersal and leading to significant proliferation in tobacco plants by significantly enhancing the titer of the sesquiterpene (E)-ß-farnesene (EßF) via up-regulation of expression levels of the MpFPPS1 gene. The proliferation and dispersal of MpnDV-positive individuals were faster than that of MpnDV-negative individuals in PVY-infected tobacco plants, which promoted the transmission of PVY. These results combined showed that an insect virus may facilitate the transmission of a plant virus by enhancing the locomotor activity and population proliferation of insect vectors. These findings provide novel opportunities for controlling insect vectors and plant viruses, which can be used in the development of novel management strategies.


Subject(s)
Aphids , Densovirus , Nicotiana , Plant Diseases , Aphids/virology , Aphids/physiology , Animals , Nicotiana/virology , Nicotiana/parasitology , Plant Diseases/virology , Densovirus/physiology , Densovirus/genetics , Potyvirus/physiology , Potyvirus/pathogenicity , Sesquiterpenes/metabolism , Plant Viruses/physiology , Plant Viruses/pathogenicity
8.
Toxicon ; 247: 107851, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38969015

ABSTRACT

The cabbage aphid, Brevicoryne brassicae L. (Aphididae: Hemiptera) a destructive aphid, is native to Europe and is now found in many other parts of the world. Currently, one of the main problems of Iranian cabbage growers is the significant damage caused by this pest. Also, due to the fresh eating of cabbage, it is necessary to use non-chemical methods to control the pests. Our bioassay tests showed that Melia azedarach L. (Meliaceae) fruit extract showed high toxicity to cabbage aphid. In this study, sublethal effects of M. azedarach extract was investigated on some demographic and biochemical properties of B. brassicae. The results showed that the sublethal concentrations (LC10 and LC20) and LC50 values were 0.68, 1.16, and 3.42 µg/ml, respectively. Compared to the control, sublethal concentrations of insecticide significantly decreased the gross reproductive rate (GRR), net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), intrinsic rate of birth (b), intrinsic rate of death (d), weekly growth rate (rw), reproductive rate and adult longevity of the pest. Meanwhile, the mean generation time (T) and population doubling time (DT) of this aphid increased significantly. Additionally, sublethal doses of insecticide reduced the energy reserves of the pest such as carbohydrate, protein and lipid content compared to the controls. In addition to modify the pH, this extract also changed the distribution and concentration of sodium and potassium ions in haemolymph. Therefore, sublethal concentrations of M. Azedarach fruit extract can be used in the management program of B. brassicae.


Subject(s)
Aphids , Brassica , Insecticides , Melia azedarach , Plant Extracts , Animals , Aphids/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Melia azedarach/chemistry , Brassica/chemistry , Reproduction/drug effects
9.
Sci Rep ; 14(1): 16570, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019954

ABSTRACT

As an important pest on winter wheat, Rhopalosiphum padi (L.) causes damage to the wheat yield by sucking plant nutrients, transmitting plant viruses and producing mildew. R. padi has been reported to develop resistance to pyrethroids and neonicotinoids. To explore potential alternative approaches for R. padi control, the activity of 10 botanical insecticides was evaluated. Results suggested that the toxicity of rotenone and pyrethrins to R. padi were the highest and near to the commonly used chemical insecticides. When exposed to the low-lethal concentrations (LC10, LC30) of rotenone or pyrethrins for 24 h, the lifespan and fecundity of adults in F0 generation decreased significantly compared to control. The negative effect could also be observed in the F1 generation, including the decreased average offspring, longevity of adult, and prolonged nymph period. The population parameters in F1 generation of R. padi were also inhibited by exposing to the low-lethal concentrations of rotenone or pyrethrins, including the decreased net reproductive rate, intrinsic rate of natural increase, finite rate of population increase, and gross reproduction rate. Co-toxocity factor results showed that mixtures of rotenone and thiamethoxam, pyrethrins and thiamethoxam showed synergistic effect. Our work suggested that rotenone and pyrethrins showed negative effect on the population growth under low-lethal concentrations. They are suitable for R. padi control as foliar spraying without causing population resurgence.


Subject(s)
Insecticides , Pyrethrins , Rotenone , Pyrethrins/pharmacology , Pyrethrins/toxicity , Rotenone/pharmacology , Insecticides/pharmacology , Insecticides/toxicity , Population Growth , Animals , Aphids/drug effects , Aphids/growth & development , Triticum/growth & development , Triticum/drug effects , Reproduction/drug effects , Fertility/drug effects
10.
BMC Microbiol ; 24(1): 231, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951812

ABSTRACT

BACKGROUND: Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS: The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS: This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.


Subject(s)
Aphids , Bacillus , Insecticides , Lipopeptides , Animals , Aphids/drug effects , Bacillus/genetics , Bacillus/metabolism , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/isolation & purification , Insecticides/pharmacology , Insecticides/metabolism , Insecticides/chemistry , Multigene Family , Secondary Metabolism , Pest Control, Biological , Whole Genome Sequencing , Genome, Bacterial/genetics
11.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38989842

ABSTRACT

Advances in molecular ecology can overcome many challenges in understanding host-parasitoid interactions. Genetic characterization of the key-players in systems helps to confirm species and identify trophic linkages essential for ecological service delivery by biological control agents; however, relatively few agroecosystems have been explored using this approach. Pecan production consists of a large tree perennial system containing an assortment of seasonal pests and natural enemies. As a first step to characterizing host-parasitoid associations in pecan food webs, we focus on aphid species and their parasitoids. Based on DNA barcoding of field-collected and reared specimens, we confirmed the presence of 3 species of aphid, one family of primary parasitoids, and 5 species of hyperparasitoids. By applying metabarcoding to field-collected aphid mummies, we were able to identify multiple species within each aphid mummy to unravel a complex food web of 3 aphids, 2 primary parasitoids, and upward of 8 hyperparasitoid species. The results of this study demonstrate that multiple hyperparasitoid species attack a single primary parasitoid of pecan aphids, which may have negative consequences for successful aphid biological control. Although further research is needed on a broader spatial scale, our results suggest multiple species exist in this system and may suggest a complex set of interactions between parasitoids, hyperparasitoids, and the 3 aphid species. This was the first time that many of these species have been characterized and demonstrates the application of novel approaches to analyze the aphid-parasitoid food webs in pecans and other tree crop systems.


Subject(s)
Aphids , Food Chain , Host-Parasite Interactions , Animals , Aphids/parasitology , Aphids/genetics , Carya/parasitology , DNA Barcoding, Taxonomic , Wasps/physiology , Wasps/genetics
12.
Pestic Biochem Physiol ; 203: 106003, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084799

ABSTRACT

Metarhizium anisopliae is an effective biopesticide for controlling Aphis citricola, which has developed resistance to many chemical pesticides. However, the powerful immune system of A. citricola has limited the insecticidal efficacy of M. anisopliae. The co-evolution between insects and entomogenous fungi has led to emergence of new antifungal immune genes, which remain incompletely understood. In this study, an important immune gene Sgabd-2 was identified from A. citricola through transcriptome analysis. Sgabd-2 gene showed high expression in the 4th instar nymph and adult stages, and was mainly distributed in the abdominal region of A. citricola. The recombinant protein (rSgabd-2) exhibited no antifungal activity but demonstrated clear agglutination activity towards the conidia of M. anisopliae. RNA interference of Sgabd-2 by dsRNA feeding resulted in decreased phenoloxidase (PO) activity and weakened defense for A. citricola against M. anisopliae. Simultaneous silence of GNBP-1 and Sgabd-2 effectively reduced the immunity of A. citricola against M. anisopliae more than the individual RNAi of GNBP-1 or Sgabd-2. Furthermore, a genetically engineered M. anisopliae expressing double-stranded RNA (dsSgabd-2) targeting Sgabd-2 in A. citricola successfully suppressed the expression of Sgabd-2 and demonstrated increased virulence against A. citricola. Our findings elucidated Sgabd-2 as a critical new antifungal immune gene and proposed a genetic engineering strategy to enhance the insecticidal virulence of entomogenous fungi through RNAi-mediated inhibition of pest immune genes.


Subject(s)
Aphids , Metarhizium , Metarhizium/pathogenicity , Animals , Aphids/microbiology , Pest Control, Biological/methods , Biological Control Agents , Insect Proteins/genetics , Insect Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , RNA Interference
13.
Curr Opin Insect Sci ; 64: 101205, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084848

ABSTRACT

Sociality is also evolved in parthenogenetic herbivorous hemipteran aphids, encompassing species with complex life history traits and significant social diversity. Owing to their interesting biological characteristics comparing to other social insect groups, social aphids can be a good model for studying insect sociality. Here, we review the species, behavior, and trait diversity of social aphids, and present recent findings on environmental, physiological, and molecular regulations of caste differentiation and behavior in social aphids. We propose the unique value of social aphids in investigating the evolution and mechanisms of insect sociality as well as future research directions using the social aphid model, including social evolution, caste differentiation, behavioral polymorphism, morphological plasticity, physical mechanics, and interspecific interactions.


Subject(s)
Aphids , Social Behavior , Animals , Aphids/physiology , Behavior, Animal/physiology , Biological Evolution
14.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000365

ABSTRACT

Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.


Subject(s)
Aphids , Gene Expression Regulation, Plant , Plant Proteins , Sorghum , Stress, Physiological , Triazoles , Sorghum/genetics , Sorghum/metabolism , Aphids/genetics , Aphids/physiology , Animals , Triazoles/pharmacology , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Oxylipins/metabolism , Oxylipins/pharmacology , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Arabidopsis/genetics , Promoter Regions, Genetic , Multigene Family , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Phylogeny , Plant Diseases/parasitology , Plant Diseases/genetics , Genome, Plant
15.
J Agric Food Chem ; 72(31): 17271-17282, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052523

ABSTRACT

Ethyl 5-cyano-1,6-dihydro-2-methyl-4-(2'-thienyl)-6-thioxonicotinate (A) was synthesized and reacted with ethyl chloroacetate in the presence of sodium acetate or sodium carbonate to give ethyl 5-cyano-6-((2-ethoxy-2-oxoethyl)thio)-2-methyl-4-(2'-thienyl)nicotinate (1a) or its isomeric thieno[2,3-b]pyridine 2a. 3-Aminothieno[2,3-b]pyridine-2-carboxamide 2b was also synthesized by the reaction of A with 2-chloroacetamide. The reaction of 1a with hydrazine hydrate in boiling ethanol gave acethydrazide 3. Heating ester 1a with hydrazine hydrate under neat conditions afforded 3-amino-1H-pyrazolo[3,4-b]pyridine 10. Compounds 2b, 3, and 10 were used as precursors for synthesizing other new thieno[2,3-b]pyridines and pyrazolo[3,4-b]pyridines containing mainly the ethyl nicotinate scaffold. Structures of all new compounds were confirmed by elemental and spectral analyses. Most of the obtained compounds were evaluated for their insecticidal activity toward the nymphs and adults of Aphis gossypii (Glover,1887). Some compounds such as 4, 9b, and 9c showed promising results. The effect of some sublethal concentrations, less than LC50, of compounds 4, 9b, and 9c on the examined Aphis was subjected to a further study. The results demonstrated that exposure of A. gossypii nymphs to sublethal concentrations of compounds 4, 9b, and 9c had noticeable effects on their biological parameters, i.e., nymphal instar duration, generation time, and adult longevity. The highest concentration C1 of all three compounds increased the nymphal instar duration and generation time and decreased adult longevity and vice versa.


Subject(s)
Aphids , Insecticides , Pyridines , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , Pyridines/chemistry , Aphids/drug effects , Molecular Structure , Structure-Activity Relationship , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Nicotinic Acids/chemistry , Nicotinic Acids/pharmacology
16.
J Agric Food Chem ; 72(31): 17317-17327, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39067067

ABSTRACT

With high aphid-repellent activity but low stability, (E)-ß-farnesene (EßF), the major component of the aphid alarm pheromone, can be used as a synergist to insecticides. Some EßF analogues possess both good aphid-repellent activity and stability, but the synergistic effect and related mechanism are still unclear. Therefore, this study investigated the synergistic effect and underlying mechanism of the EßF and its analogue against the aphid Myzus persicae. The results indicated that EßF and the analogue showed significantly synergistic effects to different insecticides, with synergism ratios from 1.524 to 3.446. Mechanistic studies revealed that EßF and the analogue exhibited effective repellent activity, significantly upregulated target OBP genes by 161 to 731%, increased aphid mobility, and thereby enhanced contact with insecticides. This research suggests that the EßF analogue represents a novel synergist for insecticides, with the potential for further application in aphid control owing to its enhanced bioactivity and the possibility of reducing insecticide doses.


Subject(s)
Aphids , Drug Synergism , Insecticides , Sesquiterpenes , Aphids/drug effects , Animals , Insecticides/chemistry , Insecticides/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Prunus persica/chemistry , Prunus persica/parasitology , Insect Repellents/chemistry , Insect Repellents/pharmacology
17.
Mol Ecol ; 33(16): e17466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39022998

ABSTRACT

Gall-forming insects induce various types of galls on their host plants by altering gene expression in host plant organs, and recent studies have been conducted for gene expression in galls. However, the evolutionary trajectories of gene expression patterns and the resulting phenotypes have not yet been studied using multiple related species. We investigated the speciation and the diversification process of galls induced by four closely related aphid species (Hormaphidini) on a host plant species (Hamamelis japonica) by examining the phylogenetic congruence between the geographical divergences of aphids and the host plant, and by comparing their gene expression patterns and resulting phenotypes. Phylogenetic analysis of aphids and the host plant showed that geographical isolation among host plant populations has interrupted gene flow in aphids and accelerated the speciation process. The concentration of phenolics and the complexity of the internal structure of galls were correlated with the expression levels of genes for the biosynthesis of phenolics and morphogenesis respectively. These results suggest that the expression levels of genes for the biosynthesis of phenolics and morphogenesis have evolutionarily increased in galls accelerated by the speciation process of aphids due to the distribution change of the host plant, leading to the related phenotypic evolution. Our study showed the evolutionary process of phenotypic traits in galls in the wild from both gene expression and actual phenotype levels.


Subject(s)
Aphids , Phylogeny , Plant Tumors , Aphids/genetics , Animals , Plant Tumors/parasitology , Plant Tumors/genetics , Phenotype , Gene Flow , Biological Evolution , Secondary Metabolism/genetics , Host-Parasite Interactions/genetics , Genetic Speciation , Gene Expression , Phenols/metabolism
18.
mBio ; 15(8): e0111624, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39028184

ABSTRACT

Many organisms harbor heritable bacterial symbionts that offer context-specific benefits to their hosts. In some of these symbioses, symbionts live inside host cells as endosymbionts. Studying the biology of endosymbiosis is challenging because it is hard to independently cultivate hosts and endosymbionts. A recent study, using a simple defined growth medium at ambient temperature, established an axenic culture of the pea aphid's heritable bacterial endosymbiont, Candidatus Fukatsuia symbiotica (G. P. Maeda, M. K. Kelly, A. Sundar, and N. A. Moran, mBio 15:e03253-23, 2024, https://doi.org/10.1128/mbio.03253-23). Notably, the monoculture was capable of host recolonization, was stably transmitted, and returned similar host phenotypes to those observed in native infections. This advance in uncoupling the cultivation of an endosymbiont and its host opens avenues for genetic manipulation of the endosymbiont that will facilitate hypothesis-driven work to explore the mechanisms of host-endosymbiont biology and potentially facilitate the development of symbiont-mediated practical-application biotechnologies.


Subject(s)
Aphids , Host Microbial Interactions , Symbiosis , Animals , Aphids/microbiology , Aphids/physiology , Bacteria/genetics , Bacteria/growth & development
19.
Sci Total Environ ; 949: 174955, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39069177

ABSTRACT

Precise, effective and green control plays an essential role in reducing environmental and ecosystem damage. Seed treatment has proven effective and long-lasting for target organisms, and exploring the reasons for long-term protection is important for sustainable agricultural development. This study examined the uptake and metabolism behaviour of thiamethoxam under seed treatment in wheat samples throughout the whole growth cycle, as well as the associated synergistic effects of thiamethoxam and its metabolites during the most severe period of aphid occurrence. Uptake and metabolism results showed that 41 % of thiamethoxam and its active metabolites (clothianidin and demethyl-clothianidin) accumulated mainly in flag leaves of wheat, severely harming aphids, which was significant in controlling leaf-feeding pests. Combined activity results showed that thiamethoxam, clothianidin and demethyl-clothianidin produced synergistic efficacy in controlling aphids, with cotoxicity coefficients ranging from 179.34 to 452.07. Compared with the control, thiamethoxam seed treatments at a rate of 1.5 a.i. g/kg seeds and 3.0 a.i. g/kg seeds can significantly enhance salicylic acid (55 % and 41 %) and jasmonic acid (168 % and 125 %) concentrations and invoke changes in the concentrations of plant secondary substances, which promoted wheat resistance to aphids. Future studies cannot ignore the synergistic effects of metabolites and plant secondary substances in pest control. These results provided data support for reducing pesticide use, increasing efficiency and making more rational use of neonicotinoid insecticides.


Subject(s)
Aphids , Insecticides , Seeds , Thiamethoxam , Triticum , Animals , Triticum/metabolism , Aphids/drug effects , Insecticides/toxicity , Seeds/drug effects , Neonicotinoids , Thiazoles
20.
Int J Biol Macromol ; 276(Pt 2): 133970, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029816

ABSTRACT

Chitinase plays a vital role in the virulence of entomopathogenic fungi (EPF) when it infects host insects. We used gene recombination technology to express chitinase of three strains of Lecanicillium lecanii: Vl6063, V3450, and Vp28. The ORF of ChitVl6063, ChitV3450 and ChitVp28 were inserted into the fungal expression vector pBARGPE-1, which contained strong promoter and terminator, respectively, to construct a chitinase overpressing plasmid, then transformed the wild-type strain with blastospore transformation method. The virulence of the three recombinant strains against Toxoptera aurantii was improved by overproduction of ChitVl6063, ChitV3450, and ChitVp28, as demonstrated by significantly lower 3.43 %, 1.72 %, and 1.23 % fatal doses, respectively, according to an insect bioassay. Similarly, lethal times of recombinants (ChitVl6063, ChitV3450 and ChitVp28) were also decreased up to 29.51 %, 30.46 % and 33.90 %, respectively, compared to the wild-type strains. Improving the expression of chitinase is considered as an effective method for the enhancement of the EPF value. The efficacy could be enhanced using recombinant technology, which provides a prospecting view for future insecticidal applications.


Subject(s)
Aphids , Chitinases , Hypocreales , Chitinases/genetics , Chitinases/metabolism , Animals , Aphids/genetics , Hypocreales/genetics , Hypocreales/pathogenicity , Hypocreales/enzymology , Virulence/genetics , Citrus/microbiology , Citrus/parasitology , Pest Control, Biological/methods
SELECTION OF CITATIONS
SEARCH DETAIL