Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.864
Filter
1.
Nat Commun ; 15(1): 6734, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112491

ABSTRACT

Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment. Antibiotic tolerance, the ability of bacteria to persist despite normally lethal doses of antibiotics, contributes to antibiotic treatment failure in S. aureus infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-staphylococcal antibiotics are examined using both quantitative proteomics and transposon sequencing. These screens indicate that arginine metabolism is involved in antibiotic tolerance within a biofilm and support the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance. Arginine restriction induces antibiotic tolerance via inhibition of protein synthesis. In murine skin and bone infection models, an argH mutant has enhanced ability to survive antibiotic treatment with vancomycin, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.


Subject(s)
Anti-Bacterial Agents , Arginine , Biofilms , Staphylococcal Infections , Staphylococcus aureus , Arginine/metabolism , Anti-Bacterial Agents/pharmacology , Animals , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Biofilms/drug effects , Biofilms/growth & development , Mice , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Vancomycin/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Female , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Hydrolases/metabolism , Hydrolases/genetics , Proteomics
2.
Biochemistry ; 63(16): 2023-2029, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39106042

ABSTRACT

The kallikrein-related peptidase KLK2 has restricted expression in the prostate luminal epithelium, and its protein target is unknown. The present work reports the hydrolytic activities of KLK2 on libraries of fluorescence resonance energy-transfer peptides from which the sequence SYRIF was the most susceptible substrate for KLK2. The sequence SYRIF is present at the extracellular N-terminal segment (58SYRIF63Q) of IL-10R2. KLK2 was fully active at pH 8.0-8.2, found only in prostate inflammatory conditions, and strongly activated by sodium citrate and glycosaminoglycans, the quantities and structures controlled by prostate cells. Bone-marrow-derived macrophages (BMDM) have IL-10R2 expressed on the cell surface, which is significantly reduced after KLK2 treatment, as determined by flow cytometry (FACS analysis). The IL-10 inhibition of the inflammatory response to LPS/IFN-γ in BMDM cells due to decreased nitric oxide, TNF-α, and IL-12 p40 levels is significantly reduced upon treatment of these cells with KLK2. Similar experiments with KLK3 did not show these effects. These observations indicate that KLK2 proteolytic activity plays a role in prostate inflammation and makes KLK2 a promising target for prostatitis treatment.


Subject(s)
Kallikreins , Humans , Male , Kallikreins/metabolism , Kallikreins/chemistry , Arginine/metabolism , Arginine/chemistry , Prostate/metabolism , Prostate/drug effects , Macrophages/metabolism , Macrophages/drug effects , Animals , Mice , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Protein Domains , Interleukin-10/metabolism , Substrate Specificity
3.
Cell Physiol Biochem ; 58: 336-360, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39092511

ABSTRACT

BACKGROUND/AIMS: Individual resistance to hypoxia is an important feature of the physiological profile of an organism, particularly in relation to lead-induced toxicity. METHODS: Our study focused on evaluating parameters of mitochondrial oxygen consumption, microsomal oxidation, intensity of lipoperoxidation processes and antioxidant defences in the liver of rats with low (LR) and high (HR) resistance to hypoxia to elucidate the mechanisms of action of L-arginine and the NO synthase inhibitor L-NNA before or after exposure to lead nitrate. RESULTS: Our study suggests that the redistribution of oxygen-dependent processes towards mitochondrial processes under the influence of the nitric oxide precursor amino acid L-arginine is an important mechanism for maintaining mitochondrial respiratory chain function during per os lead nitrate exposure (3.6 mg lead nitrate/kg bw per day for 30 days). Animals were given L-arginine at a dose of 600 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate or the NO synthase inhibitor Nω-nitro-L-arginine (L-NNA) at a dose of 35 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate. Our experiments demonstrated the efficacy of using lead nitrate to simulate lead-related toxic processes via Pb levels in liver tissue; we demonstrated significantly reduced levels of nitrites and nitrates, i.e. stable metabolites of the nitric oxide system, in both LR and HR animals. The effect of the amino acid L-arginine stabilised the negative effects of lead nitrate exposure in both groups of LR and HR rats. We observed the efficiency of mitochondrial energy supply processes and showed a greater vulnerability of NADH-dependent oxidation during lead nitrate exposure in the liver of HR rats. CONCLUSION: L-arginine initiated the processes of oxidation of NADH-dependent substrates in the LR group, whereas in the HR group this directionality of processes was more effective when the role of the nitric oxide system was reduced (use of L-NNA). Our study of key antioxidant enzyme activities in rat liver tissue during lead nitrate exposure revealed changes in the catalase-peroxidase activity ratio. We found different activities of antioxidant enzymes in the liver tissue of rats treated with lead nitrate and L-arginine or L-NNA, with a significant increase in GPx activity in the LR group when L-arginine was administered both before and after exposure to lead nitrate.


Subject(s)
Arginine , Hypoxia , Lead , Nitrates , Nitroarginine , Rats, Wistar , Animals , Arginine/metabolism , Arginine/pharmacology , Nitrates/metabolism , Male , Rats , Nitroarginine/pharmacology , Hypoxia/metabolism , Lead/toxicity , Liver/metabolism , Liver/drug effects , Oxygen Consumption/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Lipid Peroxidation/drug effects , Catalase/metabolism
4.
BMC Pediatr ; 24(1): 540, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174946

ABSTRACT

BACKGROUND: Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancers in children. Failure of induction chemotherapy is a major factor leading to relapse and death in children with B-ALL. Given the importance of altered metabolites in the carcinogenesis of pediatric B-ALL, studying the metabolic profile of children with B-ALL during induction chemotherapy and in different minimal residual disease (MRD) status may contribute to the management of pediatric B-ALL. METHODS: We collected paired peripheral blood plasma samples from children with B-ALL at pre- and post-induction chemotherapy and analyzed the metabolomic profiling of these samples by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). Healthy children were included as controls. We selected metabolites that were depleted in pediatric B-ALL and analyzed the concentrations in pediatric B-ALL samples. In vitro, we study the effects of the selected metabolites on the viability of ALL cell lines and the sensitivity to conventional chemotherapeutic agents in ALL cell lines. RESULTS: Forty-four metabolites were identified with different levels between groups. KEGG pathway enrichment analyses revealed that dysregulated linoleic acid (LA) metabolism and arginine (Arg) biosynthesis were closely associated with pediatric B-ALL. We confirmed that LA and Arg were decreased in pediatric B-ALL samples. The treatment of LA and Arg inhibited the viability of NALM-6 and RS4;11 cells in a dose-dependent manner, respectively. Moreover, Arg increased the sensitivity of B-ALL cells to L-asparaginase and daunorubicin. CONCLUSION: Arginine increases the sensitivity of B-ALL cells to the conventional chemotherapeutic drugs L-asparaginase and daunorubicin. This may represent a promising therapeutic approach.


Subject(s)
Arginine , Metabolomics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/blood , Arginine/metabolism , Arginine/blood , Child , Female , Metabolomics/methods , Child, Preschool , Male , Case-Control Studies , Neoplasm, Residual , Chromatography, High Pressure Liquid , Cell Line, Tumor , Metabolome , Induction Chemotherapy , Adolescent , Infant
5.
FASEB J ; 38(16): e70003, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39157946

ABSTRACT

The mechanism connecting gut microbiota to appetite regulation is not yet fully understood. This study identifies specific microbial community and metabolites that may influence appetite regulation. In the initial phase of the study, mice were administered a broad-spectrum antibiotic cocktail (ABX) for 10 days. The treatment significantly reduced gut microbes and disrupted the metabolism of arginine and tryptophan. Consequently, ABX-treated mice demonstrated a notable reduction in feed consumption. The hypothalamic expression levels of CART and POMC, two key anorexigenic factors, were significantly increased, while orexigenic factors, such as NPY and AGRP, were decreased. Notably, the levels of appetite-suppressing hormone cholecystokinin in the blood were significantly elevated. In the second phase, control mice were maintained, while the ABX-treated mice received saline, probiotics, and short-chain fatty acids (SCFAs) for an additional 10 days to restore their gut microbiota. The microbiota reconstructed by probiotic and SCFA treatments were quite similar, while microbiota of the naturally recovering mice demonstrated greater resemblance to that of the control mice. Notably, the abundance of Akkermansia and Bacteroides genera significantly increased in the reconstructed microbiota. Moreover, microbiota reconstruction corrected the disrupted arginine and tryptophan metabolism and the abnormal peripheral hormone levels caused by ABX treatment. Among the groups, SCFA-treated mice had the highest feed intake and NPY expression. Our findings indicate that gut microbes, especially Akkermansia, regulate arginine and tryptophan metabolism, thereby influencing appetite through the microbe-gut-brain axis.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Mice, Inbred C57BL , Anti-Bacterial Agents/pharmacology , Tryptophan/metabolism , Appetite/drug effects , Probiotics/pharmacology , Arginine/pharmacology , Arginine/metabolism , Hypothalamus/metabolism , Appetite Regulation/physiology , Fatty Acids, Volatile/metabolism
6.
Eur J Med Res ; 29(1): 423, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152472

ABSTRACT

BACKGROUND: Salidroside (SAL), derived from Rhodiola, shows protective effects in pulmonary arterial hypertension (PAH) models, but its mechanisms are not fully elucidated. OBJECTIVES: Investigate the therapeutic effects and the mechanism of SAL on PAH. METHODS: Monocrotaline was used to establish a PAH rat model. SAL's impact on oxidative stress and inflammatory responses in lung tissues was analyzed using immunohistochemistry, ELISA, and Western blot. Untargeted metabolomics explored SAL's metabolic regulatory mechanisms. RESULTS: SAL significantly reduced mean pulmonary artery pressure, right ventricular hypertrophy, collagen deposition, and fibrosis in the PAH rats. It enhanced antioxidant enzyme levels, reduced inflammatory cytokines, and improved NO bioavailability by upregulating endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC), cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG) and decreases the expression of endothelin-1 (ET-1). Metabolomics indicated SAL restored metabolic balance in PAH rats, particularly in arginine metabolism. CONCLUSIONS: SAL alleviates PAH by modulating arginine metabolism, enhancing NO synthesis, and improving pulmonary vascular remodeling.


Subject(s)
Arginine , Glucosides , Nitric Oxide , Phenols , Pulmonary Arterial Hypertension , Animals , Glucosides/pharmacology , Phenols/pharmacology , Phenols/therapeutic use , Nitric Oxide/metabolism , Rats , Male , Arginine/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Rats, Sprague-Dawley , Disease Models, Animal , Oxidative Stress/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Nitric Oxide Synthase Type III/metabolism , Biological Availability , Vascular Remodeling/drug effects
7.
Clin Exp Med ; 24(1): 176, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105860

ABSTRACT

Biotin and arginine play crucial roles in lipid metabolism and may offer promising interventions against obesity. This study examined the combined effect of magnesium biotinate (MgB) and inositol-stabilized arginine silicate complex (ASI) on obesity-related oxidative imbalance, inflammation, lipid metabolism and neuromodulation in rats on a high-fat diet (HFD). Forty rats were divided into five groups: (a) control: rats were fed a standard diet containing 12% of energy from fat; (b) HFD: rats were fed the HFD with 42% of energy from fat; (c) HFD + MgB: rats were fed the HFD and given 0.31 mg/kg body weight (BW) MgB, (d) HFD + ASI: rats were fed the HFD and were given 12.91 mg/kg BW ASI), and (e) HFD + MgB + ASI: rats were fed the HFD and given 0.31 mg/kg BW MgB and 12.91 mg/kg BW ASI). The combined administration of MgB and ASI reduced the levels of serum cholesterol, free fatty acid (FFA), and malondialdehyde (MDA), as well as liver inflammatory cytokines, sterol regulatory element-binding protein 1-c (SREBP-1c), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) proteins (P < 0.001) compared to HFD rats without supplementation. Moreover, this combination increased the activities of antioxidant enzymes (P < 0.05) and boosted the brain-derived neurotrophic factor (BDNF), serotonin, dopamine (P < 0.001), as well as liver insulin receptor substrate 1 (IRS-1) and peroxisome proliferator-activated receptor gamma (PPAR-γ) (P < 0.001). These findings suggest that combining MgB and ASI could deter liver fat accumulation and enhance lipid metabolism in HFD-fed rats by modulating various metabolic pathways and neuromodulators related to energy metabolism. This combination demonstrates potential in addressing obesity and its related metabolic dysfunctions.


Subject(s)
Antioxidants , Arginine , Diet, High-Fat , Animals , Diet, High-Fat/adverse effects , Rats , Arginine/pharmacology , Arginine/metabolism , Male , Antioxidants/pharmacology , Antioxidants/metabolism , Silicates/pharmacology , Obesity/metabolism , Inflammation/metabolism , Lipid Metabolism/drug effects , Neurotransmitter Agents/metabolism , Liver/metabolism , Liver/drug effects , Oxidative Stress/drug effects , Disease Models, Animal
8.
Life Sci Alliance ; 7(11)2024 Nov.
Article in English | MEDLINE | ID: mdl-39191486

ABSTRACT

HER2+ breast tumors have abundant immune-suppressive cells, including M2-type tumor-associated macrophages (TAMs). Although TAMs consist of the immune-stimulatory M1 type and immune-suppressive M2 type, the M1/M2-TAM ratio is reduced in immune-suppressive tumors, contributing to their immunotherapy refractoriness. M1- versus M2-TAM formation depends on differential arginine metabolism, where M1-TAMs convert arginine to nitric oxide (NO) and M2-TAMs convert arginine to polyamines (PAs). We hypothesize that such distinct arginine metabolism in M1- versus M2-TAMs is attributed to different availability of BH4 (NO synthase cofactor) and that its replenishment would reprogram M2-TAMs to M1-TAMs. Recently, we reported that sepiapterin (SEP), the endogenous BH4 precursor, elevates the expression of M1-TAM markers within HER2+ tumors. Here, we show that SEP restores BH4 levels in M2-like macrophages, which then redirects arginine metabolism to NO synthesis and converts M2 type to M1 type. The reprogrammed macrophages exhibit full-fledged capabilities of antigen presentation and induction of effector T cells to trigger immunogenic cell death of HER2+ cancer cells. This study substantiates the utility of SEP in the metabolic shift of the HER2+ breast tumor microenvironment as a novel immunotherapeutic strategy.


Subject(s)
Arginine , Breast Neoplasms , Nitric Oxide , Tumor Microenvironment , Tumor-Associated Macrophages , Arginine/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Mice , Tumor Microenvironment/immunology , Animals , Nitric Oxide/metabolism , Cellular Reprogramming , Cell Line, Tumor , Macrophages/metabolism , Macrophages/immunology
9.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39207120

ABSTRACT

The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.


Subject(s)
Aminoacyltransferases , Newcastle disease virus , Proteasome Endopeptidase Complex , Protein Processing, Post-Translational , Proteolysis , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , Newcastle disease virus/physiology , Proteasome Endopeptidase Complex/metabolism , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Animals , HN Protein/metabolism , HN Protein/genetics , Humans , Host-Pathogen Interactions , Cell Line , Newcastle Disease/virology , Newcastle Disease/metabolism , Arginine/metabolism
10.
Methods Mol Biol ; 2851: 135-141, 2024.
Article in English | MEDLINE | ID: mdl-39210178

ABSTRACT

Glycation is an important nonenzymatic reaction between reducing sugars and amines. Advanced glycation end products (AGEs) accumulation in the human body is associated with secondary complications related to diabetes in hyperglycemic environments. These observations suggest that the inhibition of AGEs formation is important for preventing diabetes mellitus (DM) progression and the development of diabetes-related complications. Lactic acid bacteria (LAB) are probiotics commonly used in fermented foods and food additives. Therefore, it is necessary to identify starter strains of LAB to produce fermented food to decrease the risk of DM and its complications. This chapter introduces the protocols that are inhibition assay of fermented food using LAB on AGEs such as Nω-(carboxymethyl) arginine (CMA), Nε-(carboxymethyl) lysine (CML), and fluorescent AGEs.


Subject(s)
Fermented Foods , Glycation End Products, Advanced , Lactobacillales , Glycation End Products, Advanced/metabolism , Lactobacillales/metabolism , Fermented Foods/microbiology , Humans , Fermentation , Lysine/metabolism , Lysine/analogs & derivatives , Probiotics/metabolism , Arginine/metabolism , Arginine/analogs & derivatives
11.
Nat Commun ; 15(1): 7254, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179593

ABSTRACT

Cells contain disparate amounts of distinct amino acids, each of which has different metabolic and chemical origins, but the supply cost vs demand requirements of each is unclear. Here, using yeast we quantify the restoration-responses after disrupting amino acid supply, and uncover a hierarchically prioritized restoration strategy for distinct amino acids. We comprehensively calculate individual amino acid biosynthetic supply costs, quantify total demand for an amino acid, and estimate cumulative supply/demand requirements for each amino acid. Through this, we discover that the restoration priority is driven by the gross demand for an amino acid, which is itself coupled to low supply costs for that amino acid. Demand from metabolic requirements dominate the demand-pulls for an amino acid, as exemplified by the largest restoration response upon disrupting arginine supply. Collectively, this demand-driven framework that drives the amino acid economy can identify novel amino acid responses, and help design metabolic engineering applications.


Subject(s)
Amino Acids , Saccharomyces cerevisiae , Amino Acids/metabolism , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , Arginine/metabolism
12.
FASEB J ; 38(16): e70005, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39171967

ABSTRACT

Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.


Subject(s)
Endothelial Cells , Metabolomics , Microvessels , Nitric Oxide Synthase Type III , Nitric Oxide , Humans , Nitric Oxide/metabolism , Metabolomics/methods , Microvessels/metabolism , Nitric Oxide Synthase Type III/metabolism , Endothelial Cells/metabolism , Arginine/metabolism , Lab-On-A-Chip Devices , Cells, Cultured , Citrulline/metabolism
13.
Elife ; 132024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212106

ABSTRACT

Salt stress delays seed germination in plants by increasing the hydrolysis of arginine-derived urea.


Subject(s)
Germination , Salt Stress , Urea , Germination/drug effects , Urea/metabolism , Urea/pharmacology , Arginine/metabolism , Seeds/growth & development
14.
Zhonghua Nan Ke Xue ; 30(6): 531-539, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39212363

ABSTRACT

OBJECTIVE: To explore the mechanisms of Qianlie Jindan Tablets (QLJD) acting on chronic nonbacterial prostatitis (CNP) in rats based on non-targeted urine metabolomics. METHODS: According to the body mass index, we equally randomized 30 eight-week-old male SD rats into a blank control, a CNP model control and a QLJD medication group. We established the CNP model in the latter groups and, from the 4th day of modeling, treated the rats in the blank and model control groups intragastrically with normal saline and those in the QLJD medication group with QLJD suspension, qd, for 30 successive days. Then we detected the changes in the metabolites of the rats by ultra-high-performance liquid chromatography-tandem mass spectrometry, and identified the differential metabolites in different groups by multivariate statistical analysis, followed by functional annotation of the differential metabolites. RESULTS: Eight common metabolites were identified by metabolomics analysis, of which 5 were decreased in the CNP model controls and increased in the QLJD medication group, while the other 3 increased in the former and decreased in the latter group. Creatinine and genistein were important differential metabolites, and the arginine and proline metabolic pathways and isoflavone biosynthesis pathways were the main ones for QLJD acting on CNP. Compared with the blank controls, the model controls showed up-regulated arginine and proline metabolic pathways, increased production of creatinine, down-regulated isoflavone biosynthetic pathway and decreased production of genistein. The above changes in the model controls were all reversed in the QLJD medication group. CONCLUSION: QLJD acts effectively on CNP in male rats by regulating L-arginine and proline metabolic pathways, as well as the isoflavone biosynthesis pathway and naringenin metabolism.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Prostatitis , Rats, Sprague-Dawley , Male , Animals , Rats , Prostatitis/metabolism , Prostatitis/urine , Prostatitis/drug therapy , Metabolomics/methods , Tablets , Chromatography, High Pressure Liquid , Arginine/metabolism , Chronic Disease , Genistein/urine , Proline/urine , Proline/metabolism , Disease Models, Animal , Creatinine/urine , Creatinine/metabolism , Tandem Mass Spectrometry
15.
Sci Rep ; 14(1): 18470, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122799

ABSTRACT

The microbial communities residing in the mosquito midgut play a key role in determining the outcome of mosquito pathogen infection. Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae possess a broad-spectrum antiviral phenotype, yet a gap in knowledge regarding the mechanistic basis of its interaction with viruses exists. The current study aims to identify pathways and genetic factors linked to E. anophelis antiviral activity. The understanding of E. anophelis antiviral mechanism could lead to novel transmission barrier tools to prevent arboviral outbreaks. We utilized a non-targeted multi-omics approach, analyzing extracellular lipids, proteins, metabolites of culture supernatants coinfected with ZIKV and E. anophelis. We observed a significant decrease in arginine and phenylalanine levels, metabolites that are essential for viral replication and progression of viral infection. This study provides insights into the molecular basis of E. anophelis antiviral phenotype. The findings lay a foundation for in-depth mechanistic studies.


Subject(s)
Flavobacteriaceae , Zika Virus , Zika Virus/physiology , Animals , Flavobacteriaceae/metabolism , Flavobacteriaceae/genetics , Anopheles/virology , Anopheles/microbiology , Zika Virus Infection/virology , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Virus Replication , Phenylalanine/metabolism , Arginine/metabolism , Multiomics
16.
Int Immunopharmacol ; 140: 112898, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39128417

ABSTRACT

OBJECTIVE: Disorders of lipid oxidation play an important role in organ damage, and lipid metabolites are associated with inflammation and coagulation dysfunction in sepsis. However, the specific molecular mechanism by which lipid metabolism-related proteins regulate sepsis is still unclear. The aim of this study is to investigate the role of mortality factor 4-like protein 1 (MORF4L1, also called MRG15), a hepatic lipid metabolism related gene, in sepsis-induced liver injury. METHODS: In the mouse sepsis models established by cecal ligation and puncture (CLP) and lipopolysaccharide (LPS), the impact of pretreatment with the MRG15 inhibitor argatroban on sepsis-related liver injury was investigated. In the LPS-induced hepatocyte sepsis cell model, the effects of MRG15 overexpression or knockdown on hepatic inflammation and lipid metabolism were studied. Additionally, in a co-culture system of hepatocytes and macrophages, the influence of MRG15 knockdown in hepatocytes on the synthesis and secretion of inflammation-related protein PCSK9 as well as its effect on macrophage activation were examined. RESULTS: Studies have shown that MRG15 expression was increased in septicemia mice and positively correlated with lipid metabolism and inflammation. However, knockdown of MRG15 ameliorates sepsis-induced hepatocyte injury. Increased MRG15 in LPS-stimulated hepatocytes promotes PCSK9 synthesis and secretion, which induces macrophage M1 polarization and exacerbates the inflammatory response. Agatroban, an inhibitor of MRG15, ameliorates sepsis-induced liver injury in mice by inhibiting MRG15-induced lipid metabolism disorders and inflammatory responses. CONCLUSIONS: In sepsis, increased MRG15 expression in hepatocytes leads to disturbed hepatic lipid metabolism and induces macrophage M1 polarization by secreting PCSK9, ultimately exacerbating liver injury.


Subject(s)
Hepatocytes , Lipid Metabolism , Lipopolysaccharides , Proprotein Convertase 9 , Sepsis , Sulfonamides , Animals , Humans , Male , Mice , Arginine/analogs & derivatives , Arginine/metabolism , Disease Models, Animal , Hepatocytes/metabolism , Liver/pathology , Liver/metabolism , Macrophage Activation , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Pipecolic Acids/pharmacology , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , RAW 264.7 Cells , Sepsis/metabolism , Sulfonamides/pharmacology
17.
Biochemistry ; 63(17): 2141-2152, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39146246

ABSTRACT

Dipeptide repeat proteins (DPRs) are aberrant protein species found in C9orf72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases characterized by the cytoplasmic mislocalization and aggregation of RNA-binding proteins (RBPs). In particular, arginine (R)-rich DPRs (poly-GR and poly-PR) have been suggested to promiscuously interact with multiple cellular proteins and thereby exert high cytotoxicity. Components of the protein arginine methylation machinery have been identified as modulators of DPR toxicity and/or potential cellular interactors of R-rich DPRs; however, the molecular details and consequences of such an interaction are currently not well understood. Here, we demonstrate that several members of the family of protein arginine methyltransferases (PRMTs) can directly interact with R-rich DPRs in vitro and in the cytosol. In vitro, R-rich DPRs reduce solubility and promote phase separation of PRMT1, the main enzyme responsible for asymmetric arginine-dimethylation (ADMA) in mammalian cells, in a concentration- and length-dependent manner. Moreover, we demonstrate that poly-GR interferes more efficiently than poly-PR with PRMT1-mediated arginine methylation of RBPs such as hnRNPA3. We additionally show by two alternative approaches that poly-GR itself is a substrate for PRMT1-mediated arginine dimethylation. We propose that poly-GR may act as a direct competitor for arginine methylation of cellular PRMT1 targets, such as disease-linked RBPs.


Subject(s)
Arginine , Protein-Arginine N-Methyltransferases , RNA-Binding Proteins , Repressor Proteins , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Arginine/metabolism , Methylation , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , C9orf72 Protein/metabolism , C9orf72 Protein/genetics , HEK293 Cells
18.
J Proteome Res ; 23(9): 3746-3753, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39162688

ABSTRACT

A comprehensive understanding of the exact influence of type 2 diabetes mellitus (T2DM) on the metabolic status of non-small cell lung cancer (NSCLC) is still lacking. This study explores metabolic alterations in tumor tissues among patients with coexisting NSCLC and T2DM in comparison with NSCLC patients. A combined approach of clinical analysis and metabolomics was employed, including 20 NSCLC patients and 20 NSCLC+T2DM patients. Targeted metabolomics analysis was performed on tumor tissues using the liquid chromatography-mass spectrometry (LC-MS) approach. A clear segregation was observed between NSCLC+T2DM and matched NSCLC tissue samples in Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA). Furthermore, the levels of 7 metabolites are found to be significantly different between diabetes/nondiabetes tumor tissue samples. The related pathways included arginine biosynthesis, glutathione metabolism, arginine and proline metabolism, purine metabolism, biotin metabolism, and histidine metabolism. 3-Phenyllactic acid, carnitine-C5, carnitine-C12, and serotonin showed a positive linear correlation with fasting blood glucose levels in NSCLC patients. Uridine, pipecolic acid, cytosine, and fasting blood glucose levels were found to have a negative correlation. Our results suggest that NSCLC patients with concurrent T2DM exhibit distinct metabolic shifts in tumor tissues compared to those of solely NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Diabetes Mellitus, Type 2 , Lung Neoplasms , Metabolomics , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Male , Metabolomics/methods , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Middle Aged , Female , Aged , Chromatography, Liquid , Metabolome , Mass Spectrometry , Blood Glucose/metabolism , Carnitine/metabolism , Carnitine/analogs & derivatives , Arginine/metabolism
19.
Theranostics ; 14(10): 4090-4106, 2024.
Article in English | MEDLINE | ID: mdl-38994016

ABSTRACT

Purpose: Due to intrinsic defensive response, ferroptosis-activating targeted therapy fails to achieve satisfactory clinical benefits. Though p62-Keap1-Nrf2 axis is activated to form a negative feedback loop during ferroptosis induction, how p62 is activated remains largely unknown. Methods: MTS assay was applied to measure cell growth. Lipid ROS was detected with C11-BODIPY reagent by flow cytometer. Quantitative real-time PCR (qPCR) and western blotting were performed to determine mRNA and protein level. Immunofluorescence (IF) was performed to examine the distribution of proteins. Fluorescence recovery after photobleaching (FRAP) was adopted to evaluate p62 phase separation. Immunoprecipitation (IP), co-IP and Proximal ligation assay (PLA) were performed to detected protein posttranslational modifications and protein-protein interactions. Tumor xenograft model was employed to inspect in vivo growth of pancreatic cancer cells. Results: Upon ferroptosis induction, Nuclear Factor E2 Related Factor 2 (Nrf2) protein and its downstream genes such as HMOX1 and NQO1 were upregulated. Knockdown of p62 significantly reversed Nrf2 upregulation and Keap1 decrease after ferroptosis induction. Knockdown of either p62 or Nrf2 remarkably sensitized ferroptosis induction. Due to augmented p62 phase separation, formation of p62 bodies were increased to recruit Keap1 after ferroptosis induction. Protein arginine methyltransferase 6 (PRMT6) mediated asymmetric dimethylarginine (ADMA) of p62 to increase its oligomerization, promoting p62 phase separation and p62 body formation. Knockdown of p62 or PRMT6 notably sensitized pancreatic cancer cells to ferroptosis both in vitro and in vivo through suppressing Nrf2 signaling. Conclusion: During ferroptosis induction, PRMT6 mediated p62 ADMA to promote its phase separation, sequestering Keap1 to activate Nrf2 signaling and inhibit ferroptosis. Therefore, targeting PRMT6-mediated p62 ADMA could be a new option to sensitize ferroptosis for cancer treatment.


Subject(s)
Arginine , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Animals , Arginine/metabolism , Arginine/analogs & derivatives , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Feedback, Physiological , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Mice, Nude , Signal Transduction , Phase Separation , RNA-Binding Proteins
20.
Cell Host Microbe ; 32(7): 1045-1047, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991501

ABSTRACT

The microbiota can impact antitumor immunity, but whether the microbiota regulates omental antitumor immunity remains elusive. In this issue of Cell Host & Microbe, Meza-Perez et al. demonstrated that Proteobacteria consume arginine to increase Treg cell suppressive capacity and inhibit antitumor immune responses, promoting tumor growth in the omentum.


Subject(s)
Arginine , Omentum , Proteobacteria , Arginine/metabolism , Animals , Omentum/immunology , Omentum/microbiology , Humans , Mice , Gastrointestinal Microbiome/immunology , T-Lymphocytes, Regulatory/immunology , Neoplasms/immunology , Neoplasms/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL