Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 639
Filter
1.
Infect Dis Poverty ; 13(1): 75, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39390619

ABSTRACT

BACKGROUND: Vector-borne diseases cause morbidity and mortality globally. However, some areas are more impacted than others, especially with climate change. Controlling vectors remains the primary means to prevent these diseases, but new, more effective tools are needed. The World Health Organization (WHO) prioritized evaluating novel control methods, such as sterile insect technique (SIT) for control of Aedes-borne diseases. In response, a multiagency partnership between the U.S. Centers for Disease Control and Prevention (CDC), the Special Programme for Research and Training in Tropical Diseases (TDR), WHO, and the International Atomic Energy Agency (IAEA) supported the operational implementation and evaluation of SIT against Aedes aegypti and arboviral diseases in the Pacific through a consortium of regional partners (PAC-SIT Consortium). MAIN TEXT: A workshop was held from 2 to 6 May 2023, during which PAC-SIT country participants, researchers, and stakeholders in SIT, scientific advisory committee members, and organizational partners came together to review the principles and components of SIT, share experiences, visit field sites and the SIT facility, and officially launch the PAC-SIT project. Working in groups focused on entomology, epidemiology, and community engagement, participants addressed challenges, priorities, and needs for SIT implementation. CONCLUSIONS: The PAC-SIT workshop brought together researchers and stakeholders engaged in evaluating SIT for arboviral diseases in the Pacific region and globally. This training workshop highlighted that many countries are actively engaged in building operational capacities and phased testing of SIT. The workshop identified a key need for robust larger-scale studies tied with epidemiological endpoints to provide evidence for the scalability and impact on mosquito-borne diseases.


Subject(s)
Aedes , Arbovirus Infections , Mosquito Control , Animals , Arbovirus Infections/prevention & control , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Mosquito Control/methods , Humans , Pacific Islands/epidemiology , Mosquito Vectors , Vector Borne Diseases/prevention & control , Vector Borne Diseases/epidemiology , Capacity Building/methods , Mosquito-Borne Diseases
2.
Pak J Biol Sci ; 27(7): 337-347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39206467

ABSTRACT

<b>Background and Objective:</b> <i>Aedes</i> mosquito is a competent vector of arboviruses, mainly dengue, chikungunya, Zika and yellow fever. The high incidence of arboviral infections among travelers indicated the vulnerability of tourist attractions and public places visitors to arboviral infections. This study aimed to determine the presence and population density of <i>Aedes</i> mosquitoes at the places, as well as the susceptibility to temephos larvicide. <b>Materials and Methods:</b> A total of 17 tourist attractions and public places in four districts/cities of Central Java Province were selected as study sites and 25-40 ovitraps were installed in each location for three days. The coordinates, altitude, vegetation density, shade, wind speed, air temperature and humidity were recorded. Ovistrips and water of each ovitrap were observed in the laboratory to determine the ovitrap index (OI) and egg density index (EDI), mosquito species and their susceptibility to temephos. <b>Results:</b> A total of 12,231 eggs were obtained with a range, OI and EDI of 0-1,024, 42% and 31.93 eggs/trap, respectively. Vegetation density, shade and wind speed were significantly associated with the presence of <i>Aedes </i>eggs in the ovitraps (p<0.05), while altitude, temperature and air humidity were correlated with the average of <i>Aedes</i> eggs per ovitrap. <b>Conclusion:</b> Although <i>Aedes</i> larvae in all study sites were susceptible to temephos 0.02 mg/L the results indicated the vulnerability of visitors to <i>Aedes</i>-borne diseases. Further investigation of arbovirus infections in <i>Aedes</i> mosquitoes at tourist attractions and public places is necessary conducted to evaluate the potential and risk of pathogen transmission to visitors.


Subject(s)
Aedes , Mosquito Vectors , Temefos , Animals , Mosquito Vectors/virology , Aedes/virology , Aedes/drug effects , Humans , Insecticides , Population Density , Arbovirus Infections/transmission , Arboviruses , Indonesia/epidemiology
3.
Viruses ; 16(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39205156

ABSTRACT

Arboviruses are pathogens transmitted mainly by mosquitoes, ticks, and sandflies [...].


Subject(s)
Arbovirus Infections , Arboviruses , Humans , Arboviruses/classification , Animals , Arbovirus Infections/virology , Arbovirus Infections/transmission , Ticks/virology , Culicidae/virology
4.
Viruses ; 16(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39205176

ABSTRACT

The common house mosquito (Culex pipiens) is a native vector for West Nile virus (WNV). Invasive species like the tiger mosquito (Aedes albopictus) and Asian bush mosquito (Aedes japonicus) are rapidly spreading through Europe, posing a major threat as vectors for dengue, chikungunya (CHIKV), and Japanese encephalitis virus (JEV). These mosquitoes share a similar ecological niche as larvae, but the carry-over effects of aquatic larval interactions to the terrestrial adult stage remain largely unknown and their medical relevance requires further investigation. This study examines the context dependency of larval interactions among Aedes albopictus, Aedes japonicus, and Culex pipiens. The survival, development time, growth, and energetic storage were measured in different European populations within density-response (intraspecific) experiments and replacement (interspecific) experiments at 20 °C and 26 °C. Overall, Ae. japonicus was the weakest competitor, while competition between Ae. albopictus and Cx. pipiens varied with temperature. Adults emerging from this larval competition were infected as follows: Culex pipiens with WNV, Ae. albopictus with CHIKV, and Ae. japonicus with JEV. While no JEV infection was observed, mosquitoes experiencing interspecific interactions during their larval stages exhibited higher infection rates and viral RNA titers for CHIKV and WNV. This increased susceptibility to viral infection after larval competition suggests a higher risk of arbovirus transmission in co-occurring populations.


Subject(s)
Aedes , Culex , Larva , Mosquito Vectors , Animals , Culex/virology , Culex/growth & development , Aedes/virology , Aedes/growth & development , Aedes/physiology , Larva/virology , Mosquito Vectors/virology , Mosquito Vectors/growth & development , Arbovirus Infections/transmission , Arbovirus Infections/virology , Arboviruses/physiology , West Nile virus/physiology , Female , Chikungunya virus/physiology , Encephalitis Virus, Japanese/physiology
5.
Viruses ; 16(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39205195

ABSTRACT

Most mathematical models that assess the vectorial capacity of disease-transmitting insects typically focus on the influence of climatic factors to predict variations across different times and locations, or examine the impact of vector control interventions to forecast their potential effectiveness. We combine features of existing models to develop a novel model for vectorial capacity that considers both climate and vector control. This model considers how vector control tools affect vectors at each stage of their feeding cycle, and incorporates host availability and preference. Applying this model to arboviruses of veterinary importance in Europe, we show that African horse sickness virus (AHSV) has a higher peak predicted vectorial capacity than bluetongue virus (BTV), Schmallenberg virus (SBV), and epizootic haemorrhagic disease virus (EHDV). However, AHSV has a shorter average infectious period due to high mortality; therefore, the overall basic reproduction number of AHSV is similar to BTV. A comparable relationship exists between SBV and EHDV, with both viruses showing similar basic reproduction numbers. Focusing on AHSV transmission in the UK, insecticide-treated stable netting is shown to significantly reduce vectorial capacity of Culicoides, even at low coverage levels. However, untreated stable netting is likely to have limited impact. Overall, this model can be used to consider both climate and vector control interventions either currently utilised or for potential use in an outbreak, and could help guide policy makers seeking to mitigate the impact of climate change on disease control.


Subject(s)
Arbovirus Infections , Arboviruses , Ceratopogonidae , Climate , Insect Vectors , Animals , Arbovirus Infections/transmission , Arbovirus Infections/prevention & control , Arboviruses/physiology , Insect Vectors/virology , Insect Vectors/physiology , Ceratopogonidae/virology , Ceratopogonidae/physiology , Models, Theoretical , Europe/epidemiology , Basic Reproduction Number , Bluetongue virus/physiology
6.
Viruses ; 16(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39205250

ABSTRACT

Studies on animal virome have mainly concentrated on chordates and medically significant invertebrates, often overlooking sylvatic mosquitoes, constituting a major part of mosquito species diversity. Despite their potential role in arbovirus transmission, the viromes of sylvatic mosquitoes remain largely unexplored. These mosquitoes may also harbor insect-specific viruses (ISVs), affecting arboviral transmission dynamics. The Cerrado biome, known for rapid deforestation and its status as a biodiversity hotspot, offers an ideal setting for investigating mosquito viromes due to potential zoonotic spillover risks from land use changes. This study aimed to characterize the viromes of sylvatic mosquitoes collected from various locations within Minas Gerais state, Brazil. The total RNA was extracted from mosquito pools of Psorophora albipes, Sabethes albiprivus, Sa. chloropterus, Psorophora ferox, and Coquillettidia venezuelensis species, followed by high-throughput sequencing (HTS). Bioinformatic analysis included quality control, contig assembly, and viral detection. Sequencing data analysis revealed 11 near-complete viral genomes (new viruses are indicated with asterisks) across seven viral families and one unassigned genus. These included: Xinmoviridae (Ferox mosquito mononega-like virus* and Albipes mosquito Gordis-like virus*), Phasmaviridae (Sabethes albiprivus phasmavirus*), Lispiviridae (Pedras lispivirus variant MG), Iflaviridae (Sabethes albiprivus iflavivirus*), Virgaviridae (Buriti virga-like virus variant MG and Sabethes albiprivus virgavirus 1*), Flaviviridae (Psorophora ferox flavivirus*), Mesoniviridae (Alphamesonivirus cavallyense variant MG), and the genus Negevirus (Biggie virus variant MG virus and Coquillettidia venezuelensis negevirus*). Moreover, the presence of ISVs and potential novel arboviruses underscores the need for ongoing surveillance and control strategies to mitigate the risk of emerging infectious diseases.


Subject(s)
Arbovirus Infections , Arboviruses , Culicidae , Mosquito Vectors , Phylogeny , Virome , Animals , Brazil , Arboviruses/genetics , Arboviruses/classification , Arboviruses/isolation & purification , Virome/genetics , Culicidae/virology , Arbovirus Infections/transmission , Arbovirus Infections/virology , Mosquito Vectors/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Insect Viruses/genetics , Insect Viruses/classification , Insect Viruses/isolation & purification
7.
Nat Commun ; 15(1): 6817, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122673

ABSTRACT

Arboviruses can be paternally transmitted by male insects to offspring for long-term persistence, but the mechanism remains largely unknown. Here, we use a model system of a destructive rice reovirus and its leafhopper vector to find that insect ribosome-rescuer Pelo-Hbs1 complex expressed on the sperm surface mediates paternal arbovirus transmission. This occurs through targeting virus-containing tubules constituted by viral nonstructural protein Pns11 to sperm surface via Pns11-Pelo interaction. Tubule assembly is dependent on Hsp70 activity, while Pelo-Hbs1 complex inhibits tubule assembly via suppressing Hsp70 activity. However, virus-activated ubiquitin ligase E3 mediates Pelo ubiquitinated degradation, synergistically causing Hbs1 degradation. Importantly, Pns11 effectively competes with Pelo for binding to E3, thus antagonizing E3-mediated Pelo-Hbs1 degradation. These processes cause a slight reduction of Pelo-Hbs1 complex in infected testes, promoting effective tubule assembly. Our findings provide insight into how insect sperm-specific Pelo-Hbs1 complex is modulated to promote paternal virus transmission without disrupting sperm function.


Subject(s)
Hemiptera , Insect Proteins , Spermatozoa , Animals , Male , Spermatozoa/metabolism , Spermatozoa/virology , Hemiptera/virology , Hemiptera/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Arboviruses , HSP70 Heat-Shock Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Reoviridae/physiology , Insect Vectors/virology , Insect Vectors/metabolism , Ribosomes/metabolism , Arbovirus Infections/transmission , Arbovirus Infections/metabolism , Arbovirus Infections/virology
8.
BMC Public Health ; 24(1): 2096, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095794

ABSTRACT

BACKGROUND: To assess whether the 'economic boom' in the tropical seaport city of Barranquilla improved tapped water supplies to socio-economically poor neighbourhoods resulting in: (1) their reduced use for domestic water-storage in large (> 1,000-litre) custom-made cement tanks which are their principal Aedes aegypti breeding sites and (2) their pupae/person index (PPI) values to below their established 0.5-1.5 PPI arbovirus transmission-threshold value, compared to matched neighbourhoods in the: (a) pre-economic boom (2004) period in Barranquilla and (b) economically-neglected seaport city of Buenaventura. METHODS: The simple, accurate and robust water surface sweep-net/calibration factor or total count methods were used to determine the total Ae. aegypti pupae numbers in greater or less than 20-litre water-holding container types located 'inside' or 'outside' these neighbourhood premises. The women residents also participated in questionnaire-based responses about their domestic water supplies, water-storage and maintenance and mosquito life stages and disease transmission knowledge, to subsequently plan appropriate resident education programmes. Microsoft Excel 8.0 with OpenEpi was used to determine the samples sizes and the statistical values. RESULTS: Tapped water supplies to the three poor Barranquilla neighbourhoods were dramatically increased from 2004 to 2023 resulting in their residents significantly reducing their: (a) large cement water-storage tanks from 1 per 6.9 (2004) to 1 per 31.2 (2020) premises (z = 10.5: p = 0) and (b) PPI values to 0.16, 0.19 and 0.53 (mean: 0.29: 95% CI ± 0.4) in each study neighbourhood. In contrast, tapped water supplies remained inadequate in the Buenaventura neighborhoods, thereby resulting in their continued use of many large (> 1,000-litre) water-storage containers (Barranquilla: 1 per 31.2 and Buenaventura: 1 per 1.5 premises: z = - 9.26: p = 0), with unacceptably high 0.81, 0.88 and 0.99 PPI values in each study neighbourhood (mean 0.89: 95% CI ± 0.12). CONCLUSIONS: Improved tapped water supplies resulted in reduced numbers of large custom-made stoneware water-containers, as are employed by poor residents throughout the world, as well as their Ae. aegypti PPI transmission threshold values which, together with appropriate residents' education programmes, are also urgently to reduce to prevent/reduce Ae. aegypti transmitted human diseases globally.


Subject(s)
Aedes , Water Supply , Animals , Humans , Female , Mosquito Vectors , Arbovirus Infections/transmission , Pupa , Dengue/transmission , Mosquito Control/methods , Colombia , Adult , Residence Characteristics/statistics & numerical data
9.
Int J Infect Dis ; 146: 107191, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053618

ABSTRACT

OBJECTIVES: The anticipated increase in international tourist flows and the first locally acquired dengue cases in the Paris region in October 2023 have raised concerns about potential arbovirus outbreaks during the 2024 Olympics. Unlike previous mass sporting events at risk of arbovirus outbreaks, Paris is a nonendemic arbovirus area, requiring a unique investigation. METHODS: Therefore, we analyzed factors conducive to possible arbovirus epidemics in temperate regions: vector distribution in the Paris area, seasonal global arboviral disease patterns, projected visitor demographics, and international flight bookings. RESULTS AND CONCLUSION: Our results suggest that the expected visitors' profile for the summer of 2024 should not increase the risk of arbovirus importation into the Paris region compared to a typical year. Conversely, the primary risk of arbovirus outbreaks is likely to come from within France, particularly from the French West Indies, where a notable, albeit declining, dengue outbreak is underway. Vigilant surveillance by French health authorities will ensure that this trend continues.


Subject(s)
Arbovirus Infections , Disease Outbreaks , Epidemics , Humans , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Paris/epidemiology , Animals , Sports , Travel , Mosquito Vectors/virology , Dengue/epidemiology , Dengue/transmission , Seasons , Arboviruses , Risk Factors
11.
Euro Surveill ; 29(20)2024 05.
Article in English | MEDLINE | ID: mdl-38757289

ABSTRACT

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Subject(s)
Aedes , Chikungunya virus , Dengue Virus , Zika Virus , Animals , Aedes/virology , Humans , Zika Virus/isolation & purification , Dengue Virus/isolation & purification , Chikungunya virus/isolation & purification , Paris , Mosquito Vectors/virology , West Nile virus/isolation & purification , Arboviruses/isolation & purification , Arbovirus Infections/transmission , Flavivirus/isolation & purification , France , Dengue/transmission , Dengue/epidemiology , Zika Virus Infection/transmission
12.
Med Clin (Barc) ; 163(3): 134-142, 2024 08 16.
Article in English, Spanish | MEDLINE | ID: mdl-38643027

ABSTRACT

Arboviruses represent a threat to transfusion safety for several reasons: the presence of vectors and the notification of autochthonous cases in our region, the recent increase in the number of cases transmitted through blood and/or blood component transfusion, the high prevalence rates of RNA of the main arboviruses in asymptomatic blood donors, and their ability to survive processing and storage in the different blood components. In an epidemic outbreak caused by an arbovirus in our region, transfusion centres can apply different measures: reactive measures, related to donor selection or arbovirus screening, and proactive measures, such as pathogen inactivation methods. The study of the epidemiology of the main arboviruses and understanding the effectiveness of the different measures that we can adopt are essential to ensure that our blood components remain safe.


Subject(s)
Arbovirus Infections , Arboviruses , Blood Donors , Blood Safety , Transfusion Reaction , Humans , Spain/epidemiology , Arbovirus Infections/transmission , Arbovirus Infections/epidemiology , Arbovirus Infections/prevention & control , Transfusion Reaction/epidemiology , Donor Selection/standards , Disease Outbreaks/prevention & control , Blood Transfusion/standards , Zika Virus Infection/transmission , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , West Nile Fever/transmission , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Fever/diagnosis
14.
Curr Opin Insect Sci ; 63: 101194, 2024 06.
Article in English | MEDLINE | ID: mdl-38522648

ABSTRACT

Mosquitoes are vectors for arboviruses, such as dengue, Zika, and Chikungunya. Symbiotic interactions can affect the intrinsic ability of mosquitoes to acquire and transmit arboviruses, referred to as vector competence. Insect-specific viruses (ISVs) are commonly found in symbiotic associations with mosquitoes in the wild and can affect many aspects of mosquito biology. Here, we review current knowledge on the effects of symbiotic ISV-mosquito interactions on vector competence. We discuss potential mechanisms underlying these interactions and their implications for shaping new biological control strategies. Finally, we highlight the need for field data analyzing the circulation of ISVs in mosquitoes associated with mechanistic studies in the laboratory.


Subject(s)
Arboviruses , Mosquito Vectors , Symbiosis , Animals , Mosquito Vectors/virology , Mosquito Vectors/physiology , Arboviruses/physiology , Insect Viruses/physiology , Culicidae/virology , Culicidae/physiology , Arbovirus Infections/transmission
15.
Insect Mol Biol ; 33(4): 362-371, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38450861

ABSTRACT

Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. However, Wolbachia effects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in which Wolbachia governs pathogen transmission phenotypes; rather, the genetics of the host can significantly modulate Wolbachia-mediated pathogen blocking. Specifically, previous work linked variation in Wolbachia pathogen blocking to polymorphisms in the mosquito alpha-mannosidase-2 (αMan2) gene. Here we use CRISPR-Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on both Wolbachia and virus levels, using dengue virus (DENV; Flaviviridae) and Mayaro virus (MAYV; Togaviridae). Wolbachia titres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. In Wolbachia-uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in a Wolbachia-infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication in Wolbachia-uninfected mosquitoes and did not affect Wolbachia-mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection in A. aegypti mosquitoes in a pathogen- and Wolbachia-specific manner, and that Wolbachia-mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use of Wolbachia-based strategies to control vector-borne pathogens.


Subject(s)
Aedes , Wolbachia , alpha-Mannosidase , Animals , Aedes/microbiology , Aedes/virology , Aedes/genetics , Wolbachia/physiology , alpha-Mannosidase/metabolism , alpha-Mannosidase/genetics , Dengue Virus/physiology , Arboviruses/physiology , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Mosquito Vectors/genetics , Female , Arbovirus Infections/transmission , Insect Proteins/metabolism , Insect Proteins/genetics , CRISPR-Cas Systems
16.
J Med Entomol ; 61(3): 726-732, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38372693

ABSTRACT

Culex panocossa, Dyar and Knab, an important enzootic vector of Venezuelan equine encephalitis virus subtype ID in Central and South America, was found to have invaded and become established in southern Florida in 2016. No information is currently available regarding the ecology of this invasive mosquito in the United States. Here, we use PCR-based blood meal analysis to investigate vertebrate host associations of Cx. panocossa from Florida to provide information necessary for determining the potential importance of this mosquito for arbovirus transmission in the United States. Culex panocossa fed mainly upon birds (49.5%) but took a substantial fraction of blood meals from mammals (33.3%) and reptiles (17.1%). By feeding upon amplifying hosts of Everglades virus (hispid cotton rat) and eastern equine encephalitis virus (wading birds) and humans, Cx. panocossa could act as a bridge vector for these pathogenic Alphaviruses in Florida, potentially resulting in increased human disease.


Subject(s)
Culex , Mosquito Vectors , Animals , Culex/virology , Culex/physiology , Florida , Mosquito Vectors/virology , Mosquito Vectors/physiology , Birds , Mammals , Reptiles , Arboviruses/physiology , Feeding Behavior , Arbovirus Infections/transmission , Humans , Encephalitis Virus, Eastern Equine/physiology , Female
17.
Front Public Health ; 10: 900077, 2022.
Article in English | MEDLINE | ID: mdl-35719644

ABSTRACT

Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models.


Subject(s)
Arbovirus Infections/virology , Arboviruses/classification , Arthropod Vectors/classification , Machine Learning , Neglected Diseases/virology , Public Health/methods , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arboviruses/pathogenicity , Arboviruses/physiology , Arthropod Vectors/virology , Humans , Machine Learning/standards , Machine Learning/trends , Models, Statistical , Neglected Diseases/epidemiology , Public Health/trends
18.
Proc Natl Acad Sci U S A ; 119(24): e2114309119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35675424

ABSTRACT

Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes, which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes-mosquito-borne viruses.


Subject(s)
Aedes , Arbovirus Infections , Arboviruses , Saliva , Tachykinins , Virus Diseases , Aedes/genetics , Aedes/virology , Animals , Arbovirus Infections/transmission , Arboviruses/genetics , Arboviruses/metabolism , Saliva/virology , Tachykinins/genetics , Tachykinins/metabolism , Virus Diseases/transmission
19.
Viruses ; 14(2)2022 02 09.
Article in English | MEDLINE | ID: mdl-35215949

ABSTRACT

Mosquito-borne viruses (MBVs), also known as moboviruses, are associated mainly with mosquitoes and are able to infect humans and other vertebrates [...].


Subject(s)
Ecology , Mosquito Vectors/virology , Aedes/physiology , Aedes/virology , Animals , Arbovirus Infections/prevention & control , Arbovirus Infections/transmission , Arbovirus Infections/virology , Arboviruses/physiology , Humans , Mosquito Vectors/physiology
20.
PLoS Negl Trop Dis ; 16(1): e0010171, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35073317

ABSTRACT

Aedes simpsoni complex has a wide distribution in Africa and comprises at least three described sub-species including the yellow fever virus (YFV) vector Ae. bromeliae. To date, the distribution and relative contributions of the sub-species and/or subpopulations including bionomic characteristics in relation to YF transmission dynamics remain poorly studied. In this study conducted in two areas with divergent ecosystems: peri-urban (coastal Rabai) and rural (Rift Valley Kerio Valley) in Kenya, survival rate was estimated by parity in Ae. simpsoni s.l. mosquitoes sampled using CO2-baited BG Sentinel traps. We then applied PCR targeting the nuclear internal transcribed spacer 2 (ITS2), region followed by sequencing and phylogenetic analytics to identify the sibling species in the Ae. simpsoni complex among parous and blood fed cohorts. Our results show that Ae. bromeliae was the most dominant sub-species in both areas, exhibiting high survival rates, human blood-feeding, and potentially, high vectorial capacity for pathogen transmission. We document for the first time the presence of Ae. lilii in Kenya and potentially yet-to-be described species in the complex displaying human feeding tendencies. We also infer a wide host feeding range on rodents, reptile, and domestic livestock besides humans especially for Ae. bromeliae. This feeding trend could likely expose humans to various zoonotic pathogens. Taken together, we highlight the utility of genotype-based analyses to generate precision surveillance data of vector populations for enhanced disease risk prediction and to guide cost-effective interventions (e.g. YF vaccinations).


Subject(s)
Aedes/classification , Aedes/virology , Arbovirus Infections/transmission , Arboviruses/isolation & purification , Mosquito Vectors/virology , Yellow Fever/transmission , Aedes/physiology , Africa, Eastern/epidemiology , Animals , Arbovirus Infections/epidemiology , Arboviruses/classification , Ecosystem , Environment , Feeding Behavior , Female , Host Specificity , Yellow Fever/epidemiology , Yellow fever virus/classification , Yellow fever virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL