Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.641
Filter
1.
Physiol Plant ; 176(4): e14411, 2024.
Article in English | MEDLINE | ID: mdl-38973028

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Subject(s)
Arabidopsis , Bacillus licheniformis , Ethylenes , Polyamines , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis/physiology , Ethylenes/metabolism , Polyamines/metabolism , Bacillus licheniformis/metabolism , Bacillus licheniformis/genetics , Gene Expression Regulation, Plant/drug effects , Signal Transduction/drug effects , Stress, Physiological , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Seedlings/metabolism , Alkalies/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
2.
Biomolecules ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38927127

ABSTRACT

Aluminum (Al) toxicity is one of the environmental stress factors that affects crop growth, development, and productivity. MYB transcription factors play crucial roles in responding to biotic or abiotic stresses. However, the roles of MYB transcription factors in Al tolerance have not been clearly elucidated. Here, we found that GmMYB183, a gene encoding a R2R3 MYB transcription factor, is involved in Al tolerance. Subcellular localization studies revealed that GmMYB183 protein is located in the nucleus, cytoplasm and cell membrane. Overexpression of GmMYB183 in Arabidopsis and soybean hairy roots enhanced plant tolerance towards Al stress compared to the wild type, with higher citrate secretion and less Al accumulation. Furthermore, we showed that GmMYB183 binds the GmMATE75 gene promoter encoding for a plasma-membrane-localized citrate transporter. Through a dual-luciferase reporter system and yeast one hybrid, the GmMYB183 protein was shown to directly activate the transcription of GmMATE75. Furthermore, the expression of GmMATE75 may depend on phosphorylation of Ser36 residues in GmMYB183 and two MYB sites in P3 segment of the GmMATE75 promoter. In conclusion, GmMYB183 conferred Al tolerance by promoting the secretion of citrate, which provides a scientific basis for further elucidating the mechanism of plant Al resistance.


Subject(s)
Aluminum , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Plant Proteins , Promoter Regions, Genetic , Transcription Factors , Aluminum/toxicity , Aluminum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Glycine max/genetics , Glycine max/metabolism , Glycine max/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Stress, Physiological/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Carrier Proteins
3.
Plant Signal Behav ; 19(1): 2371694, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38916149

ABSTRACT

MYB transcription factor is one of the largest families in plants. There are more and more studies on plants responding to abiotic stress through MYB transcription factors, but the mechanism of some family members responding to salt stress is unclear. In this study, physiological and transcriptome techniques were used to analyze the effects of the R2R3-MYB transcription factor AtMYB72 on the growth and development, physiological function, and key gene response of Arabidopsis thaliana. Phenotypic observation showed that the damage of overexpression strain was more serious than that of Col-0 after salt treatment, while the mutant strain showed less salt injury symptoms. Under salt stress, the decrease of chlorophyll content, the degree of photoinhibition of photosystem II (PSII) and photosystem I (PSI) and the degree of oxidative damage of overexpressed lines were significantly higher than those of Col-0. Transcriptome data showed that the number of differentially expressed genes (DEGs) induced by salt stress in overexpressed lines was significantly higher than that in Col-0. GO enrichment analysis showed that the response of AtMYB72 to salt stress was mainly by affecting gene expression in cell wall ectoplast, photosystem I and photosystem II, and other biological processes related to photosynthesis. Compared with Col-0, the overexpression of AtMYB72 under salt stress further inhibited the synthesis of chlorophyll a (Chla) and down-regulated most of the genes related to photosynthesis, which made the photosynthetic system more sensitive to salt stress. AtMYB72 also caused the outbreak of reactive oxygen species and the accumulation of malondialdehyde under salt stress, which decreased the activity and gene expression of key enzymes in SOD, POD, and AsA-GSH cycle, thus destroying the ability of antioxidant system to maintain redox balance. AtMYB72 negatively regulates the accumulation of osmotic regulatory substances such as soluble sugar (SS) and soluble protein (SP) in A. thaliana leaves under salt stress, which enhances the sensitivity of Arabidopsis leaves to salt. To sum up, MYB72 negatively regulates the salt tolerance of A. thaliana by destroying the light energy capture, electron transport, and antioxidant capacity of Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Oxidative Stress , Photosynthesis , Plant Leaves , Salt Stress , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Salt Stress/genetics , Oxidative Stress/drug effects , Gene Expression Regulation, Plant/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Photosystem II Protein Complex/metabolism , Photosystem I Protein Complex/metabolism , Chlorophyll/metabolism
4.
Plant Physiol Biochem ; 212: 108779, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823090

ABSTRACT

Melatonin (Mel) is a phytohormone that plays a crucial role in various plant processes, including stress response. Despite numerous studies on the role of Mel in stress resistance, its significance in plants exposed to benzalkonium chloride (BAC) pollution remains unexplored. BAC, a common antiseptic, poses a threat to terrestrial plants due to its widespread use and inefficient removal, leading to elevated concentrations in the environment. This study investigated the impact of BAC (0.5 mg L-1) pollution on wild-type Col-0 and snat2 knockout mutant Arabidopsis lines, revealing reduced growth, altered water relations, and gas exchange parameters. On the other hand, exogenous Mel (100 µM) treatments mitigated BAC-induced phytotoxicity and increased the growth rate by 1.8-fold in Col-0 and 2-fold in snat2 plants. snat2 mutant seedlings had a suppressed carbon assimilation rate (A) under normal conditions, but BAC contamination led to further A repression by 71% and 48% in Col-0 and snat2 leaves, respectively. However, Mel treatment on stressed plants was successful in improving Fv/Fm and increased the total photosynthesis efficiency by regulating photochemical reactions. Excessive H2O2 accumulation in the guard cells of plants exposed to BAC pollution was detected by confocal microscopy. Mel treatments triggered almost all antioxidant enzyme activities (except POX) in both Arabidopsis lines under stress. This enhanced antioxidant activity, facilitated by foliar Mel application, contributed to the alleviation of oxidative damage, regulation of photosynthesis reactions, and promotion of plant growth in Arabidopsis. In addition to corroborating results observed in many agricultural plants regarding the development of tolerance to environmental stresses, this study provides novel insights into the action mechanisms of Mel under the emerging pollutant benzalkonium chloride.


Subject(s)
Antioxidants , Arabidopsis , Benzalkonium Compounds , Melatonin , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Melatonin/pharmacology , Benzalkonium Compounds/pharmacology , Antioxidants/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Hydrogen Peroxide/metabolism , Photosynthesis/drug effects , Mutation
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124601, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38852307

ABSTRACT

Heavy metals, including Hg2+, Cr6+ and Cd2+, have always been a major issue in environmental pollution, leading to abnormal changes in the levels of biologically active molecules including Cys in plants, seriously affecting all aspects of the growth and development of plants. This makes it essential to develop a simple and practical method to study the potential impact of heavy metals on plants. In this paper, our research group has developed near-infrared fluorescent probe WRM-S, which has the advantages of fast response, sensitivity to Cys, and successfully applying it to cells and zebrafish. Moreover, it combined the close relationship between heavy metal stress on plants and Cys, using Cys as the detection target, monitoring the internal environment changes of two plants under Hg2+, Cr6+, and Cd2+ stress in the environment, and then conducting 3D imaging. The results indicated that the probe has strong penetration ability in plant tissues, and revealed abnormal changes in plant Cys levels caused by heavy metal stress-induced cellular oxidative stress or cytotoxicity. Thus, the in-situ imaging detection of this probe provides a direction for the physiological dynamics research of plant environmental stress.


Subject(s)
Cysteine , Fluorescent Dyes , Metals, Heavy , Plant Roots , Zebrafish , Fluorescent Dyes/chemistry , Cysteine/metabolism , Cysteine/chemistry , Animals , Plant Roots/metabolism , Plant Roots/chemistry , Plant Roots/drug effects , Arabidopsis/drug effects , Arabidopsis/metabolism
6.
BMC Genomics ; 25(1): 621, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898417

ABSTRACT

BACKGROUND: Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS: Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS: Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.


Subject(s)
Arabidopsis , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbicides , Plant Senescence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Arabidopsis/metabolism , Herbicides/pharmacology , Herbicides/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Senescence/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Transcriptome , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Elife ; 122024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904663

ABSTRACT

Soil-free assays that induce water stress are routinely used to investigate drought responses in the plant Arabidopsis thaliana. Due to their ease of use, the research community often relies on polyethylene glycol (PEG), mannitol, and salt (NaCl) treatments to reduce the water potential of agar media, and thus induce drought conditions in the laboratory. However, while these types of stress can create phenotypes that resemble those of water deficit experienced by soil-grown plants, it remains unclear how these treatments compare at the transcriptional level. Here, we demonstrate that these different methods of lowering water potential elicit both shared and distinct transcriptional responses in Arabidopsis shoot and root tissue. When we compared these transcriptional responses to those found in Arabidopsis roots subject to vermiculite drying, we discovered many genes induced by vermiculite drying were repressed by low water potential treatments on agar plates (and vice versa). Additionally, we also tested another method for lowering water potential of agar media. By increasing the nutrient content and tensile strength of agar, we show the 'hard agar' (HA) treatment can be leveraged as a high-throughput assay to investigate natural variation in Arabidopsis growth responses to low water potential.


Subject(s)
Arabidopsis , Plant Roots , Transcriptome , Water , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Water/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Regulation, Plant/drug effects , High-Throughput Screening Assays/methods , Droughts , Plant Shoots/growth & development , Plant Shoots/drug effects , Gene Expression Profiling/methods
8.
Sci Rep ; 14(1): 13956, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886397

ABSTRACT

Co-pyrolysis of chicken manure with tree bark was investigated to mitigate salinity and potentially toxic element (PTE) concentrations of chicken manure-derived biochar. The effect of tree bark addition (0, 25, 50, 75 and 100 wt%) on the biochar composition, surface functional groups, PTEs and polycyclic aromatic hydrocarbons (PAH) concentration in the biochar was evaluated. Biochar-induced toxicity was assessed using an in-house plant growth assay with Arabidopsis thaliana. This study shows that PTE concentrations can be controlled through co-pyrolysis. More than 50 wt% of tree bark must be added to chicken manure to reduce the concentrations below the European Biochar Certificate-AGRO (EBC-AGRO) threshold. However, the amount of PAH does not show a trend with tree bark addition. Furthermore, co-pyrolysis biochar promotes plant growth at different application concentrations, whereas pure application of 100 wt% tree bark or chicken manure biochar results in decreased growth compared to the reference. In addition, increased plant stress was observed for 100 wt% chicken manure biochar. These data indicate that co-pyrolysis of chicken manure and tree bark produces EBC-AGRO-compliant biochar with the potential to stimulate plant growth. Further studies need to assess the effect of these biochars in long-term growth experiments.


Subject(s)
Arabidopsis , Charcoal , Chickens , Manure , Plant Bark , Pyrolysis , Animals , Manure/analysis , Plant Bark/chemistry , Arabidopsis/drug effects , Arabidopsis/growth & development , Polycyclic Aromatic Hydrocarbons/toxicity
9.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928379

ABSTRACT

Stylo (Stylosanthes spp.) is an important pasture legume with strong aluminum (Al) resistance. However, the molecular mechanisms underlying its Al tolerance remain fragmentary. Due to the incomplete genome sequence information of stylo, we first conducted full-length transcriptome sequencing for stylo root tips treated with and without Al and identified three Snakin/GASA genes, namely, SgSnakin1, SgSnakin2, and SgSnakin3. Through quantitative RT-PCR, we found that only SgSnakin1 was significantly upregulated by Al treatments in stylo root tips. Histochemical localization assays further verified the Al-enhanced expression of SgSnakin1 in stylo root tips. Subcellular localization in both tobacco and onion epidermis cells showed that SgSnakin1 localized to the cell wall. Overexpression of SgSnakin1 conferred Al tolerance in transgenic Arabidopsis, as reflected by higher relative root growth and cell vitality, as well as lower Al concentration in the roots of transgenic plants. Additionally, overexpression of SgSnakin1 increased the activities of SOD and POD and decreased the levels of O2·- and H2O2 in transgenic Arabidopsis in response to Al stress. These findings indicate that SgSnakin1 may function in Al resistance by enhancing the scavenging of reactive oxygen species through the regulation of antioxidant enzyme activities.


Subject(s)
Aluminum , Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Reactive Oxygen Species , Aluminum/toxicity , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Fabaceae/metabolism , Fabaceae/genetics , Fabaceae/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Hydrogen Peroxide/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects
10.
Planta ; 260(1): 5, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777878

ABSTRACT

MAIN CONCLUSION: Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.


Subject(s)
Brassinosteroids , Homeostasis , Plant Roots , Reactive Oxygen Species , Salt Tolerance , Steroids, Heterocyclic , Triticum , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Triticum/growth & development , Triticum/drug effects , Brassinosteroids/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Steroids, Heterocyclic/pharmacology , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Salt Stress , Oxidative Stress , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Catalase/metabolism
11.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791475

ABSTRACT

Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity stress. A small family of plant-specific TCP transcription factors are involved in the response to salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress. We elucidated that the growth and physiology of amaranth were affected by salt concentrations of 50-200 mmol·L-1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L-1, while it was promoted at 50 mmol·L-1. Meanwhile, the plants also showed physiological responses, which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under normal conditions, respectively. With 150 mmol·L-1 NaCl treatment, the germination rate of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth's growth and physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.


Subject(s)
Amaranthus , Arabidopsis , Gene Expression Regulation, Plant , Germination , Plant Proteins , Salt Stress , Gene Expression Regulation, Plant/drug effects , Amaranthus/drug effects , Amaranthus/genetics , Amaranthus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Germination/drug effects , Germination/genetics , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Seeds/drug effects , Seeds/growth & development , Seeds/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology
12.
J Hazard Mater ; 473: 134718, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797079

ABSTRACT

Exogenous abscisic acid (ABA) presents a novel approach to mitigate heavy metal (HM) accumulation in plants, yet its efficacy against multiple HMs and potential enhancement methods remain underexplored. In this study, we demonstrated that the exogenous ABA application simultaneously decreased Zn, Cd and Ni accumulation by 22-25 %, 27-39 % and 60-62 %, respectively, in wild-type (WT) Arabidopsis. Conversely, ABA reduced Pb in shoots but increased its root concentration. ABA application also modulated the expression of HM uptake genes, inhibiting IRT1, NRAMP1, NRAMP4, and HMA3, and increasing ZIP1 and ZIP4 expressions. Further analysis revealed that overexpressing the ABA-importing transporter (AIT1) in plants intensified the reduction of Cd, Zn, and Ni, compared to WT. However, the inhibitory effect of exogenous ABA on Pb accumulation was mitigated in shoots with higher AIT1 expression. Furthermore, HMs-induced growth inhibition and the damage to photosynthesis were also alleviated with ABA treatment. Conclusively, AIT1's synergistic effect with ABA effectively reduces Cd, Zn and Ni accumulation, offering a synergistic approach to mitigate HM stress in plants.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Metals, Heavy , Abscisic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Shoots/metabolism , Plant Shoots/drug effects , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Soil Pollutants/toxicity , Soil Pollutants/metabolism
13.
J Hazard Mater ; 473: 134670, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781858

ABSTRACT

Benzotriazole ultraviolet (UV) stabilizers (BUVs) have emerged as significant environmental contaminants, frequently detected in various ecosystems. While the toxicity of BUVs to aquatic organisms is well-documented, studies on their impact on plant life are scarce. Plants are crucial as they provide the primary source of energy and organic matter in ecosystems through photosynthesis. This study investigated the effects of UV-328 (2-(2-hydroxy-4',6'-di-tert-amylphenyl) benzotriazole) on plant growth indices and photosynthesis processes, employing conventional physiological experiments, RNA sequencing (RNA-seq) analysis, and computational methods. Results demonstrated a biphasic response in plant biomass and the maximum quantum yield of PS II (Fv/Fm), showing improvement at a 50 µM UV-328 treatment but reduction under 150 µM UV-328 exposure. Additionally, disruption in thylakoid morphology was observed at the higher concentration. RNA-seq and qRT-PCR analysis identified key differentially expressed genes (light-harvesting chlorophyll-protein complex Ⅰ subunit A4, light-harvesting chlorophyll b-binding protein 3, UVR8, and curvature thylakoid 1 A) related to photosynthetic light harvesting, UV-B sensing, and chloroplast structure pathways, suggesting they may contribute to the observed alterations in photosynthesis activity induced by UV-328 exposure. Molecular docking analyses further supported the binding affinity between these proteins and UV-328. Overall, this study provided comprehensive physiological and molecular insights, contributing valuable information to the evaluation of the potential risks posed by UV-328 to critical plant physiological processes.


Subject(s)
Photosynthesis , Triazoles , Ultraviolet Rays , Photosynthesis/drug effects , Photosynthesis/radiation effects , Triazoles/toxicity , Molecular Docking Simulation , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Arabidopsis/radiation effects , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/growth & development
14.
Ecotoxicol Environ Saf ; 278: 116407, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38691884

ABSTRACT

Fluoride (F) can be absorbed from the environment and hyperaccumulate in leaves of Camellia sinensis without exhibiting any toxic symptoms. Fluoride exporter in C. sinensis (CsFEX) could transport F to extracellular environment to alleviate F accumulation and F toxicity, but its functional mechanism remains unclear. Here, combining with pH condition of C. sinensis growth, the characteristics of CsFEX and mechanism of F detoxification were further explored. The results showed that F accumulation was influenced by various pH, and pH 4.5 and 6.5 had a greater impact on the F accumulation of C. sinensis. Through Non-invasive Micro-test Technology (NMT) detection, it was found that F uptake/accumulation of C. sinensis and Arabidopsis thaliana might be affected by pH through changing the transmembrane electrochemical proton gradient of roots. Furthermore, diverse expression patterns of CsFEX were induced by F treatment under different pH, which was basically up-regulated in response to high F accumulation, indicating that CsFEX was likely to participate in the process of F accumulation in C. sinensis and this process might be regulated by pH. Additionally, CsFEX functioned in the mitigation of F sensitivity and accumulation strengthened by lower pH in Escherichia coli and A. thaliana. Moreover, the changes of H+ flux and potential gradient caused by F were relieved as well in transgenic lines, also suggesting that CsFEX might play an important role in the process of F accumulation. Above all, F uptake/accumulation were alleviated in E. coli and A. thaliana by CsFEX through exporting F-, especially at lower pH, implying that CsFEX might regulate F accumulation in C. sinensis.


Subject(s)
Camellia sinensis , Fluorides , Arabidopsis/metabolism , Arabidopsis/drug effects , Biological Transport , Camellia sinensis/metabolism , Escherichia coli/drug effects , Fluorides/metabolism , Fluorides/toxicity , Hydrogen-Ion Concentration , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity
15.
Plant Physiol Biochem ; 212: 108767, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797009

ABSTRACT

Salt stress is a critical limiting factor for fruit yield and quality of apples. Brassinosteroids (BRs) play an important role in response to abiotic stresses. In the present study, application of 2,4- Epicastasterone on seedlings of Malus 'M9T337' and Malus domestica 'Gala3' alleviated the physiological effects, such as growth inhibition and leaf yellowing, induced by salt stress. Further analysis revealed that treatment with NaCl induced expression of genes involved in BR biosynthesis in 'M9T337' and 'Gala3'. Among which, the expression of BR biosynthetic gene MdBR6OX2 showed a three-fold upregulation upon salt treatment, suggesting its potential role in response to salt stress in apple. MdBR6OX2, belonging to the CYP450 family, contains a signal peptide region and a P450 domain. Expression patterns analysis showed that the expression of MdBR6OX2 can be significantly induced by different abiotic stresses. Overexpressing MdBR6OX2 enhanced the tolerance of apple callis to salt stress, and the contents of endogenous BR-related compounds, such as Typhastero (TY), Castasterone (CS) and Brassinolide (BL) were significantly increased in transgenic calli compared with that of wild-type. Extopic expression of MdBR6OX2 enhanced tolerance to salt stress in Arabidopsis. Genes associated with salt stress were significantly up-regulated, and the contents of BR-related compounds were significantly elevated under salt stress. Our data revealed that BR-biosynthetic gene MdBR6OX2 positively regulates salt stress tolerance in both apple calli and Arabidopsis.


Subject(s)
Arabidopsis , Brassinosteroids , Gene Expression Regulation, Plant , Malus , Plant Proteins , Salt Tolerance , Malus/genetics , Malus/metabolism , Malus/drug effects , Brassinosteroids/metabolism , Brassinosteroids/biosynthesis , Brassinosteroids/pharmacology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Salt Tolerance/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Salt Stress/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
16.
mSystems ; 9(6): e0112423, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38780241

ABSTRACT

Plants rely on strigolactones (SLs) to regulate their development and form symbiotic relationships with microbes as part of the adaptive phosphorus (P) efficiency strategies. However, the impact of SLs on root-associated microbial communities in response to P availability remains unknown. Here, root microbiota of SL biosynthesis (max3-11) and perception (d14-1) were compared to wild-type Col-0 plants under different P concentrations. Using high-throughput sequencing, the relationship between SLs, P concentrations, and the root-associated microbiota was investigated to reveal the variation in microbial diversity, composition, and interaction. Plant genotypes and P availability played important but different roles in shaping the root-associated microbial community. Importantly, SLs were found to attract Acinetobacter in low P conditions, which included an isolated CP-2 (Acinetobacter soli) that could promote plant growth in cocultivation experiments. Moreover, SLs could change the topologic structure within co-occurrence networks and increase the number of keystone taxa (e.g., Rhizobiaceae and Acidobacteriaceae) to enhance microbial community stability. This study reveals the key role of SLs in mediating root-associated microbiota interactions.IMPORTANCEStrigolactones (SLs) play a crucial role in plant development and their symbiotic relationships with microbes, particularly in adapting to phosphorus levels. Using high-throughput sequencing, we compared the root microbiota of plants with SL biosynthesis and perception mutants to wild-type plants under different phosphorus concentrations. These results found that SLs can attract beneficial microbes in low phosphorus conditions to enhance plant growth. Additionally, SLs affect microbial network structures, increasing the stability of microbial communities. This study highlights the key role of SLs in shaping root-associated microbial interactions, especially in response to phosphorus availability.


Subject(s)
Lactones , Microbiota , Phosphorus , Plant Roots , Phosphorus/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/drug effects , Microbiota/drug effects , Lactones/metabolism , Lactones/pharmacology , Arabidopsis/microbiology , Arabidopsis/drug effects , Arabidopsis/metabolism , Symbiosis/drug effects
17.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772462

ABSTRACT

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Subject(s)
Acetates , Cyclopentanes , Fallopia japonica , Gene Expression Regulation, Plant , Metabolome , Oxylipins , Plant Proteins , Resveratrol , Transcription Factors , Transcriptome , Resveratrol/metabolism , Resveratrol/pharmacology , Fallopia japonica/metabolism , Fallopia japonica/genetics , Acetates/pharmacology , Acetates/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Transcriptome/drug effects , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression Profiling , Plants, Genetically Modified/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects
18.
Cryo Letters ; 45(4): 221-230, 2024.
Article in English | MEDLINE | ID: mdl-38809786

ABSTRACT

BACKGROUND: Today, synthetic chemicals are used in vitrification solutions for cryopreservation studies to mimic natural cryoprotectants that supply tolerance to organisms in nature against freezing stress. In the case of plants, PVS2, containing glycerol, dimethyl sulfoxide (Me2SO), ethylene glycol and sucrose, is considered as the golden standard for successful cryopreservation. However, Me2SO can generally cause toxicity to certain plant cells, adversely affecting viability after freezing and/or thawing. Hence, the replacement (or substantial reduction) of Me2SO by cheap, non-toxic and natural cryoprotectants became a matter of high priority to vitrification solutions or reducing their content gained escalating importance for the cryopreservation of plants. Fructans, sucrose derivatives mainly consisting of fructose residues, are candidate cryoprotectants. OBJECTIVE: Inspired by their protective role in nature, we here explored, for the first time, the potential of an array of 8 structurally different fructans as cryoprotectants in plant cryopreservation. MATERIALS AND METHODS: Arabidopsis thaliana L. seedlings were used as a model system with a one-step vitrification method. PVS2 solutions with different Me2SO and fructan contents were evaluated. RESULTS: It was found that branched low DP graminan, extracted from milky stage wheat kernels, led to the highest recovery (85%) among tested fructans with 12.5% Me2SO after cryopreservation, which was remarkably close to the viability (90%) observed with the original PVS2 containing 15% Me2SO. Moreover, its protective efficacy could be further optimized by addition of vitamin C acting as an antioxidant. CONCLUSION: Such novel formulations offer great perspectives for cryopreservation of various crop species. Doi.org/10.54680/fr24410110512.


Subject(s)
Arabidopsis , Cryopreservation , Cryoprotective Agents , Dimethyl Sulfoxide , Fructans , Vitrification , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Cryopreservation/methods , Fructans/pharmacology , Fructans/chemistry , Arabidopsis/drug effects , Vitrification/drug effects , Dimethyl Sulfoxide/pharmacology , Glycerol/pharmacology , Glycerol/chemistry , Seedlings/drug effects , Freezing , Sucrose/pharmacology , Sucrose/chemistry , Ethylene Glycol/pharmacology , Ethylene Glycol/chemistry , Antioxidants/pharmacology
19.
Nat Commun ; 15(1): 4438, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806462

ABSTRACT

Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.


Subject(s)
Osmotic Pressure , Plant Diseases , Plant Roots , Pseudomonas , Plant Diseases/microbiology , Pseudomonas/metabolism , Pseudomonas/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Soil Microbiology , Lipopeptides/pharmacology , Lipopeptides/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects
20.
Elife ; 122024 May 23.
Article in English | MEDLINE | ID: mdl-38780431

ABSTRACT

The elevation of atmospheric CO2 leads to a decline in plant mineral content, which might pose a significant threat to food security in coming decades. Although few genes have been identified for the negative effect of elevated CO2 on plant mineral composition, several studies suggest the existence of genetic factors. Here, we performed a large-scale study to explore genetic diversity of plant ionome responses to elevated CO2, using six hundred Arabidopsis thaliana accessions, representing geographical distributions ranging from worldwide to regional and local environments. We show that growth under elevated CO2 leads to a global decrease of ionome content, whatever the geographic distribution of the population. We observed a high range of genetic diversity, ranging from the most negative effect to resilience or even to a benefit in response to elevated CO2. Using genome-wide association mapping, we identified a large set of genes associated with this response, and we demonstrated that the function of one of these genes is involved in the negative effect of elevated CO2 on plant mineral composition. This resource will contribute to understand the mechanisms underlying the effect of elevated CO2 on plant mineral nutrition, and could help towards the development of crops adapted to a high-CO2 world.


Subject(s)
Arabidopsis , Carbon Dioxide , Genetic Variation , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Carbon Dioxide/metabolism , Genome-Wide Association Study
SELECTION OF CITATIONS
SEARCH DETAIL
...