Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
1.
Eur J Histochem ; 65(s1)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34595897

ABSTRACT

Distinguishing brain venules from arterioles with arteriolosclerosis is less reliable using traditional staining methods. We aimed to immunohistochemically assess the monocarboxylate transporter 1 (MCT1), a specific marker of venous endothelium found in rodent studies, in different caliber vessels in human brains. Both largeand small-caliber cerebral vessels were dissected from four autopsy donors. Immunoreactivity for MCT1 was examined in all autopsied human brain tissues, and then each vessel was identified by neuropathologists using hematoxylin and eosin stain, the Verhoeff's Van Gieson stain, immunohistochemical stain with antibodies for α-smooth muscle actin and MCT1 in sequence. A total of 61 cerebral vessels, including 29 arteries and 32 veins were assessed. Immunoreactivity for MCT1 was observed in the endothelial cells of various caliber veins as well as the capillaries, whereas that was immunenegative in the endothelium of arteries. The different labeling patterns for MCT1 could aid in distinguishing various caliber veins from arteries, whereas assessment using the vessel shape, the internal elastic lamina, and the pattern of smooth muscle fibers failed to make the distinction between small-caliber veins and sclerotic arterioles. In conclusion, MCT1 immunohistochemical staining is a sensitive and reliable method to distinguish cerebral veins from arteries.


Subject(s)
Arterioles/cytology , Brain/cytology , Cerebral Arteries/cytology , Cerebral Veins/cytology , Endothelial Cells/metabolism , Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism , Venules/cytology , Arterioles/metabolism , Brain/metabolism , Cerebral Arteries/metabolism , Cerebral Veins/metabolism , Diagnosis, Differential , Humans , Venules/metabolism
3.
Article in English | MEDLINE | ID: mdl-33418051

ABSTRACT

The neurovascular coupling ensures that cerebral activity is matched by the relevant blood flow. The control of the blood flow is mediated by capillaries and by the precapillary aterioles. It is the tone of the mural cells, which include pericytes, smooth muscle cells and cells with intermediate phenotypes between pericytes and smooth muscle cells, that determine the the diameter of the blood vessels and consequently the flow. Here we discuss the structure of these blood vessels and the excitationcontraction coupling of the mural cells.


Subject(s)
Arterioles/cytology , Brain/blood supply , Cerebrovascular Circulation , Neurovascular Coupling , Pericytes/cytology , Animals , Astrocytes/cytology , Calcium/metabolism , Capillaries , History, 20th Century , Humans , Microscopy , Myocytes, Smooth Muscle/cytology , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Phenotype , Physiology/history
4.
Am J Physiol Heart Circ Physiol ; 320(2): H549-H562, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33306445

ABSTRACT

Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. In the present study, using a nonobese T2DN DM rat, we isolated parenchymal arterioles (PAs), cultured cerebral microvascular pericytes, and examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated α-smooth muscle actin-positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-ß, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin ß1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.NEW & NOTEWORTHY This study demonstrates that the loss of contractile capability in pericytes in diabetes is associated with enhanced ROS and reduced ATP production. Enhanced advanced glycation end products (AGEs) in diabetes accompany with reduced pericyte and endothelial tight junction coverage in the cortical capillaries of old diabetic rats. These results suggest our previous findings that the impaired cerebral hemodynamics, BBB leakage, and cognitive impairments in old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.


Subject(s)
Aging/metabolism , Diabetes Mellitus/metabolism , Gap Junctions/metabolism , Hyperglycemia/complications , Pericytes/metabolism , Adenosine Triphosphate/metabolism , Aging/pathology , Animals , Arterioles/cytology , Arterioles/metabolism , Arterioles/physiopathology , Brain/blood supply , Brain/cytology , Brain/growth & development , Cells, Cultured , Diabetes Mellitus/etiology , Glycation End Products, Advanced/metabolism , Humans , Male , Pericytes/physiology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Vasoconstriction
5.
Nat Commun ; 11(1): 5426, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110060

ABSTRACT

Novel atherosclerosis models are needed to guide clinical therapy. Here, we report an in vitro model of early atherosclerosis by fabricating and perfusing multi-layer arteriole-scale human tissue-engineered blood vessels (TEBVs) by plastic compression. TEBVs maintain mechanical strength, vasoactivity, and nitric oxide (NO) production for at least 4 weeks. Perfusion of TEBVs at a physiological shear stress with enzyme-modified low-density-lipoprotein (eLDL) with or without TNFα promotes monocyte accumulation, reduces vasoactivity, alters NO production, which leads to endothelial cell activation, monocyte accumulation, foam cell formation and expression of pro-inflammatory cytokines. Removing eLDL leads to recovery of vasoactivity, but not loss of foam cells or recovery of permeability, while pretreatment with lovastatin or the P2Y11 inhibitor NF157 reduces monocyte accumulation and blocks foam cell formation. Perfusion with blood leads to increased monocyte adhesion. This atherosclerosis model can identify the role of drugs on specific vascular functions that cannot be assessed in vivo.


Subject(s)
Arterioles/physiopathology , Atherosclerosis/physiopathology , Arterioles/chemistry , Arterioles/cytology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Biomechanical Phenomena , Cell Adhesion , Cell Proliferation , Cells, Cultured , Foam Cells/cytology , Foam Cells/metabolism , Humans , Lipoproteins, LDL/metabolism , Models, Biological , Monocytes/cytology , Monocytes/metabolism , Nitric Oxide/metabolism , Tissue Engineering , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
Curr Top Membr ; 85: 19-58, 2020.
Article in English | MEDLINE | ID: mdl-32402640

ABSTRACT

Myogenic tone is a hall-mark feature of arterioles in the microcirculation. This pressure-induced, contractile activation of vascular smooth muscle cells (VSMCs) in the wall of these microvessels importantly contributes to the regulation and maintenance of blood pressure; blood flow to and within organs and tissues; and capillary pressure and fluid balance. Ion channels play a central role in the genesis and maintenance of myogenic tone. Mechanosensitive ion channels such as TRPC6 may serve as one of the sensors of pressure-induced membrane stress/strain, and TRPC6 along with TRPM4 channels are responsible pressure-induced VSMC depolarization that may be bolstered by the activity of Ca2+-activated Cl- channels and inhibition of voltage-gated K+ (KV) channels, inwardly-rectifying K+ (KIR) channels and ATP-sensitive K+ (KATP) channels. Membrane potential depolarization activates voltage-gated Ca2+ channels (VGCCs), with CaV1.2 channels playing a central role. Calcium entry through CaV1.2 channels, which is amplified by Ca2+ release through IP3 receptors in the form of Ca2+ waves in some arterioles, provides the major source of activator calcium responsible for arteriolar myogenic tone. Stabilizing negative-feedback comes from depolarization- and Ca2+-induced activation of large-conductance Ca2+-activated K+ channels and depolarization-induced activation of KV channels. Myogenic tone also is dampened by tonic activity of KIR and KATP channels. While much has been learned about ion channel expression and function in myogenic tone, additional studies are required to fill in our knowledge gaps due to significant regional differences in ion channel expression and function and a lack of data specifically from VSMCs in arterioles.


Subject(s)
Arterioles/physiology , Ion Channels/metabolism , Muscle Development , Animals , Arterioles/cytology , Arterioles/metabolism , Calcium/metabolism , Humans , Muscle, Smooth, Vascular/physiology
7.
Microsc Microanal ; 26(3): 589-598, 2020 06.
Article in English | MEDLINE | ID: mdl-32393414

ABSTRACT

The spleen is considered a key player in birds' immunity. The stroma and the parenchyma of the spleen of the adult quail were demonstrated histologically, histochemically, and ultrastructurally. A thin capsule and the absence of trabeculae were the most characteristics of spleen stroma. The demarcation between white pulp and red pulp was not observed in the quail. White pulp formed from the periarterial lymphatic sheath and the periellipsoidal lymphatic sheath, both of which were surrounded by arteriole and ellipsoid, respectively. Ellipsoids appeared more numerous and were characterized by cuboidal lining of the epithelium and supporting cells. Red pulp consisted of sinuses and cords. White pulp and red pulp of the quail spleen contained various cells, such as red blood cells, macrophages, heterophils with characteristic granules, lymphocytes of different sizes, dendritic cells, plasma cells, and telocytes. In addition, closed circulation and open circulation established the blood flow on the spleen.


Subject(s)
Coturnix/anatomy & histology , Spleen/anatomy & histology , Spleen/cytology , Animals , Arterioles/cytology , Female , Macrophages , Staining and Labeling
8.
Biol Sex Differ ; 11(1): 7, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051031

ABSTRACT

BACKGROUND: Biomechanical remodeling of coronary resistance arteries in physiological left ventricular hypertrophy has not yet been analyzed, and the possible sex differences are unknown. METHODS: Wistar rats were divided into four groups: male and female sedentary controls (MSe and FSe) and male and female animals undergoing a 12-week intensive swim training program (MEx and FEx). On the last day, the in vitro contractility, endothelium-dependent dilatation, and biomechanical properties of the intramural coronary resistance arteries were investigated by pressure microarteriography. Elastica and collagen remodeling were studied in histological sections. RESULTS: A similar outer radius and reduced inner radius resulted in an elevated wall to lumen ratio in the MEx and FEx animals compared to that in the sedentary controls. The wall elastic moduli increased in the MEx and FEx rats. Spontaneous and TxA2 agonist-induced tone was increased in the FEx animals, whereas endothelium-dependent relaxation became more effective in MEx rats. Arteries of FEx rats had stronger contraction, while arteries of MEx animals had improved dilation. CONCLUSIONS: According to our results, the coronary arterioles adapted to an elevated load during long-term exercise, and this adaptation depended on sex. It is important to emphasize that in addition to differences, we also found many similarities between the sexes in the adaptive response to exercise. The observed sport adaptation in the coronary resistance arteries of rats may contribute to a better understanding of the physiological and pathological function of these arteries in active and retired athletes of different sexes.


Subject(s)
Arterioles/physiology , Coronary Vessels/cytology , Coronary Vessels/physiology , Physical Conditioning, Animal/physiology , Sex Characteristics , Ventricular Function, Left/physiology , Animals , Arterioles/cytology , Female , Male , Rats, Wistar
9.
Nature ; 579(7797): 106-110, 2020 03.
Article in English | MEDLINE | ID: mdl-32076269

ABSTRACT

Proper brain function depends on neurovascular coupling: neural activity rapidly increases local blood flow to meet moment-to-moment changes in regional brain energy demand1. Neurovascular coupling is the basis for functional brain imaging2, and impaired neurovascular coupling is implicated in neurodegeneration1. The underlying molecular and cellular mechanisms of neurovascular coupling remain poorly understood. The conventional view is that neurons or astrocytes release vasodilatory factors that act directly on smooth muscle cells (SMCs) to induce arterial dilation and increase local blood flow1. Here, using two-photon microscopy to image neural activity and vascular dynamics simultaneously in the barrel cortex of awake mice under whisker stimulation, we found that arteriolar endothelial cells (aECs) have an active role in mediating neurovascular coupling. We found that aECs, unlike other vascular segments of endothelial cells in the central nervous system, have abundant caveolae. Acute genetic perturbations that eliminated caveolae in aECs, but not in neighbouring SMCs, impaired neurovascular coupling. Notably, caveolae function in aECs is independent of the endothelial NO synthase (eNOS)-mediated NO pathway. Ablation of both caveolae and eNOS completely abolished neurovascular coupling, whereas the single mutants exhibited partial impairment, revealing that the caveolae-mediated pathway in aECs is a major contributor to neurovascular coupling. Our findings indicate that vasodilation is largely mediated by endothelial cells that actively relay signals from the central nervous system to SMCs via a caveolae-dependent pathway.


Subject(s)
Arterioles/cytology , Arterioles/metabolism , Caveolae/metabolism , Central Nervous System/cytology , Neurovascular Coupling , Animals , Cerebral Cortex/cytology , Endothelial Cells/metabolism , Female , Male , Mice , Microscopy, Fluorescence, Multiphoton , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/metabolism , Vasodilation , Vibrissae/physiology
10.
Physiol Rep ; 8(2): e14345, 2020 01.
Article in English | MEDLINE | ID: mdl-31960618

ABSTRACT

We recently reported that KO of Dual-specificity protein phosphatase 5 (Dusp5) enhances myogenic reactivity and blood flow autoregulation in the cerebral and renal circulations in association with increased levels of pPKC and pERK1/2 in the cerebral and renal arteries and arterioles. In the kidney, hypertension-related renal damage was significantly attenuated in Dusp5 KO rats. Elevations in pPKC and pERK1/2 promote calcium influx in VSMC and facilitate vasoconstriction. However, whether DUSP5 plays a role in altering the passive mechanical properties of cerebral and renal arterioles has never been investigated. In this study, we found that KO of Dusp5 did not alter body weights, kidney and brain weights, plasma glucose, and HbA1C levels. The expression of pERK is higher in the nucleus of primary VSMC isolated from Dusp5 KO rats. Dusp5 KO rats exhibited eutrophic vascular hypotrophy with smaller intracerebral parenchymal arterioles and renal interlobular arterioles without changing the wall-to-lumen ratios. These arterioles from Dusp5 KO rats displayed higher myogenic tones, better distensibility, greater compliance, and less stiffness compared with arterioles from WT control rats. VSMC of Dusp5 KO rats exhibited a stronger contractile capability. These results demonstrate, for the first time, that DUSP5 contributes to the regulation of the passive mechanical properties of cerebral and renal arterioles and provide new insights into the role of DUSP5 in vascular function, cancer, stroke, and other cardiovascular diseases.


Subject(s)
Arterioles/metabolism , Brain/blood supply , Dual-Specificity Phosphatases/metabolism , Kidney/blood supply , Animals , Arterioles/cytology , Arterioles/physiology , Blood Glucose/metabolism , Body Weight , Cells, Cultured , Dual-Specificity Phosphatases/genetics , Female , Gene Deletion , Hemoglobins/metabolism , Male , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Muscle, Smooth, Vascular/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Rats , Vasoconstriction
11.
J Cereb Blood Flow Metab ; 40(12): 2387-2400, 2020 12.
Article in English | MEDLINE | ID: mdl-31987006

ABSTRACT

The receptor tyrosine kinase PDGFRß is essential for pericyte migration to the endothelium. In mice lacking one allele of PDGFRß (PDGFRß+/-), previous reports have described an age-dependent loss of pericytes in the brain, leading to cerebrovascular dysfunction and subsequent neurodegeneration reminiscent of that seen in Alzheimer's disease and vascular dementia. We examined 12-20-month-old PDGFRß+/- mice to better understand how pericyte loss affects brain microvascular structure and perfusion in vivo. We observed a mild reduction of cortical pericyte number in PDGFRß+/- mice (27% fewer cell bodies) compared to controls, but no decrease in pericyte coverage of the endothelium. This mild degree of pericyte loss caused no discernable change in cortical microvascular density, length, basal diameter or reactivity to hypercapnia. Yet, it was associated with an increase in basal blood cell velocity, primarily in pre-capillary arterioles. Taken together, our results suggest that mild pericyte loss can lead to aberrant cerebral blood flow despite a lack of apparent effect on microvascular structure and reactivity.


Subject(s)
Brain/blood supply , Endothelium/metabolism , Pericytes/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Age Factors , Alleles , Alzheimer Disease/metabolism , Animals , Arterioles/cytology , Arterioles/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/physiopathology , Capillaries/cytology , Capillaries/metabolism , Case-Control Studies , Cerebrovascular Circulation/physiology , Endothelium/cytology , Female , Hypercapnia/metabolism , Hypercapnia/physiopathology , Male , Mice
12.
Aging (Albany NY) ; 11(13): 4561-4578, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296794

ABSTRACT

Our past study showed that a single tail vein injection of adipose-derived stromal vascular fraction (SVF) into old rats was associated with improved dobutamine-mediated coronary flow reserve. We hypothesize that i.v. injection of SVF improves coronary microvascular function in aged rats via alterations in beta adrenergic microvascular signaling. Female Fischer-344 rats aged young (3 months, n=32) and old (24 months, n=30) were utilized, along with two cell therapies intravenously injected in old rats four weeks prior to sacrifice: 1x107 green fluorescent protein (GFP+) SVF cells (O+SVF, n=21), and 5x106 GFP+ bone-marrow mesenchymal stromal cells (O+BM, n=6), both harvested from young donors. Cardiac ultrasound and pressure-volume measurements were obtained, and coronary arterioles were isolated from each group for microvessel reactivity studies and immunofluorescence staining. Coronary flow reserve decreased with advancing age, but this effect was rescued by the SVF treatment in the O+SVF group. Echocardiography showed an age-related diastolic dysfunction that was improved with SVF to a greater extent than with BM treatment. Coronary arterioles isolated from SVF-treated rats showed amelioration of the age-related decrease in vasodilation to a non-selective ß-AR agonist. I.v. injected SVF cells improved ß-adrenergic receptor-dependent coronary flow and microvascular function in a model of advanced age.


Subject(s)
Adipose Tissue/cytology , Age Factors , Arterioles/cytology , Receptors, Adrenergic, beta-1/metabolism , Stromal Cells/cytology , Animals , Female , Fractional Flow Reserve, Myocardial , Green Fluorescent Proteins , Injections, Intravenous , Luminescent Agents , Mesenchymal Stem Cells/cytology , Rats , Rats, Inbred F344 , Signal Transduction , Vasodilation
13.
Nature ; 565(7740): 505-510, 2019 01.
Article in English | MEDLINE | ID: mdl-30651639

ABSTRACT

The increasing prevalence of diabetes has resulted in a global epidemic1. Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and amputation of lower limbs. These are often caused by changes in blood vessels, such as the expansion of the basement membrane and a loss of vascular cells2-4. Diabetes also impairs the functions of endothelial cells5 and disturbs the communication between endothelial cells and pericytes6. How dysfunction of endothelial cells and/or pericytes leads to diabetic vasculopathy remains largely unknown. Here we report the development of self-organizing three-dimensional human blood vessel organoids from pluripotent stem cells. These human blood vessel organoids contain endothelial cells and pericytes that self-assemble into capillary networks that are enveloped by a basement membrane. Human blood vessel organoids transplanted into mice form a stable, perfused vascular tree, including arteries, arterioles and venules. Exposure of blood vessel organoids to hyperglycaemia and inflammatory cytokines in vitro induces thickening of the vascular basement membrane. Human blood vessels, exposed in vivo to a diabetic milieu in mice, also mimic the microvascular changes found in patients with diabetes. DLL4 and NOTCH3 were identified as key drivers of diabetic vasculopathy in human blood vessels. Therefore, organoids derived from human stem cells faithfully recapitulate the structure and function of human blood vessels and are amenable systems for modelling and identifying the regulators of diabetic vasculopathy, a disease that affects hundreds of millions of patients worldwide.


Subject(s)
Basement Membrane/pathology , Blood Vessels/pathology , Diabetic Angiopathies/pathology , Models, Biological , Organoids/pathology , Organoids/transplantation , Adaptor Proteins, Signal Transducing , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Arteries/cytology , Arteries/drug effects , Arterioles/cytology , Arterioles/drug effects , Basement Membrane/cytology , Basement Membrane/drug effects , Blood Vessels/cytology , Blood Vessels/drug effects , Blood Vessels/growth & development , Calcium-Binding Proteins , Diabetic Angiopathies/enzymology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Humans , Hyperglycemia/complications , In Vitro Techniques , Inflammation Mediators/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Organoids/cytology , Organoids/drug effects , Pericytes/cytology , Pericytes/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Receptor, Notch3/metabolism , Signal Transduction , Venules/cytology , Venules/drug effects
14.
Microvasc Res ; 122: 34-40, 2019 03.
Article in English | MEDLINE | ID: mdl-30439484

ABSTRACT

OBJECTIVE: Freshly isolated endothelial cells from both conduit arteries and microvasculature were used to test the hypothesis that eNOS protein content and nitric oxide production in coronary endothelial cells increases with vessel radius. METHODS: Porcine hearts were obtained from a local abattoir. Large and small arteries as well as arterioles were dissected free of myocardium and homogenized as whole vessels. Additionally, endothelial cells were isolated from both conduit arteries and left ventricular myocardium by tissue digestion with collagenase, followed by endothelial cell isolation using biotinylated-anti-CD31 and streptavidin-coated paramagnetic beads. Purity of isolated endothelial cells was confirmed by immunofluorescence and immunoblot. RESULTS: In whole vessel lysate, immunoblot analysis revealed that protein content for eNOS was greater in arterioles compared to small and large arteries. Nitric oxide metabolites (nitrite plus nitrate; NOx) levels measured from whole vessel lysate decreased as vessel size increased, with both arterioles and small arteries displaying significantly greater NOx content than conduit. Consistent with our hypothesis, both eNOS protein level and NOx were significantly greater in endothelial cells isolated from conduit arteries compared with those from coronary microvasculature. Furthermore, confocal microscopy revealed that eNOS protein was present in all conduit and microvascular endothelial cells, although eNOS staining was less intense in microvascular cells than those of conduit artery. CONCLUSIONS: These findings demonstrate increased eNOS protein and NOx content in endothelial cells of conduit arteries compared with the microcirculation and underscore the importance of comparing endothelial-specific molecules in freshly isolated endothelial cells, rather than whole lysate of different sized vessels.


Subject(s)
Arterioles/enzymology , Coronary Vessels/enzymology , Endothelial Cells/enzymology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Animals , Arterioles/cytology , Coronary Vessels/cytology , Nitrates/metabolism , Nitrites/metabolism , Sus scrofa
15.
Adv Exp Med Biol ; 1109: 95-109, 2018.
Article in English | MEDLINE | ID: mdl-30523592

ABSTRACT

Microcirculation is the generic name for the finest level of the circulatory system and consists of arteriolar and venular networks located upstream and downstream of capillaries, respectively. Anatomically arterioles are surrounded by a monolayer of spindle-shaped smooth muscle cells (myocytes), while terminal branches of precapillary arterioles, capillaries and all sections of postcapillary venules are surrounded by a monolayer of morphologically different perivascular cells (pericytes). Pericytes are essential components of the microvascular vessel wall. Wrapped around endothelial cells, they occupy a strategic position at the interface between the circulating blood and the interstitial space. There are physiological differences in the responses of pericytes and myocytes to vasoactive molecules, which suggest that these two types of vascular cells could have different functional roles in the regulation of local blood flow within the same microvascular bed. Also, pericytes may play different roles in different microcirculatory beds to meet the characteristics of individual organs. Contractile activity of pericytes and myocytes is controlled by changes of cytosolic free Ca2+concentration. In this chapter, we attempt to summarize the results in the field of Ca2+ signalling in pericytes especially in light of their contractile roles in different tissues and organs. We investigate the literature and describe our results regarding sources of Ca2+, relative importance and mechanisms of Ca2+ release and Ca2+ entry in control of the spatio-temporal characteristics of the Ca2+ signals in pericytes, where possible Ca2+ signalling and contractile responses in pericytes are compared to those of myocytes.


Subject(s)
Calcium Signaling , Microcirculation , Pericytes/metabolism , Arterioles/cytology , Capillaries/cytology , Humans , Muscle Cells/cytology , Venules/cytology
16.
PLoS One ; 13(4): e0194980, 2018.
Article in English | MEDLINE | ID: mdl-29694371

ABSTRACT

Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 µM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 µM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 µM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling.


Subject(s)
Action Potentials , Arterioles/cytology , Arterioles/physiology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/metabolism , Voltage-Dependent Anion Channels/metabolism , Animals , Calcium/metabolism , Calcium Channels/physiology , Electrophysiological Phenomena , Mice , Sodium/metabolism , Sodium Channels/physiology
17.
Nature ; 554(7693): 475-480, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29443965

ABSTRACT

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.


Subject(s)
Blood Vessels/cytology , Brain/blood supply , Brain/cytology , Endothelial Cells/classification , Animals , Arteries/cytology , Arterioles/cytology , Capillaries/cytology , Female , Fibroblasts/classification , Male , Mice , Myocytes, Smooth Muscle/classification , Organ Specificity , Pericytes/classification , Single-Cell Analysis , Transcriptome , Veins/cytology
18.
Methods Mol Biol ; 1763: 11-22, 2018.
Article in English | MEDLINE | ID: mdl-29476484

ABSTRACT

The bone marrow is a unique microenvironment where blood cells are produced and released into the circulation. At the top of the blood cell lineage are the hematopoietic stem cells (HSC), which are thought to reside in close association with the bone marrow vascular endothelial cells (Morrison and Scadden, Nature 505:327-334, 2014). Recent efforts at characterizing the HSC niche have prompted us to make close examinations of two distinct types of blood vessel in the bone marrow, the arteriolar vessels originating from arteries and sinusoidal vessels connected to veins. We found the two vessel types to exhibit different vascular permeabilites, hemodynamics, cell trafficking behaviors, and oxygen content (Itkin et al., Nature 532:323-328, 2016; Spencer et al., Nature 508:269-273, 2014). Here, we describe a method to quantitatively measure the permeability and hemodynamics of arterioles and sinusoids in murine calvarial bone marrow using intravital microscopy.


Subject(s)
Arterioles/cytology , Bone Marrow/growth & development , Capillaries/cytology , Capillary Permeability , Hematopoietic Stem Cells/cytology , Hemodynamics , Intravital Microscopy/methods , Animals , Arterioles/metabolism , Bone Marrow/metabolism , Capillaries/metabolism , Cell Movement , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic
19.
Endocrinology ; 159(1): 238-247, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29088382

ABSTRACT

Hyperaldosteronism is associated with hypertension, cardiac hypertrophy, and congestive heart failure. Steroidogenic factors facilitate aldosterone secretion by increasing adrenal blood flow. Angiotensin (Ang) II decreases adrenal vascular tone through release of zona glomerulosa (ZG) cell-derived vasodilatory eicosanoids. However, ZG cell-mediated relaxation of bovine adrenal cortical arteries to Ang II is not altered by angiotensin type 1 or 2 receptor antagonists. Because traditional Ang II receptors do not mediate these vasorelaxations to Ang II, we investigated the role of Ang II metabolites. Ang III was identified by liquid chromatography-mass spectrometry as the primary ZG cell metabolite of Ang II. Ang III stimulated ZG cell-mediated relaxation of adrenal arteries with greater potency than did Ang II. Furthermore, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by aminopeptidase inhibition, and Ang III-stimulated relaxations persisted. Ang IV had little effect compared with Ang II. Moreover, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by an Ang III antagonist but not by an Ang (1-7) antagonist. In contrast, Ang II and Ang III were equipotent in stimulating aldosterone secretion from ZG cells and were unaffected by aminopeptidase inhibition. Additionally, aspartyl and leucyl aminopeptidases, which convert Ang II to Ang III, are the primary peptidase expressed in ZG cells. This was confirmed by enzyme activity. These data indicate that intra-adrenal metabolism of Ang II to Ang III is required for ZG cell-mediated relaxations of adrenal arteries but not aldosterone secretion. These studies have defined an important role of Ang III in the adrenal gland.


Subject(s)
Adrenal Cortex/blood supply , Angiotensin III/metabolism , Angiotensin II/metabolism , Arterioles/metabolism , Endothelium, Vascular/metabolism , Muscle, Smooth, Vascular/metabolism , Zona Glomerulosa/metabolism , Abattoirs , Adrenal Cortex/drug effects , Adrenal Cortex/metabolism , Aldosterone/metabolism , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/genetics , Aminopeptidases/metabolism , Angiotensin I/antagonists & inhibitors , Angiotensin I/metabolism , Angiotensin II/analogs & derivatives , Angiotensin II/chemistry , Angiotensin II/pharmacology , Animals , Arterioles/cytology , Arterioles/drug effects , Cattle , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Gene Expression Regulation, Enzymologic/drug effects , In Vitro Techniques , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protease Inhibitors/pharmacology , Vasodilation/drug effects , Zona Glomerulosa/cytology , Zona Glomerulosa/drug effects
20.
Clin Sci (Lond) ; 131(22): 2737-2744, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28982724

ABSTRACT

Dilatation of periarteriolar spaces in MRI of the ageing human brains occurs in white matter (WM), basal ganglia and midbrain but not in cerebral cortex. Perivenous collagenous occurs in periventricular but not in subcortical WM.Here we test the hypotheses that (a) the capacity for dilatation of periarteriolar spaces correlates with the anatomical distribution of leptomeningeal cells coating intracerebral arteries and (b) the regional development of perivenous collagenous in the WM correlates with the population of intramural cells in the walls of veins.The anatomical distribution of leptomeningeal and intramural cells related to cerebral blood vessels is best documented by electron microscopy, requiring perfusion-fixed tissue not available in human material. We therefore analysed perfusion-fixed brain from a 12-year-old Beagle dog as the canine brain represents the anatomical arrangement in the human brain. Results showed regional variation in the arrangement of leptomeningeal cells around blood vessels. Arterioles are enveloped by one complete layer of leptomeninges often with a second incomplete layer in the WM. Venules showed incomplete layers of leptomeningeal cells. Intramural cell expression was higher in the post-capillary venules of the subcortical WM when compared with periventricular WM, suggesting that periventricular collagenosis around venules may be due to a lower resistance in the venular walls. It appears that the regional variation in the capacity for dilatation of arteriolar perivascular spaces in the white WM may be related to the number of perivascular leptomeningeal cells surrounding vessels in different areas of the brain.


Subject(s)
Aging/physiology , Brain/anatomy & histology , Brain/blood supply , Animals , Arterioles/cytology , Arterioles/ultrastructure , Brain/cytology , Dogs , White Matter/anatomy & histology , White Matter/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL