Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.208
Filter
1.
FASEB J ; 38(16): e70024, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190024

ABSTRACT

The role of programmed cell death 4 (PDCD4) in multiple myeloma (MM) development remains unknown. Here, we investigated its role and action mechanism in MM. Bioinformatic analysis indicated that patients with MM and high PDCD4 expression had higher overall survival than those with low PDCD4 expression. PDCD4 expression promoted MM cell apoptosis and inhibited their viability in vitro and tumor growth in vivo. RNA-binding protein immunoprecipitation sequencing analysis showed that PDCD4 is bound to the 5' UTR of the apoptosis-related genes PIK3CB, Cathepsin Z (CTSZ), and X-chromosome-linked apoptosis inhibitor (XIAP). PDCD4 knockdown reduced the cell apoptosis rate, which was rescued by adding PIK3CB, CTSZ, or XIAP inhibitors. Dual luciferase reporter assays confirmed the internal ribosome entry site (IRES) activity of the 5' UTRs of PIK3CB and CTSZ. An RNA pull-down assay confirmed binding of the 5' UTR of PIK3CB and CTSZ to PDCD4, identifying the specific binding fragments. PDCD4 is expected to promote MM cell apoptosis by binding to the IRES domain in the 5' UTR of PIK3CB and CTSZ and inhibiting their translation. Our findings suggest that PDCD4 plays an important role in MM development by regulating the expression of PIK3CB, CTSZ, and XIAP, and highlight new potential molecular targets for MM treatment.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Multiple Myeloma , RNA-Binding Proteins , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Gene Expression Regulation, Neoplastic , Female , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/genetics , Male
2.
Crit Rev Eukaryot Gene Expr ; 34(8): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-39180203

ABSTRACT

MS4A3 functions as a tumor suppressor in multiple cancer types. However, the roles of MS4A3 in lung cancer are still unknown. Therefore, this study aims to investigate the potentials of MS4A3 in lung cancer. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was carried out to determine mRNA expression. CCK-8 and colony formation assay are conducted to determine cell proliferation. Tube formation assay is performed to determine angiogenesis. Flow cytometry is used to determine cell apoptosis. JASPAR is used to analyze the binding motif of THAP1. Luciferase and ChIP assay are conducted to verify whether MS4A3 can interact with THAP1 to transcriptionally inactivate EGFR. The results showed that MS4A3 is downregulated in non-small-cell lung cancer (NSCLC) patients, which predicts poor clinical outcomes of NSCLC patients. Overexpressed MS4A3 enhances the chemosensitivity of NSCLC cells to osimertinib, whereas MS4A3 knockdown exerts the opposite effects. MS4A3 suppresses the proliferation and angiogenesis and promotes the apoptosis of NSCLC cells. Moreover, MS4A3 upregulates apoptosis-related THAP1 to inactivate EGFR. However, THAP1 knockdown attenuates the effects of MS4A3 and promotes the malignant behavior of NSCLC cells. In conclusion, MS4A3 functions as an anti-tumor gene in NSCLC. MS4A3/THAP1/EGFR signaling enhances the chemosensitivity of lung cancer to EGFR tyrosine kinase inhibitor (TKI).


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , ErbB Receptors , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Signal Transduction , Aniline Compounds/pharmacology , Acrylamides/pharmacology , Acrylamides/therapeutic use , Drug Resistance, Neoplasm/genetics , Indoles , Pyrimidines
3.
Front Immunol ; 15: 1344954, 2024.
Article in English | MEDLINE | ID: mdl-39139574

ABSTRACT

Background: Introduction: Circular RNAs (circRNAs) have been identified as significant contributors to the development and advancement of cancer. The objective of this study was to examine the expression and clinical implications of circRNA circ_BBS9 in lung adenocarcinoma (LUAD), as well as its potential modes of action. Methods: The expression of Circ_BBS9 was examined in tissues and cell lines of LUAD through the utilization of microarray profiling, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. In this study, we assessed the impact of circ_BBS9 on the proliferation of LUAD cells, as well as its influence on ferroptosis and tumor formation. To analyze these effects, we employed CCK-8 assays and ferroptosis assays. The identification of proteins that interact with Circ_BBS9 was achieved through the utilization of RNA pull-down and mass spectrometry techniques. A putative regulatory network comprising circ_BBS9, miR-7150, and IFIT3 was established using bioinformatics study. The investigation also encompassed the examination of the correlation between the expression of IFIT3 and the invasion of immune cells. Results: Circ_BBS9 was significantly downregulated in LUAD tissues and cell lines. Low circ_BBS9 expression correlated with poor prognosis. Functional experiments showed that circ_BBS9 overexpression inhibited LUAD cell proliferation and promoted ferroptosis in vitro and suppressed tumor growth in vivo. Mechanistically, circ_BBS9 was found to directly interact with IFIT3 and regulate its expression by acting as a sponge for miR-7150. Additionally, IFIT3 expression correlated positively with immune infiltration in LUAD. Conclusion: Circ_BBS9 has been identified as a tumor suppressor in lung adenocarcinoma (LUAD) and holds promise as a diagnostic biomarker. The potential mechanism of action involves the modulation of ferroptosis and the immunological microenvironment through direct interaction with IFIT3 and competitive binding to miR-7150. The aforementioned findings offer new perspectives on the pathophysiology of LUAD and highlight circ_BBS9 as a potentially valuable target for therapeutic interventions.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Ferroptosis , Gene Expression Regulation, Neoplastic , Lung Neoplasms , RNA, Circular , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , RNA, Circular/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/diagnosis , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Animals , Mice , Ferroptosis/genetics , Ferroptosis/immunology , Cell Line, Tumor , MicroRNAs/genetics , Male , Cell Proliferation , Female , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Middle Aged , Mice, Nude , Intracellular Signaling Peptides and Proteins
4.
Sci Rep ; 14(1): 17875, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39090168

ABSTRACT

TNFAIP8 family molecules have been recognized for their involvement in the progression of tumors across a range of cancer types. Emerging experimental data suggests a role for certain TNFAIP8 family molecules in the development of glioma. Nonetheless, the comprehensive understanding of the genomic alterations, prognostic significance, and immunological profiles of TNFAIP8 family molecules in glioma remains incomplete. In the study, using the comprehensive bioinformatics tools, we explored the unique functions of 4 TNFAIP8 members including TNFAIP8, TNFAIP8L1, TNFAIP8L2 and TNFAIP8L3 in glioma. The expressions of TNFAIP8, TNFAIP8L1, TNFAIP8L2, and TNFAIP8L3 were notably upregulated in glioma tissues compared to normal tissues. Furthermore, survival analysis indicated that elevated expression levels of TNFAIP8, TNFAIP8L1 and TNFAIP8L2 were correlated with unfavorable outcomes in terms of overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) among glioma patients. Genetic modifications, such as mutations and copy number alterations, within the TNFAIP8 family exhibited a significant association with extended OS, DSS and PFS in individuals diagnosed with glioma. The findings suggest a noteworthy correlation between TNFAIP8 family members and the age and 1p/19q codeletion status of glioma patients. We also found that there were significant relationships between TNFAIP8 family expression and tumor immunity in glioma. Furthermore, functional annotation of TNFAIP8 family members and their co-expressed genes in gliomas was carried out using GO and KEGG pathway analysis. The GO analysis revealed that the primary biological processes influenced by the TNFAIP8 family co-expressed genes included cell chemotaxis, temperature homeostasis, and endocytic vesicle formation. Additionally, the KEGG analysis demonstrated that TNFAIP8 family co-expressed genes are involved in regulating various pathways such as inflammatory mediator regulation of TRP channels, pathways in cancer, prolactin signaling pathway, and Fc gamma R-mediated phagocytosis. Overall, the findings suggest that TNFAIP8 family members may play a significant role in the development of glioma and have the potential to serve as prognostic indicators and therapeutic targets for individuals with glioma.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Glioma , Humans , Apoptosis Regulatory Proteins/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Computational Biology/methods , Glioma/genetics , Glioma/immunology , Glioma/mortality , Glioma/pathology , Mutation , Prognosis
5.
Nat Commun ; 15(1): 6633, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117603

ABSTRACT

Translation is regulated mainly in the initiation step, and its dysregulation is implicated in many human diseases. Several proteins have been found to regulate translational initiation, including Pdcd4 (programmed cell death gene 4). Pdcd4 is a tumor suppressor protein that prevents cell growth, invasion, and metastasis. It is downregulated in most tumor cells, while global translation in the cell is upregulated. To understand the mechanisms underlying translational control by Pdcd4, we used single-particle cryo-electron microscopy to determine the structure of human Pdcd4 bound to 40S small ribosomal subunit, including Pdcd4-40S and Pdcd4-40S-eIF4A-eIF3-eIF1 complexes. The structures reveal the binding site of Pdcd4 at the mRNA entry site in the 40S, where the C-terminal domain (CTD) interacts with eIF4A at the mRNA entry site, while the N-terminal domain (NTD) is inserted into the mRNA channel and decoding site. The structures, together with quantitative binding and in vitro translation assays, shed light on the critical role of the NTD for the recruitment of Pdcd4 to the ribosomal complex and suggest a model whereby Pdcd4 blocks the eIF4F-independent role of eIF4A during recruitment and scanning of the 5' UTR of mRNA.


Subject(s)
Apoptosis Regulatory Proteins , Cryoelectron Microscopy , Protein Binding , RNA, Messenger , RNA-Binding Proteins , Ribosome Subunits, Small, Eukaryotic , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/genetics , Binding Sites , Protein Biosynthesis , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Models, Molecular
7.
Front Biosci (Landmark Ed) ; 29(7): 258, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39082356

ABSTRACT

According to the research, obesity is associated with hyperlipidemia, hypertension, and type 2 diabetes mellitus, which are grouped as metabolic syndrome. Notably, under the obese status, the adipocyte could accumulate excessive lipid as lipid droplets (LDs), leading the dysfunctional fat mass. Recently, emerging evidence has shown that the cell death-inducing DNA fragmentation factor 45-like effector protein (CIDE) family played an important role in regulating lipid metabolism. In addition, diverse CIDE proteins were also confirmed to influence the intracellular lipid metabolism, such as within adipocyte, hepatocyte, and macrophage. Nevertheless, the results which showed the regulatory influence of CIDE proteins are significantly contradictory from in vitro experiments and in vivo clinical studies. Similarly, recent studies have changed the perception of these proteins, redefining them as regulators of lipid droplet dynamics and fat metabolism, which contribute to a healthy metabolic phenotype in humans. However, the underlying mechanisms by which the diverse CIDE proteins alter lipid metabolism are not elucidated. In the current review, the understandings of CIDE proteins in lipid catabolism were well-summarized. On the other hand, the relatively mechanisms were also proposed for the further understandings of the CIDE protein family.


Subject(s)
Dyslipidemias , Lipid Metabolism , Humans , Dyslipidemias/metabolism , Dyslipidemias/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Lipid Droplets/metabolism , Adipocytes/metabolism , Obesity/metabolism , Obesity/genetics
8.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063139

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver disease worldwide. Caspase 8 and FADD-like apoptosis regulator (CFLAR) has been identified as a potent factor in mitigating non-alcoholic steatohepatitis (NASH) by inhibiting the N-terminal dimerization of apoptosis signal-regulating kinase 1 (ASK1). While arginine methyltransferase 1 (PRMT1) was previously reported to be associated with increased hepatic glucose production, its involvement in hepatic lipid metabolism remains largely unexplored. The interaction between PRMT1 and CFLAR and the methylation of CFLAR were verified by Co-IP and immunoblotting assays. Recombinant adenoviruses were generated for overexpression or knockdown of PRMT1 in hepatocytes. The role of PRMT1 in NAFLD was investigated in normal and high-fat diet-induced obese mice. In this study, we found a significant upregulation of PRMT1 and downregulation of CFLAR after 48h of fasting, while the latter significantly rebounded after 12h of refeeding. The expression of PRMT1 increased in the livers of mice fed a methionine choline-deficient (MCD) diet and in hepatocytes challenged with oleic acid (OA)/palmitic acid (PA). Overexpression of PRMT1 not only inhibited the expression of genes involved in fatty acid oxidation (FAO) and promoted the expression of genes involved in fatty acid synthesis (FAS), resulting in increased triglyceride accumulation in primary hepatocytes, but also enhanced the gluconeogenesis of primary hepatocytes. Conversely, knockdown of hepatic PRMT1 significantly alleviated MCD diet-induced hepatic lipid metabolism abnormalities and liver injury in vivo, possibly through the upregulation of CFLAR protein levels. Knockdown of PRMT1 suppressed the expression of genes related to FAS and enhanced the expression of genes involved in FAO, causing decreased triglyceride accumulation in OA/PA-treated primary hepatocytes in vitro. Although short-term overexpression of PRMT1 had no significant effect on hepatic triglyceride levels under physiological conditions, it resulted in increased serum triglyceride and fasting blood glucose levels in normal C57BL/6J mice. More importantly, PRMT1 was observed to interact with and methylate CFLAR, ultimately leading to its ubiquitination-mediated protein degradation. This process subsequently triggered the activation of c-Jun N-terminal kinase 1 (JNK1) and lipid deposition in primary hepatocytes. Together, these results suggested that PRMT1-mediated methylation of CFLAR plays a critical role in hepatic lipid metabolism. Targeting PRMT1 for drug design may represent a promising strategy for the treatment of NAFLD.


Subject(s)
Hepatocytes , Lipid Metabolism , Liver , Non-alcoholic Fatty Liver Disease , Protein-Arginine N-Methyltransferases , Animals , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Hepatocytes/metabolism , Methylation , Male , Diet, High-Fat/adverse effects , Humans , Mice, Inbred C57BL , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics
9.
J Mol Neurosci ; 74(3): 71, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031207

ABSTRACT

Acupuncture is a traditional Chinese therapy with treating potential against cognitive dysfunction. MicroRNA-21-3p (miR-21-3p) is well characterized for its benefits on neural tissues. The current study hypothesizes that the acupuncture aiming "Du" channel could attenuate IS-induced neural disorders by modulating the function of REST/miR-21-3p axis. Complications associated with IS are induced by a middle cerebral artery occlusion (MCAO) model in vivo. The disorders are then handled with the acupuncture with nimodipine as the positive control. It is found that the acupuncture improved cognitive function, reduced brain apoptosis, and increased the viable neuron number of model rats. Additionally, the production of cytokines is also suppressed by the acupuncture. At the molecular level, the level of miR-21-3p was up-regulated, while the level of REST was down-regulated by the acupuncture. The changes in miR-REST/21-3p contributed to the inhibition of PDCD4. Collectively, the findings in the current study highlight that miR-21-3p is associated with the anti-IS function of the acupuncture, which is mediated by the inhibition of REST.


Subject(s)
Acupuncture Therapy , Apoptosis Regulatory Proteins , Infarction, Middle Cerebral Artery , MicroRNAs , Signal Transduction , Animals , Male , Rats , Acupuncture Therapy/methods , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Brain/metabolism , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/therapy , Ischemic Stroke/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Repressor Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
10.
Circ Res ; 135(4): e94-e113, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38957991

ABSTRACT

BACKGROUND: Cerebral vascular malformations (CCMs) are primarily found within the brain, where they result in increased risk for stroke, seizures, and focal neurological deficits. The unique feature of the brain vasculature is the blood-brain barrier formed by the brain neurovascular unit. Recent studies suggest that loss of CCM genes causes disruptions of blood-brain barrier integrity as the inciting events for CCM development. CCM lesions are proposed to be initially derived from a single clonal expansion of a subset of angiogenic venous capillary endothelial cells (ECs) and respective resident endothelial progenitor cells (EPCs). However, the critical signaling events in the subclass of brain ECs/EPCs for CCM lesion initiation and progression are unclear. METHODS: Brain EC-specific CCM3-deficient (Pdcd10BECKO) mice were generated by crossing Pdcd10fl/fl mice with Mfsd2a-CreERT2 mice. Single-cell RNA-sequencing analyses were performed by the chromium single-cell platform (10× genomics). Cell clusters were annotated into EC subtypes based on visual inspection and GO analyses. Cerebral vessels were visualized by 2-photon in vivo imaging and tissue immunofluorescence analyses. Regulation of mTOR (mechanistic target of rapamycin) signaling by CCM3 and Cav1 (caveolin-1) was performed by cell biology and biochemical approaches. RESULTS: Single-cell RNA-sequencing analyses from P10 Pdcd10BECKO mice harboring visible CCM lesions identified upregulated CCM lesion signature and mitotic EC clusters but decreased blood-brain barrier-associated EC clusters. However, a unique EPC cluster with high expression levels of stem cell markers enriched with mTOR signaling was identified from early stages of the P6 Pdcd10BECKO brain. Indeed, mTOR signaling was upregulated in both mouse and human CCM lesions. Genetic deficiency of Raptor (regulatory-associated protein of mTOR), but not of Rictor (rapamycin-insensitive companion of mTOR), prevented CCM lesion formation in the Pdcd10BECKO model. Importantly, the mTORC1 (mTOR complex 1) pharmacological inhibitor rapamycin suppressed EPC proliferation and ameliorated CCM pathogenesis in Pdcd10BECKO mice. Mechanistic studies suggested that Cav1/caveolae increased in CCM3-depleted EPC-mediated intracellular trafficking and complex formation of the mTORC1 signaling proteins. CONCLUSIONS: CCM3 is critical for maintaining blood-brain barrier integrity and CCM3 loss-induced mTORC1 signaling in brain EPCs initiates and facilitates CCM pathogenesis.


Subject(s)
Endothelial Progenitor Cells , Hemangioma, Cavernous, Central Nervous System , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Animals , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Brain/metabolism , Brain/pathology , Brain/blood supply , Mice, Knockout , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , Membrane Proteins/metabolism , Membrane Proteins/genetics
11.
Cell Death Dis ; 15(7): 540, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39080251

ABSTRACT

Cancer cells often exhibit fragmented mitochondria and dysregulated mitochondrial dynamics, but the underlying mechanism remains elusive. Here, we found that the mitochondrial protein death-associated protein 3 (DAP3) is localized to mitochondria and promotes the progression of hepatocellular carcinoma (HCC) by regulating mitochondrial function. DAP3 can promote the proliferation, migration, and invasion of HCC cells in vitro and in vivo by increasing mitochondrial respiration, inducing the epithelial-mesenchymal transition (EMT), and slowing cellular senescence. Mechanistically, DAP3 can increase mitochondrial complex I activity in HCC cells by regulating the translation and expression of MT-ND5. The phosphorylation of DAP3 at Ser185 mediated by AKT is the key event mediating the mitochondrial localization and function of DAP3 in HCC cells. In addition, the DAP3 expression in HCC samples is inversely correlated with patient survival. Our results revealed a mechanism by which DAP3 promotes mitochondrial function and HCC progression by regulating MT-ND5 translation and expression, indicating that DAP3 may be a therapeutic target for HCC.


Subject(s)
Apoptosis Regulatory Proteins , Carcinoma, Hepatocellular , Disease Progression , Liver Neoplasms , Mitochondria , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mitochondria/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Male , Cell Movement/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Epithelial-Mesenchymal Transition/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Phosphorylation , Female , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred BALB C , RNA-Binding Proteins
12.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38980708

ABSTRACT

KRIT1 is a 75 kDa scaffolding protein which regulates endothelial cell phenotype by limiting the response to inflammatory stimuli and maintaining a quiescent and stable endothelial barrier. Loss-of-function mutations in KRIT1 lead to the development of cerebral cavernous malformations (CCM), a disease marked by the formation of abnormal blood vessels which exhibit a loss of barrier function, increased endothelial proliferation, and altered gene expression. While many advances have been made in our understanding of how KRIT1, and the functionally related proteins CCM2 and PDCD10, contribute to the regulation of blood vessels and the vascular barrier, some important open questions remain. In addition, KRIT1 is widely expressed and KRIT1 and the other CCM proteins have been shown to play important roles in non-endothelial cell types and tissues, which may or may not be related to their role as pathogenic originators of CCM. In this review, we discuss some of the unsettled questions regarding the role of KRIT1 in vascular physiology and discuss recent advances that suggest this ubiquitously expressed protein may have a role beyond the endothelial cell.


Subject(s)
Endothelial Cells , Hemangioma, Cavernous, Central Nervous System , KRIT1 Protein , Humans , KRIT1 Protein/metabolism , KRIT1 Protein/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mutation
13.
Mol Cell ; 84(14): 2618-2633.e10, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39025073

ABSTRACT

The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.


Subject(s)
Apoptosis Regulatory Proteins , Cell Cycle Proteins , Fanconi Anemia Complementation Group A Protein , Fanconi Anemia , RNA Splicing , Splicing Factor U2AF , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , DNA Repair , Endodeoxyribonucleases , Exons , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , HEK293 Cells , HeLa Cells , Protein Binding , RNA Precursors/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Spliceosomes/metabolism , Spliceosomes/genetics , Splicing Factor U2AF/metabolism , Splicing Factor U2AF/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism
14.
Proc Natl Acad Sci U S A ; 121(31): e2409232121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047044

ABSTRACT

Despite the availability of life-extending treatments for B cell leukemias and lymphomas, many of these cancers remain incurable. Thus, the development of new molecular targets and therapeutics is needed to expand treatment options. To identify new molecular targets, we used a forward genetic screen in mice to identify genes required for development or survival of lymphocytes. Here, we describe Zfp574, an essential gene encoding a zinc finger protein necessary for normal and malignant lymphocyte survival. We show that ZFP574 interacts with zinc finger protein THAP12 and promotes the G1-to-S-phase transition during cell cycle progression. Mutation of ZFP574 impairs nuclear localization of the ZFP574-THAP12 complex. ZFP574 or THAP12 deficiency results in cell cycle arrest and impaired lymphoproliferation. Germline mutation, acute gene deletion, or targeted degradation of ZFP574 suppressed Myc-driven B cell leukemia in mice, but normal B cells were largely spared, permitting long-term survival, whereas complete lethality was observed in control animals. Our findings support the identification of drugs targeting ZFP574-THAP12 as a unique strategy to treat B cell malignancies.


Subject(s)
B-Lymphocytes , Animals , Mice , B-Lymphocytes/metabolism , Leukemia, B-Cell/genetics , Leukemia, B-Cell/pathology , Leukemia, B-Cell/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mice, Inbred C57BL , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/metabolism
15.
EMBO Rep ; 25(8): 3574-3600, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009833

ABSTRACT

RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.


Subject(s)
Adaptor Proteins, Signal Transducing , Protein Binding , ras Proteins , Humans , ras Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Mitochondria/metabolism , HEK293 Cells , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Protein Transport , Cell Membrane/metabolism
16.
Front Immunol ; 15: 1418290, 2024.
Article in English | MEDLINE | ID: mdl-39076995

ABSTRACT

Inflammasomes are sensors that detect cytosolic microbial molecules or cellular damage, and in response they initiate a form of lytic regulated cell death called pyroptosis. Inflammasomes signal via homotypic protein-protein interactions where CARD or PYD domains are crucial for recruiting downstream partners. Here, we screened these domains from NLR family proteins, and found that the PYD domain of NLRP6 and NLRP12 could activate caspase-1 to induce cleavage of IL-1ß and GSDMD. Inflammasome reconstitution verified that full length NLRP6 and NLRP12 formed inflammasomes in vitro, and NLRP6 was more prone to auto-activation. NLRP6 was highly expressed in intestinal epithelial cells (IEC), but not in immune cells. Molecular phylogeny analysis found that NLRP12 was closely related to NLRP3, but the activation mechanisms are different. NLRP3 was highly expressed in monocytes and macrophages, and was modestly but appreciably expressed in neutrophils. In contrast, NLRP12 was specifically expressed in neutrophils and eosinophils, but was not detectable in macrophages. NLRP12 mutations cause a periodic fever syndrome called NLRP12 autoinflammatory disease. We found that several of these patient mutations caused spontaneous activation of caspase-1 in vitro, which likely causes their autoinflammatory disease. Different cell types have unique cellular physiology and structures which could be perturbed by a pathogen, necessitating expression of distinct inflammasome sensors to monitor for signs of infection.


Subject(s)
Apoptosis Regulatory Proteins , Inflammasomes , Intracellular Signaling Peptides and Proteins , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammasomes/metabolism , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Animals , HEK293 Cells
17.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928226

ABSTRACT

Cell death-inducing p53-target protein 1 (CDIP1) is a proapoptotic protein that is normally expressed at low levels and is upregulated by genotoxic and endoplasmic reticulum stresses. CDIP1 has been reported to be localized to endosomes and to interact with several proteins, including B-cell receptor-associated protein 31 (BAP31) and apoptosis-linked gene 2 (ALG-2). However, the cellular and molecular mechanisms underlying CDIP1 expression-induced apoptosis remain unclear. In this study, we first demonstrated that CDIP1 was upregulated after treatment with the anticancer drug adriamycin in human breast cancer MCF-7 cells but was degraded rapidly in the lysosomal pathway. We also demonstrated that treatment with the cyclin-dependent kinase 5 (CDK5) inhibitor roscovitine led to an increase in the electrophoretic mobility of CDIP1. In addition, a phosphomimetic mutation at Ser-32 in CDIP1 resulted in an increase in CDIP1 expression-induced apoptosis. We also found that CDIP1 expression led to the induction of autophagy prior to apoptosis. Treatment of cells expressing CDIP1 with SAR405, an inhibitor of the class III phosphatidylinositol 3-kinase VPS34, caused a reduction in autophagy and promoted apoptosis. Therefore, autophagy is thought to be a defense mechanism against CDIP1 expression-induced apoptosis.


Subject(s)
Apoptosis , Autophagy , Breast Neoplasms , Female , Humans , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Autophagy/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Cytoprotection/drug effects , Doxorubicin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , MCF-7 Cells
18.
J Mol Cell Cardiol ; 193: 53-66, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838815

ABSTRACT

The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy. Surprisingly, Bag3-deficient CMs show increased canonical and non-canonical autophagic flux in the juvenile period when first signs of cardiac dysfunction appear, but reduced autophagy during later stages of the disease. Juvenile Bag3-deficient CMs are characterized by decreased levels of soluble proteins involved in synchronous contraction of the heart, including the gap junction protein Connexin 43 (CX43). Reiterative administration of chloroquine (CQ), an inhibitor of canonical and non-canonical autophagy, but not inactivation of Atg5, restores normal concentrations of soluble cardiac proteins in juvenile Bag3-deficient CMs without an increase of detergent-insoluble proteins, leading to complete recovery of early-stage cardiac dysfunction in Bag3-deficient mice. We conclude that loss of Bag3 in CMs leads to age-dependent differences in autophagy and cardiac dysfunction. Increased non-canonical autophagic flux in the juvenile period removes soluble proteins involved in cardiac contraction, leading to early-stage cardiomyopathy, which is prevented by reiterative CQ treatment.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Autophagy , Cardiomyopathies , Myocytes, Cardiac , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/deficiency , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Myocardium/metabolism , Myocardium/pathology , Chloroquine/pharmacology , Mice, Knockout
19.
Cancer Lett ; 597: 217005, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38880224

ABSTRACT

Deubiquitylases (DUBs) have emerged as promising targets for cancer therapy due to their role in stabilizing substrate proteins within the ubiquitin machinery. Here, we identified ubiquitin-specific protease 26 (USP26) as an oncogene via screening prognostic DUBs in breast cancer. Through in vitro and in vivo experiments, we found that depletion of USP26 inhibited breast cancer cell proliferation and invasion, and suppressed tumor growth and metastasis in nude mice. Further investigation identified co-chaperone Bcl-2-associated athanogene 3 (BAG3) as the direct substrate of USP26, and ectopic expression of BAG3 partially reversed antitumor effect induced by USP26 knockdown. Mechanistically, the lysine acetyltransferase Tip60 targeted USP26 at K134 for acetylation, which enhanced USP26 binding affinity to BAG3, leading to BAG3 deubiquitination and increased protein stability. Importantly, we employed a structure-based virtual screening and discovered a drug-like molecule called 5813669 that targets USP26, destabilizing BAG3 and effectively mitigating tumor growth and metastasis in vivo. Clinically, high expression levels of USP26 were correlated with elevated BAG3 levels and poor prognosis in breast cancer patients. Overall, our findings highlight the critical role of USP26 in BAG3 protein stabilization and provide a promising therapeutic target for breast cancer.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Breast Neoplasms , Cysteine Endopeptidases , Animals , Female , Humans , Mice , Acetylation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Disease Progression , Mice, Nude , Prognosis , Protein Stability , Ubiquitination , Xenograft Model Antitumor Assays
20.
Cell ; 187(15): 4061-4077.e17, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38878777

ABSTRACT

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins , NAD , Animals , Mice , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , NAD/metabolism , Humans , Immunity, Innate , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Mice, Knockout , Signal Transduction , HEK293 Cells , Inflammasomes/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Toll-Like Receptors/metabolism , Male , Cytokines/metabolism , Calcium-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL