Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Biophys Chem ; 311: 107259, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763045

ABSTRACT

The DNA and RNA aptamers D4 and R4, respectively, emerged from the modification of PC-3 cell-binding aptamer A4. Our objective was to characterize the aptamers in silico and in vitro and begin to identify their target molecules. We represented their structures using computational algorithms; evaluated their binding to several prostate cell lines and their effects on the viability and migration of these cells; and determined their dissociation constant by flow cytometry. We analyzed circulating prostate tumor cells from patients using D4, R4, anti-CD133 and anti-CD44. Finally, the target proteins of both aptamers were precipitated and identified by mass spectrometry to simulate their in silico docking. The aptamers presented similar structures and bound to prostate tumor cells without modifying the cellular parameters studied, but with different affinities. The ligand cells for both aptamers were CD44+, indicating that they could identify cells in the mesenchymal stage of the metastatic process. The possible target proteins NXPE1, ADAM30, and MUC6 need to be further studied to better understand their interaction with the aptamers. These results support the development of new assays to determine the clinical applications of D4 and R4 aptamers in prostate cancer.


Subject(s)
Aptamers, Nucleotide , Prostatic Neoplasms , Humans , Male , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Molecular Docking Simulation
2.
ACS Appl Bio Mater ; 7(4): 2218-2239, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38527228

ABSTRACT

The prompt detection of diseases hinges on the accessibility and the capability to identify relevant biomarkers. The integration of aptamers and the incorporation of nanomaterials into signal transducers have not only expedited but also enhanced the development of nanoaptasensors, enabling heightened sensitivity and selectivity. Here, the bimetallic nickel-cobalt-porphyrin metal-organic framework ((Ni + Cu)TPyP MOF) is regarded as an electron mediator, immobilization platform for an Alzheimer aptamer and to increase the electrochemical signal for the detection of the main biomarker of Alzheimer's disease (AD), amyloid ß (Aß-42). Furthermore, the ((Ni + Cu)TPyP MOF) was combined with reduced graphene oxide (rGO) and gold nanoparticles (AuNPs), on a gold electrode (GE) to provide an efficient interface for immobilizing aptamer strands. Concurrently, the incorporation of rGO and AuNPs imparts enhanced electrical conductivity and efficacious catalytic activity, establishing them as adept electrochemical indicators. Owing to the superior excellent electrical conductivity of rGO and AuNPs, coupled with the presence of ample mesoporous channels and numerous Ni and Cu metal sites within (Ni + Cu)TPyP MOF, this nanostructure with abundant functional groups is proficient in immobilizing a substantial quantity of aptamer. These interactions are achieved through robust π-π stacking and electrostatic interactions, alongside the high affinity between the thiol group of the aptamer and AuNPs concurrently. The as-prepared ternary (Au@(Ni + Cu)TPyP MOF/rGO) nanostructure electrode exhibited an enhancement in its electrochemically active surface area of about 7 times, compared with the bare electrode and the Aß-42 redox process is highly accelerated, so the peak currents are significantly higher than those obtained with bare GE substrate. Under the optimized conditions, the designed aptasensor had the quantitative detection of Aß-42 with a low detection limit of 48.6 fg mL-1 within the linear range of 0.05 pg mL-1 to 5 ng mL-1 by differential pulse voltammetry (DPV), accompanied by precise reproducibility, satisfactory stability (95.6% of the initial activity after 10 days), and minimal impact of interfering agents. Recorded results in human blood plasma demonstrated the high efficacy of porphyrin MOF system sensing even in the clinical matrix. The great performance of this aptasensor indicates that our new design of Au@(Ni + Cu)TPyP MOF/rGO nanostructure provides more opportunities for the detection of chemical signals in early diagnosis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Aptamers, Nucleotide , Biosensing Techniques , Graphite , Metal Nanoparticles , Humans , Gold/chemistry , Amyloid beta-Peptides , Metal Nanoparticles/chemistry , Reproducibility of Results , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods
3.
Mikrochim Acta ; 191(1): 72, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170245

ABSTRACT

Non-structural 1 (NS1) is a protein biomarker that can be found in blood in the early stages of dengue and related infections (Zika and Chikungunya). This study aims to develop a biosensor to selectively quantify NS1 using DNA aptamer co-immobilized on gold electrodes with 6-(ferrocenyl)hexanethiol (FCH) using electrochemical capacitive spectroscopy. This technique uses a redox probe (FCH) immobilized on the self-assembled monolayer to convert impedance into capacitance information. The developed platform was blocked with bovine serum albumin before NS1 exposure and the ratio between aptamers and FCH was optimized. The aptasensor was tested using commercial NS1 serotype 4 in phosphate-buffered saline and commercial undiluted human serum. Using the optimum applied potential provides high sensitivity (3 and 4 nF per decade) and low limit of detection (30.9 and 41.8 fg/mL) with a large linear range (10 pg to 1 µg/mL and 10 pg to 100 ng/mL, respectively). Both results exhibit a residual standard deviation value < 1%. The results suggested that this aptasensor was capable of detecting NS1 in the clinical range and can be applied to any other specific aptamer with FCH, opening the path for label-free miniaturized point-of-care devices with high sensitivity and specificity.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dengue , Zika Virus Infection , Zika Virus , Humans , Limit of Detection , Aptamers, Nucleotide/chemistry , Dielectric Spectroscopy/methods , Biosensing Techniques/methods , Dengue/diagnosis
4.
Mol Biol Rep ; 50(1): 157-165, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36315328

ABSTRACT

BACKGROUND: Staphylococcus aureus is the most common bacteria found in skin, soft tissues, bone, and bone prostheses infections. The aim of this study was to select DNA aptamers for S. aureus to be applied in the diagnosis of bacteria. METHODS AND RESULTS: We used SELEX (Systematic Evolution of Ligands by EXponencial Enrichment) for peptidoglycan followed by cell-SELEX with S. aureus cells as target. Four sequences showed significantly higher binding to S. aureus distinguishing it from the control cells of other significant microbial species: Escherichia coli, Candida albicans, Streptococcus pyogenes and Streptococcus pneumoniae. In particular, ApSA1 (Kd = 62.7 ± 5.6 nM) and ApSA3 (Kd = 43.3 ± 3.0 nM) sequences combined high affinity and specificity for S. aureus, considering all microorganisms tested. CONCLUSIONS: Our results demonstrated that these aptamers were able to identify peptidoglycan in the S. aureus surface and have great potential for use in the development of radiopharmaceuticals capable to identify S. aureus infectious foci, as well as in other aptamer-based methodologies for bacteria diagnosis.


Subject(s)
Aptamers, Nucleotide , Staphylococcal Infections , Humans , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/chemistry , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Peptidoglycan , SELEX Aptamer Technique/methods , Staphylococcal Infections/microbiology , Escherichia coli/metabolism
5.
Biosensors (Basel) ; 12(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36551045

ABSTRACT

The synergistic potentialities of innovative materials that include aptamers have opened new paradigms in biosensing platforms for high-throughput monitoring systems. The available nucleobase functional moieties in aptamers offer exclusive features for bioanalytical sensing applications. In this context, compared to various in-practice biological recognition elements, the utilization of aptamers in detection platforms results in an extensive range of advantages in terms of design flexibility, stability, and sensitivity, among other attributes. Thus, the utilization of aptamers-based biosensing platforms is extensively anticipated to meet unaddressed challenges of various in-practice and standard analytical and sensing techniques. Furthermore, the superior characteristics of aptasensors have led to their applicability in the detection of harmful pollutants present in ever-increasing concentrations in different environmental matrices and water bodies, seeking to achieve simple and real-time monitoring. Considering the above-mentioned critiques and notable functional attributes of aptamers, herein, we reviewed aptamers as a fascinating interface to design, develop, and deploy a new generation of monitoring systems to aid modern bioanalytical sensing applications. Moreover, this review aims to summarize the most recent advances in the development and application of aptasensors for the detection of various emerging pollutants (EPs), e.g., pharmaceutical, and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), pesticides and other agricultural-related compounds, and toxic heavy elements. In addition, the limitations and current challenges are also reviewed, considering the technical constraints and complexity of the environmental samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Environmental Pollutants , Pesticides , Aptamers, Nucleotide/chemistry , Environmental Pollutants/analysis , Biosensing Techniques/methods
6.
Front Cell Infect Microbiol ; 12: 818737, 2022.
Article in English | MEDLINE | ID: mdl-35846753

ABSTRACT

Infections caused by multidrug-resistant A. baumannii are a worldwide health concern with high mortality rates. Rapid identification of this infectious agent is critical as it can easily spread with difficult or no options for treatment. In this context, the development of reliable and economically viable detection and therapeutic methodologies are still challenging. One of the promising solutions is the development of nucleic acid aptamers capable of interacting with bacteria. These aptamers can be used for specific recognition of infectious agents as well as for blocking their functions. Cell-SELEX technology currently allows the selection and identification of aptamers and is flexible enough to target molecules present in an entire bacterial cell without their prior knowledge. However, the aptamer technology is still facing many challenges, such as the complexity of the screening process. Here, we describe the selection and identification of a new aptamer A01, using an in-house whole-cell SELEX-based methodology, against multi-resistant Acinetobacter baumannii, with rapid execution and low cost. In addition, this protocol allowed the identification of the aptamer A01 with the whole A. baumannii cell as a target. The aptamer A01 demonstrated a binding preference to A. baumannii when compared to K. pneumoniae, C. albicans, and S. aureus in fluorescence assays. Although the time-kill assay did not show an effect on bacterial growth, the potential bactericidal or bacteriostatic cannot be totally discarded. The new categorized aptamer (A01) displayed a significant binding affinity to MDR A. baumannii.


Subject(s)
Acinetobacter baumannii , Aptamers, Nucleotide , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/pharmacology , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/pharmacology , SELEX Aptamer Technique/methods , Staphylococcus aureus/metabolism
7.
Methods Mol Biol ; 2466: 187-203, 2022.
Article in English | MEDLINE | ID: mdl-35585319

ABSTRACT

Aptamers are affinity-based oligonucleotide ligands raised against a target molecule, which might be of proteic or other nature. Aptamers are developed by using a reiterative in vitro selection procedure, named SELEX, in which the target is exposed to a combinatorial oligonucleotide combinatorial library. Target bound oligonucleotides are eluted, and PCR amplified followed by the next SELEX round. The process is repeated until no further increase in target binding affinity and specificity is achieved. Selected aptamers are identified and immobilized for protein purification. In view of their stability against denaturation and capability of renaturation, low costs of production, easiness of modification and stabilization, oligonucleotide aptamers are excellent tools as high-affinity ligands for applications of protein purification.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique , Aptamers, Nucleotide/chemistry , Gene Library , Ligands , Polymerase Chain Reaction , SELEX Aptamer Technique/methods
8.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269608

ABSTRACT

Recent biotechnological applications in the field of clinical oncology led to the identification of new biomarkers as molecular targets of cancer, and to broad developments in the field of personalized medicine. Aptamers are oligonucleotides (ssDNA or RNA) that are selected to specifically recognize a molecular target with high affinity and specificity. Based on this, new horizons for their use as molecular imaging probes are being explored. The objective of this work was to evaluate the Sgc8-c aptamer conjugated with Alexa Fluor 647 fluorophore as an imaging probe in a colon tumor xenograft mouse model, with potential application in molecular imaging. In this study, the LS174T cell line was used to induce colorectal adenocarcinoma in nude mice. After confirmation of PTK7 overexpression by immunohistochemistry, in vivo studies were performed. Pharmacokinetic, in vivo and ex vivo biodistribution imaging, and a competition assay were evaluated by fluorescence imaging. In vivo visualization of the probe in the tumors was assessed two hours after aptamer probe administration, exhibiting excellent tumor-to-background ratios in biodistribution studies and high specificity in the competition test. Our results demonstrated the functionality of Scg8-c as an imaging probe for colon cancer, with potential clinical applications.


Subject(s)
Aptamers, Nucleotide , Colonic Neoplasms , Animals , Aptamers, Nucleotide/chemistry , Cell Adhesion Molecules , Cell Line, Tumor , Colonic Neoplasms/diagnostic imaging , Disease Models, Animal , Heterografts , Humans , Mice , Mice, Nude , Molecular Imaging , Molecular Probes , Receptor Protein-Tyrosine Kinases , Tissue Distribution , Xenograft Model Antitumor Assays
9.
Colloids Surf B Biointerfaces ; 211: 112280, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34902784

ABSTRACT

Aptamers may form well-defined three-dimensional structures binding with high affinity and stability to a specific receptor. The aptamer anti-MUC1 isoform Y is one the most used due the affinity to MUC1, which is overexpressed in several types of cancer and inflammation process. In this study we have developed, characterized, in vitro as in vivo evaluated a nanoaptamer (anti-MUC1/Y) as a nanoagent for rheumatoid arthritis treatment. The results showed that a nanoaptamer with a size range of 241 nm was produced. The entrapment efficacy was 90% with a biodistribution showing a high hepatic uptake (>98%). The results in vivo showed a potent effect in arthritis experimental model, especially in low doses. The results corroborate the applicability of this nanosystem for RA treatment.


Subject(s)
Aptamers, Nucleotide , Arthritis , Nanoparticles , Aptamers, Nucleotide/chemistry , Humans , Mucin-1/chemistry , Nanoparticles/chemistry , Tissue Distribution
10.
Appl Biochem Biotechnol ; 193(11): 3704-3718, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34363139

ABSTRACT

In recent years, stem cell therapy has shown promise in regenerative medicine. The lack of standardized protocols for cell isolation and differentiation generates conflicting results in this field. Mesenchymal stem cells derived from adipose tissue (ASC) and fibroblasts (FIB) share very similar cell membrane markers. In this context, the distinction of mesenchymal stem cells from fibroblasts has been crucial for safe clinical application of these cells. In the present study, we developed aptamers capable of specifically recognize ASC using the Cell-SELEX technique. We tested the affinity of ASC aptamers compared to dermal FIB. Quantitative PCR was advantageous for the in vitro validation of four candidate aptamers. The binding capabilities of Apta 2 and Apta 42 could not distinguish both cell types. At the same time, Apta 21 and Apta 99 showed a better binding capacity to ASC with dissociation constants (Kd) of 50.46 ± 2.28 nM and 72.71 ± 10.3 nM, respectively. However, Apta 21 showed a Kd of 86.78 ± 9.14 nM when incubated with FIB. Therefore, only Apta 99 showed specificity to detect ASC by total internal reflection microscopy (TIRF). This aptamer is a promising tool for the in vitro identification of ASC. These results will help understand the differences between these two cell types for more specific and precise cell therapies.


Subject(s)
Adipose Tissue/metabolism , Aptamers, Nucleotide/pharmacology , Cell Differentiation/drug effects , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Aptamers, Nucleotide/chemistry , Cells, Cultured , Fibroblasts/cytology , Humans , Mesenchymal Stem Cells/cytology
11.
Article in English | MEDLINE | ID: mdl-34323642

ABSTRACT

RNA aptamers are single-stranded nucleic acids of 20-100 nucleotides, with high sensitivity and specificity against particular molecular targets. In vitro production and selection of aptamers can be performed using the SELEX method. However, this procedure requires considerable time and cost. In this sense, bioinformatics tools play an important role in reducing the time and cost associated with development and production of aptamers. In this article, we propose bioinformatics strategies for modeling and analysis of the interaction with molecular targets for two RNA aptamers: ATP binding RNA aptamer and iSpinach aptamer. For this purpose, molecular modeling of the tertiary structure of the aptamers was performed with two servers (SimRNA and RNAComposer); and AutoDock Vina and rDock programs were used to dock their respective ligands. The predictions developed with these methods could be used for in silico design of RNA aptamers, through a simple and accessible methodology.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1951754 .


Subject(s)
Aptamers, Nucleotide/chemistry , Binding Sites , Computational Biology , Ligands , Molecular Docking Simulation , Nucleic Acid Conformation , SELEX Aptamer Technique
12.
PLoS One ; 16(3): e0248159, 2021.
Article in English | MEDLINE | ID: mdl-33684138

ABSTRACT

A novel assay technique that involves quantification of lysozyme (Lys) through machine learning is put forward here. This article reports the tendency of the well- documented Ellington group anti-Lys aptamer, to produce aggregates when exposed to Lys. This property of apta-aggregation has been exploited here to develop an assay that quantifies the Lys using texture and area parameters from a photograph of the elliptical aggregate mass through machine learning. Two assay sets were made for the experimental procedure: one with high Lys concentration between 25-100 mM and another with low concentration between 1-20 mM. The high concentration set had a sample volume of 10 µl while the low concentration set had a higher sample volume of 100 µl, in order to obtain the statistical texture values reliably from the aggregate mass. The platform exhibited an experimental limit of detection of 1 mM and a response time of less than 10 seconds. Further, two potential operating modes for the aptamer were hypothesized for this aggregation property and the more accurate mode among the two was ascertained through bioinformatics studies.


Subject(s)
Aptamers, Nucleotide/chemistry , Avian Proteins/analysis , Machine Learning , Muramidase/analysis , Protein Aggregates , Animals , Chickens
13.
Bioelectrochemistry ; 137: 107586, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32966935

ABSTRACT

Breast cancer remains one of the leading causes of women death. The development of more sensitive diagnostic tests, which could present a faster response, lower cost, and could promote early diagnosis would increase the chances of survival. This study reports the development and optimization of an electrochemical aptasensor for the detection of HER2 protein, a breast cancer biomarker. Two sensing platforms were developed on gold screen-printed electrodes. The first platform is composed of self-assembled monolayer (SAM) made from mixture of thiolated DNA aptamers specific for HER2 and 1-mercapto-6-hexanol (MCH), while the second one is a ternary SAM composed of the same aptamer and 1,6-hexanethiol (HDT). Both platforms were further passivated with MCH and blocked with bovine serum albumin. The biosensors were characterized using electrochemical impedance spectroscopy to detect the target protein from 1 pg/mL to 1 µg/mL in phosphate buffered saline, diluted and undiluted human serum through charge transfer resistance value. The ternary SAM architecture shows a reduction of non-specific attachment to the electrode surface due to the HDT antifouling properties. In addition, this platform exhibits 172 pg/mL as limit of detection and a sensitivity of 4.12% per decade for undiluted serum compared with SAM architecture with the 179 pg/mL and 4.32% per decade, respectively. Electrochemical aptasensors are highly promising for medical diagnostic and ternary layers could improve the limit of detection.


Subject(s)
Aptamers, Nucleotide/chemistry , Breast Neoplasms/diagnosis , Electrochemical Techniques/instrumentation , Electrodes , Biomarkers, Tumor , Biosensing Techniques/methods , Breast Neoplasms/blood , Female , Genes, erbB-2 , Humans , Limit of Detection
14.
Nanotechnology ; 31(50): 505505, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-32927448

ABSTRACT

Acute myocardial infarction (AMI) is nowadays the leading death cause worldwide. For that reason, the early diagnosis of AMI is of central importance to reduce the risk of death. In this sense, aptamer-based sensors for surface-enhanced Raman spectroscopy (SERS aptasensors) emerged as an interesting alternative for future high-performance diagnostic tools. SERS aptasensors combine the fast, precise, and sensitive nature of SERS measurements with the selectivity of aptamers for specific biological targets. Herein, we report an efficient SERS aptasensor for the detection of cardiac troponin I (cTnI), a gold-standard biomarker for AMI. Our SERS platform comprises a magnetite core with an intermediate silica shell, and a flower-shaped silver layer (Fe3O4@SiO2@Ag) to confer excellent plasmonic properties and ease of collection by magnetism. The branched silver structure combined with magnetic aggregation offers a high near-field amplification to superior SERS performance. Additionally, a tailored DNA aptamer with high specificity for cTnI was anchored to the silver surface to produce the aptasensor with increased sensing capability towards cTnI. With our SERS aptasensor, a cTnI concentration as low as 10 ng ml-1 (10-11 mol l-1) could be detected. This value is ten times lower than the upper threshold of the typical concentration range of cTnI of AMI patients. Hence, our SERS aptasensor holds great promise to be explored in AMI diagnosis.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Troponin I/analysis , Humans , Limit of Detection , Magnetic Iron Oxide Nanoparticles/chemistry , Myocardial Infarction/diagnosis , Nanocomposites/chemistry , Silicon Dioxide/chemistry , Spectrum Analysis, Raman/methods
15.
Molecules ; 25(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756410

ABSTRACT

Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.


Subject(s)
Biosensing Techniques/methods , Nanostructures/chemistry , Nucleic Acids/chemistry , Proteins/chemistry , Aptamers, Nucleotide/chemistry , Biomarkers/analysis , Electrochemical Techniques , Humans , Polymers/chemistry , Toxins, Biological/analysis
16.
Proc Natl Acad Sci U S A ; 117(29): 16790-16798, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32631977

ABSTRACT

Nucleic acid aptamers selected through systematic evolution of ligands by exponential enrichment (SELEX) fold into exquisite globular structures in complex with protein targets with diverse translational applications. Varying the chemistry of nucleotides allows evolution of nonnatural nucleic acids, but the extent to which exotic chemistries can be integrated into a SELEX selection to evolve nonnatural macromolecular binding interfaces is unclear. Here, we report the identification of a cubane-modified aptamer (cubamer) against the malaria biomarker Plasmodium vivax lactate dehydrogenase (PvLDH). The crystal structure of the complex reveals an unprecedented binding mechanism involving a multicubane cluster within a hydrophobic pocket. The binding interaction is further stabilized through hydrogen bonding via cubyl hydrogens, previously unobserved in macromolecular binding interfaces. This binding mechanism allows discriminatory recognition of P. vivax over Plasmodium falciparum lactate dehydrogenase, thereby distinguishing these highly conserved malaria biomarkers for diagnostic applications. Together, our data demonstrate that SELEX can be used to evolve exotic nucleic acids bearing chemical functional groups which enable remarkable binding mechanisms which have never been observed in biology. Extending to other exotic chemistries will open a myriad of possibilities for functional nucleic acids.


Subject(s)
Aptamers, Nucleotide/chemistry , L-Lactate Dehydrogenase/chemistry , Malaria/diagnosis , Protozoan Proteins/chemistry , Biomarkers/blood , Biomarkers/chemistry , Humans , Hydrogen Bonding , L-Lactate Dehydrogenase/blood , Malaria/blood , Molecular Diagnostic Techniques/methods , Molecular Dynamics Simulation , Plasmodium vivax/enzymology , Protein Binding
17.
Bioorg Med Chem Lett ; 30(15): 127278, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32527457

ABSTRACT

Carcinoembryonic antigen (CEA) is a glycoprotein antigen generally used for diagnosis, prognosis and treatment monitoring of several types of tumors, including colorectal cancer. Nucleic acid aptamers are DNA or RNA oligonucleotides capable of binding with high specificity and affinity to a molecular target. The aim of this study was to obtain aptamers specific to CEA for use as radiopharmaceuticals in colorectal cancer diagnosis. Five aptamers were selected through the Systematic Evolution of Ligands by EXponencial Enrichment (SELEX) and tested using T84 (CEA+) and Hela (CEA-) cells. Apta 3 and Apta 5 showed the best results presenting high specificity and affinity for T84 cells, with dissociation constants (Kd) of 60.4 ± 5.7 nM and 37.8 ± 5.8 nM, respectively. These results indicate that Apta 3 and Apta 5 are promising candidates for identifying tumor cells that overexpress CEA.


Subject(s)
Aptamers, Nucleotide/chemistry , Carcinoembryonic Antigen/analysis , Colorectal Neoplasms/diagnosis , Radiopharmaceuticals/chemistry , SELEX Aptamer Technique , Humans , Tumor Cells, Cultured
18.
Braz J Microbiol ; 51(3): 875-881, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32347530

ABSTRACT

This study aims to develop a rapid bacterial antibiotic susceptibility test (AST) method by Bacteria-aptamer@AgNPs-surface enhanced Raman spectroscopy (SERS) and further evaluate the influence of different antibiotics on the Raman intensity of bacteria. The Raman intensity of Escherichia coli O157:H7 (E. coli O157:H7) and Staphylococcus aureus (S. aureus) in the presence of different concentrations of antibiotics in 2 h was detected by Bacteria-aptamer@AgNPs-SERS in this study. Our results found that the bacteria Raman signal peak at 735 cm-1 and the minimum inhibitory concentration (MIC) value was determined in 1 h according to Raman signals. In 2 h, the bacteria Raman signal growth at sub-MIC concentrations of four different kinds of antibiotics and the bacteria colony-forming unit (CFU) have similar enhancements. SERS utilizes special functions of rough metal surfaces and offers a huge enhancement of Raman intensities with reduced fluorescence backgrounds, which makes it an ultrasensitive tool of detection. This rapid AST method and the enhancement effect should be of value in search of new antibiotic drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/methods , Spectrum Analysis, Raman/methods , Aptamers, Nucleotide/chemistry , Bacteria/chemistry , Bacteria/drug effects , Bacteria/growth & development , Colony Count, Microbial , Metal Nanoparticles/chemistry , Silver/chemistry
19.
FASEB J ; 34(1): 365-385, 2020 01.
Article in English | MEDLINE | ID: mdl-31914616

ABSTRACT

Structural conversion of cellular prion protein (PrPC) into scrapie PrP (PrPSc) and subsequent aggregation are key events associated with the onset of transmissible spongiform encephalopathies (TSEs). Experimental evidence supports the role of nucleic acids (NAs) in assisting this conversion. Here, we asked whether PrP undergoes liquid-liquid phase separation (LLPS) and if this process is modulated by NAs. To this end, two 25-mer DNA aptamers, A1 and A2, were selected against the globular domain of recombinant murine PrP (rPrP90-231) using SELEX methodology. Multiparametric structural analysis of these aptamers revealed that A1 adopts a hairpin conformation. Aptamer binding caused partial unfolding of rPrP90-231 and modulated its ability to undergo LLPS and fibrillate. In fact, although free rPrP90-231 phase separated into large droplets, aptamer binding increased the number of droplets but noticeably reduced their size. Strikingly, a modified A1 aptamer that does not adopt a hairpin structure induced formation of amyloid fibrils on the surface of the droplets. We show here that PrP undergoes LLPS, and that the PrP interaction with NAs modulates phase separation and promotes PrP fibrillation in a NA structure and concentration-dependent manner. These results shed new light on the roles of NAs in PrP misfolding and TSEs.


Subject(s)
Amyloid/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Liquid-Liquid Extraction/methods , Prion Diseases/pathology , Prion Proteins/chemistry , Prion Proteins/metabolism , Animals , Mice , Nucleic Acid Conformation , Prion Diseases/metabolism , Prion Proteins/isolation & purification , Protein Binding , Protein Conformation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SELEX Aptamer Technique
20.
Adv Biochem Eng Biotechnol ; 174: 141-160, 2020.
Article in English | MEDLINE | ID: mdl-31848635

ABSTRACT

The origin of the term diagnostic comes from the Greek word gnosis, meaning "to know." In medicine, a diagnostic can predict the pathology risk, disease status, treatment, and prognosis, even following therapy. An early and correct diagnosis is necessary for an efficient treatment. Moreover, it is possible to predict if and why a therapy will be successful or fail, enabling the timely application of alternative therapeutic strategies. Available diagnostics are due to the advances in biotechnology; however, more sensitive, low-cost, and noninvasive methodologies are still a challenge. Knowledge about molecular characteristics provide personalized information, which is the goal of future medicine. Today, multiple diagnostic techniques have emerged, with which it is possible to distinguish molecular patterns.In this way, aptamers are the perfect tools to recognize molecular targets and can be easily modified to confer additional functions. Their versatile characteristics and low cost make aptamers ideal for diagnostic applications.This chapter is a review of aptamer-based diagnostics in biomedicine, with a special focus on probe design and molecular imaging. Graphical Abstract.


Subject(s)
Aptamers, Nucleotide , Biotechnology , Diagnostic Imaging , Molecular Imaging , Aptamers, Nucleotide/chemistry , Diagnostic Imaging/methods , Diagnostic Imaging/trends , Humans , Molecular Imaging/methods , Molecular Imaging/trends , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL