Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Environ Toxicol Chem ; 39(4): 923-941, 2020 04.
Article in English | MEDLINE | ID: mdl-31965612

ABSTRACT

Establishment and maintenance of milkweed plants (Asclepias spp.) in agricultural landscapes of the north central United States are needed to reverse the decline of North America's eastern monarch butterfly (Danaus plexippus) population. Because of a lack of toxicity data, it is unclear how insecticide use may reduce monarch productivity when milkweed habitat is placed near maize and soybean fields. To assess the potential effects of foliar insecticides, acute cuticular and dietary toxicity of 5 representative active ingredients were determined: beta-cyfluthrin (pyrethroid), chlorantraniliprole (anthranilic diamide), chlorpyrifos (organophosphate), and imidacloprid and thiamethoxam (neonicotinoids). Cuticular median lethal dose values for first instars ranged from 9.2 × 10-3 to 79 µg/g larvae for beta-cyfluthrin and chlorpyrifos, respectively. Dietary median lethal concentration values for second instars ranged from 8.3 × 10-3 to 8.4 µg/g milkweed leaf for chlorantraniliprole and chlorpyrifos, respectively. To estimate larval mortality rates downwind from treated fields, modeled insecticide exposures to larvae and milkweed leaves were compared to dose-response curves obtained from bioassays with first-, second-, third-, and fifth-instar larvae. For aerial applications to manage soybean aphids, mortality rates at 60 m downwind were highest for beta-cyfluthrin and chlorantraniliprole following cuticular and dietary exposure, respectively, and lowest for thiamethoxam. To estimate landscape-scale risks, field-scale mortality rates must be considered in the context of spatial and temporal patterns of insecticide use. Environ Toxicol Chem 2020;39:923-941. © 2020 SETAC.


Subject(s)
Asclepias/growth & development , Butterflies/drug effects , Conservation of Natural Resources/methods , Insecticides/toxicity , Larva/drug effects , Animals , Butterflies/physiology , Crop Production/methods , Ecosystem , Neonicotinoids/toxicity , Nitriles/toxicity , Nitro Compounds/toxicity , Pyrethrins/toxicity , Glycine max/growth & development , Thiamethoxam/toxicity , United States , Zea mays/growth & development
2.
Proc Natl Acad Sci U S A ; 116(8): 3006-3011, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723147

ABSTRACT

Monarch butterfly (Danaus plexippus) decline over the past 25 years has received considerable public and scientific attention, in large part because its decline, and that of its milkweed (Asclepias spp.) host plant, have been linked to genetically modified (GM) crops and associated herbicide use. Here, we use museum and herbaria specimens to extend our knowledge of the dynamics of both monarchs and milkweeds in the United States to more than a century, from 1900 to 2016. We show that both monarchs and milkweeds increased during the early 20th century and that recent declines are actually part of a much longer-term decline in both monarchs and milkweed beginning around 1950. Herbicide-resistant crops, therefore, are clearly not the only culprit and, likely, not even the primary culprit: Not only did monarch and milkweed declines begin decades before GM crops were introduced, but other variables, particularly a decline in the number of farms, predict common milkweed trends more strongly over the period studied here.


Subject(s)
Asclepias/genetics , Butterflies/physiology , Ecosystem , Plants, Genetically Modified/genetics , Animal Migration/physiology , Animals , Asclepias/growth & development , Butterflies/genetics , Herbicide Resistance/genetics , Host-Parasite Interactions , Plants, Genetically Modified/physiology , Population Dynamics , United States
3.
Am Nat ; 193(1): 20-34, 2019 01.
Article in English | MEDLINE | ID: mdl-30624107

ABSTRACT

A central tenet of plant defense theory is that adaptation to the abiotic environment sets the template for defense strategies, imposing a trade-off between plant growth and defense. Yet this trade-off, commonly found among species occupying divergent resource environments, may not occur across populations of single species. We hypothesized that more favorable climates and higher levels of herbivory would lead to increases in growth and defense across plant populations. We evaluated whether plant growth and defense traits covaried across 18 populations of showy milkweed (Asclepias speciosa) inhabiting an east-west climate gradient spanning 25° of longitude. A suite of traits impacting defense (e.g., latex, cardenolides), growth (e.g., size), or both (e.g., specific leaf area [SLA], trichomes) were measured in natural populations and in a common garden, allowing us to evaluate plastic and genetically based variation in these traits. In natural populations, herbivore pressure increased toward warmer sites with longer growing seasons. Growth and defense traits showed strong clinal patterns and were positively correlated. In a common garden, clines with climatic origin were recapitulated only for defense traits. Correlations between growth and defense traits were also weaker and more negative in the common garden than in the natural populations. Thus, our data suggest that climatically favorable sites likely facilitate the evolution of greater defense at minimal costs to growth, likely because of increased resource acquisition.


Subject(s)
Asclepias/genetics , Biological Evolution , Climate , Herbivory , Animals , Asclepias/growth & development , Asclepias/metabolism
4.
Am J Bot ; 105(12): 1975-1985, 2018 12.
Article in English | MEDLINE | ID: mdl-30512197

ABSTRACT

PREMISE OF THE STUDY: Herb chronology, the study of belowground annual growth rings in perennial forbs, has much potential as a tool for monitoring plant growth as a function of environment. To harness this potential, understanding of the coordination between ring ontogeny, aboveground phenology, and the temporal allocation of carbon products belowground in herbaceous forbs must be improved. METHODS: We investigated these relationships in two southern United States tallgrass prairie perennial forb species, Asclepias viridis and Lespedeza stuevei, making monthly excavations for a year. KEY RESULTS: Belowground xylogenesis began when starch reserves were at their seasonal low in the spring as shoots reached maximum height. The highest relative radial growth of the ring occurred concurrently with replenishment of root starch reserves in early summer. Xylogenesis concluded with leaf senescence in late summer and belowground starch reserves near saturation. CONCLUSIONS: By demonstrating that ring ontogeny is tied to early summer starch replenishment, our results illustrate the mechanisms behind previous findings where ring width was highly correlated with summer climatic conditions for these two species. This study provides a new physiological link between how ring chronologies in herbs often accord with growing-season environment; further dissecting this phenomenon is vital in unlocking the potential of herb chronology.


Subject(s)
Asclepias/growth & development , Lespedeza/growth & development , Plant Roots/growth & development , Starch/metabolism , Xylem/growth & development , Asclepias/metabolism , Grassland , Lespedeza/metabolism , Plant Roots/metabolism
5.
Am J Bot ; 105(2): 207-214, 2018 02.
Article in English | MEDLINE | ID: mdl-29573396

ABSTRACT

PREMISE OF THE STUDY: Arbuscular mycorrhizal (AM) fungi can promote plant growth and reproduction, but other plant physiological traits or traits that provide defense against herbivores can also be affected by AM fungi. However, whether responses of different traits to AM fungi are correlated and whether these relationships vary among plants from different populations are unresolved. METHODS: In a common garden experiment, we grew Asclepias speciosa plants from seed collected from populations found along an environmental gradient with and without AM fungi to assess whether the responses of six growth and defense traits to AM fungi are correlated. KEY RESULTS: Although there was strong genetic differentiation in mean trait values among populations, AM fungi consistently increased expression of most growth and defense traits across all populations. Responses of biomass and root to shoot ratio to AM fungi were positively correlated, suggesting that plants that are more responsive to AM fungi allocated more biomass belowground. Responses of biomass and trichome density to AM fungi were negatively correlated, indicating a trade-off in responsiveness between a growth and defensive trait. CONCLUSIONS: Our results suggest that while there is substantial population differentiation in many traits of A. speciosa, populations respond similarly to AM fungi, and both positive and negative correlations among trait responses occur.


Subject(s)
Asclepias/microbiology , Mycorrhizae/metabolism , Asclepias/anatomy & histology , Asclepias/growth & development , Asclepias/physiology , Biomass , Herbivory
6.
Biol Lett ; 13(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-29187604

ABSTRACT

Species interactions are central to our understanding of ecological communities, but may change rapidly with the introduction of invasive species. Invasive species can alter species interactions and community dynamics directly by having larger detrimental effects on some species than others, or indirectly by changing the ways in which native species compete among themselves. We tested the direct and indirect effects of an invasive aphid herbivore on a native aphid species and two host milkweed species. The invasive aphid caused a 10-fold decrease in native aphid populations, and a 30% increase in plant mortality (direct effects). The invasive aphid also increased the strength of interspecific competition between the two native plant hosts (indirect effects). By investigating the role that indirect effects play in shaping species interactions in native communities, our study highlights an understudied component of species invasions.


Subject(s)
Aphids/physiology , Asclepias/growth & development , Herbivory , Introduced Species , Animals , Ecosystem , Feeding Behavior , North America
7.
PLoS One ; 12(7): e0181245, 2017.
Article in English | MEDLINE | ID: mdl-28708851

ABSTRACT

To assess the change in the size of the eastern North American monarch butterfly summer population, studies have used long-term data sets of counts of adult butterflies or eggs per milkweed stem. Despite the observed decline in the monarch population as measured at overwintering sites in Mexico, these studies found no decline in summer counts in the Midwest, the core of the summer breeding range, leading to a suggestion that the cause of the monarch population decline is not the loss of Midwest agricultural milkweeds but increased mortality during the fall migration. Using these counts to estimate population size, however, does not account for the shift of monarch activity from agricultural fields to non-agricultural sites over the past 20 years, as a result of the loss of agricultural milkweeds due to the near-ubiquitous use of glyphosate herbicides. We present the counter-hypotheses that the proportion of the monarch population present in non-agricultural habitats, where counts are made, has increased and that counts reflect both population size and the proportion of the population observed. We use data on the historical change in the proportion of milkweeds, and thus monarch activity, in agricultural fields and non-agricultural habitats to show why using counts can produce misleading conclusions about population size. We then separate out the shifting proportion effect from the counts to estimate the population size and show that these corrected summer monarch counts show a decline over time and are correlated with the size of the overwintering population. In addition, we present evidence against the hypothesis of increased mortality during migration. The milkweed limitation hypothesis for monarch decline remains supported and conservation efforts focusing on adding milkweeds to the landscape in the summer breeding region have a sound scientific basis.


Subject(s)
Butterflies/physiology , Agriculture , Animal Migration , Animals , Asclepias/drug effects , Asclepias/growth & development , Asclepias/parasitology , Butterflies/growth & development , Conservation of Natural Resources , Ecosystem , Herbicides/toxicity , Mexico , Plant Stems/parasitology , Population Density , Seasons
8.
Integr Comp Biol ; 56(2): 343-52, 2016 08.
Article in English | MEDLINE | ID: mdl-27252207

ABSTRACT

Long-distance migration can lower infection risk for animal populations by removing infected individuals during strenuous journeys, spatially separating susceptible age classes, or allowing migrants to periodically escape from contaminated habitats. Many seasonal migrations are changing due to human activities including climate change and habitat alteration. Moreover, for some migratory populations, sedentary behaviors are becoming more common as migrants abandon or shorten their journeys in response to supplemental feeding or warming temperatures. Exploring the consequences of reduced movement for host-parasite interactions is needed to predict future responses of animal pathogens to anthropogenic change. Monarch butterflies (Danaus plexippus) and their specialist protozoan parasite Ophryocystis elektroscirrha (OE) provide a model system for examining how long-distance migration affects infectious disease processes in a rapidly changing world. Annual monarch migration from eastern North America to Mexico is known to reduce protozoan infection prevalence, and more recent work suggests that monarchs that forego migration to breed year-round on non-native milkweeds in the southeastern and south central Unites States face extremely high risk of infection. Here, we examined the prevalence of OE infection from 2013 to 2016 in western North America, and compared monarchs exhibiting migratory behavior (overwintering annually along the California coast) with those that exhibit year-round breeding. Data from field collections and a joint citizen science program of Monarch Health and Monarch Alert showed that infection frequency was over nine times higher for monarchs sampled in gardens with year-round milkweed as compared to migratory monarchs sampled at overwintering sites. Results here underscore the importance of animal migrations for lowering infection risk and motivate future studies of pathogen transmission in migratory species affected by environmental change.


Subject(s)
Animal Migration , Apicomplexa/physiology , Asclepias/growth & development , Butterflies/parasitology , Host-Parasite Interactions , Introduced Species , Animals , Butterflies/physiology , California , Ecosystem
9.
Am Nat ; 186(1): E1-E15, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26098351

ABSTRACT

Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.


Subject(s)
Adaptation, Physiological , Asclepias/growth & development , Asclepias/genetics , Biological Evolution , Herbivory , Animals , Asclepias/parasitology , Bayes Theorem , Butterflies , Europe , Genetic Variation , Introduced Species , North America , Phenotype , Plant Development
10.
J Anim Ecol ; 84(1): 155-65, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24903085

ABSTRACT

Threats to migratory animals can occur at multiple periods of the annual cycle that are separated by thousands of kilometres and span international borders. Populations of the iconic monarch butterfly (Danaus plexippus) of eastern North America have declined over the last 21 years. Three hypotheses have been posed to explain the decline: habitat loss on the overwintering grounds in Mexico, habitat loss on the breeding grounds in the United States and Canada, and extreme weather events. Our objectives were to assess population viability, determine which life stage, season and geographical region are contributing the most to population dynamics and test the three hypotheses that explain the observed population decline. We developed a spatially structured, stochastic and density-dependent periodic projection matrix model that integrates patterns of migratory connectivity and demographic vital rates across the annual cycle. We used perturbation analysis to determine the sensitivity of population abundance to changes in vital rate among life stages, seasons and geographical regions. Next, we compared the singular effects of each threat to the full model where all factors operate concurrently. Finally, we generated predictions to assess the risk of host plant loss as a result of genetically modified crops on current and future monarch butterfly population size and extinction probability. Our year-round population model predicted population declines of 14% and a quasi-extinction probability (<1000 individuals) >5% within a century. Monarch abundance was more than four times more sensitive to perturbations of vital rates on the breeding grounds than on the wintering grounds. Simulations that considered only forest loss or climate change in Mexico predicted higher population sizes compared to milkweed declines on the breeding grounds. Our model predictions also suggest that mitigating the negative effects of genetically modified crops results in higher population size and lower extinction risk. Recent population declines stem from reduction in milkweed host plants in the United States that arise from increasing adoption of genetically modified crops and land-use change, not from climate change or degradation of forest habitats in Mexico. Therefore, reducing the negative effects of host plant loss on the breeding grounds is the top conservation priority to slow or halt future population declines of monarch butterflies in North America.


Subject(s)
Animal Migration , Butterflies/physiology , Conservation of Natural Resources , Ecosystem , Agriculture/methods , Animals , Asclepias/growth & development , Canada , Extinction, Biological , Female , Mexico , Models, Biological , Population Dynamics , Seasons , United States
11.
J Chem Ecol ; 37(8): 871-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21739223

ABSTRACT

Pale swallow-wort (Vincetoxicum rossicum) and black swallow-wort (V. nigrum) are two emerging invasive plant species in the northeastern United States and southeastern Canada that have shown rapid population expansion over the past 20 years. Using bioassay-guided fractionation, the known phytochemical phenanthroindolizidine alkaloid, (-)-antofine, was identified as a potent phytotoxin in roots, leaves, and seeds of both swallow-wort species. In seedling bioassays, (-)-antofine, at µM concentrations, resulted in greatly reduced root growth of Asclepias tuberosa, A. syriaca, and Apocynum cannabinum, three related, native plant species typically found in habitats where large stands of swallow-wort are present. In contrast, antofine exhibited moderate activity against lettuce, and it had little effect on germination and root growth of either black or pale swallow-wort. In disk diffusion assays, antifungal activity was observed at 10 µg and 100 µg, while antibacterial activity was seen only at the higher level. Although both swallow-wort species display multiple growth and reproductive characteristics that may play an important role in their invasiveness, the presence of the highly bioactive phytochemical (-)-antofine in root and seed tissues indicates a potential allelopathic role in swallow-worts' invasiveness.


Subject(s)
Indoles/toxicity , Phenanthrolines/toxicity , Plant Extracts/toxicity , Plant Weeds/toxicity , Apocynum/growth & development , Asclepias/growth & development , Lactuca/growth & development
13.
Science ; 327(5973): 1642-4, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20339073

ABSTRACT

Predators determine herbivore and plant biomass via so-called trophic cascades, and the strength of such effects is influenced by ecosystem productivity. To determine whether evolutionary trade-offs among plant traits influence patterns of trophic control, we manipulated predators and soil fertility and measured impacts of a major herbivore (the aphid Aphis nerii) on 16 milkweed species (Asclepias spp.) in a phylogenetic field experiment. Herbivore density was determined by variation in predation and trade-offs between herbivore resistance and plant growth strategy. Neither herbivore density nor predator effects on herbivores predicted the cascading effects of predators on plant biomass. Instead, cascade strength was strongly and positively associated with milkweed response to soil fertility. Accordingly, contemporary patterns of trophic control are driven by evolutionary convergent trade-offs faced by plants.


Subject(s)
Aphids/physiology , Asclepias/physiology , Biological Evolution , Ecosystem , Food Chain , Animals , Asclepias/growth & development , Biomass , Cues , Population Density , Predatory Behavior , Sesquiterpenes/metabolism , Soil , Species Specificity
14.
J Chem Ecol ; 35(7): 816-23, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19579046

ABSTRACT

In Florida, the eastern North American population of the monarch butterfly exhibits geographic variability in population structure and dynamics. This includes the occurrence of migrants throughout the peninsula during the autumnal migration, occasional overwintering clusters that form along the Gulf Coast, remigrants from Mexico that breed in north-central Florida during the spring, and what have been assumed to be year-round, resident breeding populations in southern Florida. The work reported here focused on two monarch populations west of Miami and addressed four questions: Are there permanent resident populations of monarchs in southern Florida? Do these breed continuously throughout the year? Do they receive northern monarchs moving south during the autumn migration? Do they receive overwintered monarchs returning via Cuba or the Yucatan during the spring remigration from the Mexican overwintering area? Monthly collections and counts of spermatophores in the bursa copulatrices of females established that a resident population of continuously breeding monarchs exists year-round in southern Florida. It was determined through cardenolide fingerprinting that most of the butterflies had bred on the local southern Florida milkweed species, Asclepias curassavica. During the autumn migration period, however, some monarchs had fed on the northern milkweed, Asclepias syriaca. It appears that instead of migrating to Mexico, these individuals travel south through peninsular Florida, break diapause, mate with and become incorporated into the resident breeding populations. None of the monarchs captured in spring had the A. syriaca cardenolide fingerprint, which is evidence against the southern Florida populations receiving overwintered remigrants from Cuba, Central America or Mexico.


Subject(s)
Animal Migration/physiology , Lepidoptera/physiology , Animals , Asclepias/growth & development , Female , Florida , North America , Population Dynamics , Seasons
15.
Commun Agric Appl Biol Sci ; 73(4): 965-9, 2008.
Article in English | MEDLINE | ID: mdl-19226850

ABSTRACT

The common milkweed causes considerable damages on the agricultural and nature conservation areas. The area occupied by this weed is continuously bigger. The common milkweed is spread over North-America between the 35th and 50th degree of western Latitude and 60th 103rd degree of longitude. Millions of hectares are polluted by this weed in the United States. Important is its spread also in Asia (Iraq), in Europe (Carpathian Basin, Poland, Bulgaria, Switzerland, France, Austria, Germany), as well as in the area of the former Soviet Union (Belorussia, The Baltic Countries, Caucasus, and the Ukraine). Though the basic biological characters of this plant are well known, still its control is a significant problem, the damages increase on the areas occupied by this weed. We collect seed samples from several Hungarian areas in 2007. After the sampling we determined the average sprout length and the number of follicle as well as the average seed numbers in the follicle. We determined also the weight of thousand seeds of the resultant seed samples. At natural circumstances the seedlings appear at a soil temperature of 15 degrees C during the end of April and first week of May. Under Laboratory circumstances the dormancy of the seeds ceases continuously from November on, germinate at a temperature of 20-30 degrees C, the maximum germination can be achieved in the first part of April. At January we started germination examinations with the seeds in Petri dish, among laboratory condition.


Subject(s)
Asclepias/growth & development , Asclepias/physiology , Seeds/growth & development , Biomass , Germination , Hungary , Population Dynamics , Seasons , Temperature
16.
Environ Pollut ; 152(2): 403-15, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17655989

ABSTRACT

Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.


Subject(s)
Asclepias/metabolism , Oxidants, Photochemical/toxicity , Ozone/toxicity , Plant Leaves , Seasons , Asclepias/growth & development , Carbon Dioxide/metabolism , Circadian Rhythm , Dehydration , Environmental Monitoring/methods , Models, Biological , New England , Plant Transpiration
17.
Environ Pollut ; 142(2): 354-66, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16343714

ABSTRACT

Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed.


Subject(s)
Air Pollution/adverse effects , Asclepias/growth & development , Oxidants, Photochemical/toxicity , Ozone/toxicity , Prunus/growth & development , Air Pollution/analysis , Climate , Environmental Monitoring/methods , Fertilizers/analysis , Fresh Water , Michigan , Nitrogen/analysis , Oxidants, Photochemical/analysis , Ozone/analysis , Plant Leaves/growth & development , Soil/analysis
18.
Am Nat ; 166(6): 731-50, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16475089

ABSTRACT

Stochastic models are of increasing importance in ecology but are usually only applied to observational data. Here we use a stochastic population model to combine experimental and observational data to understand the colonization of old fields by monarch butterflies Danaus plexippus. We experimentally tested for density dependence in oviposition rates when predators were excluded, and we measured predation rates under natural conditions. Significance tests on the resulting data showed that both oviposition and predation were density dependent but could not show how oviposition and mortality combine to determine egg densities in nature. We therefore used our data to calculate the Akaike Information Criterion to choose between a nested suite of stochastic models that differed in their oviposition and mortality terms. When we simply fit the models to the observational data, the best model assumed density independence in both oviposition and predation. When we instead first estimated the oviposition rate at low density from experimental data, however, the best model included density dependence in oviposition, and a model that included density dependence in both oviposition and predation performed nearly as well. This result is consistent with our experiments and suggests that experiments can enhance the usefulness of stochastic models in ecology.


Subject(s)
Asclepias/growth & development , Butterflies , Food Supply , Oviposition/physiology , Animal Feed , Animals , Behavior, Animal , Butterflies/growth & development , Female , Models, Biological , Population Dynamics , Population Growth , Reproducibility of Results , Stochastic Processes
19.
Am Nat ; 164(1): 113-20, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15266375

ABSTRACT

Long-standing theory has predicted that plant defensive and nutritional traits contribute to the population dynamics of insect herbivores. To examine the role of plant variation in density dependence, I took a comparative approach by conducting density manipulation experiments with the specialist aphid, Aphis nerii, on 18 species of milkweed (Asclepias spp.). The strength of density dependence varied on the plant species. Variation in plant secondary compounds (cardenolides), trichomes, leaf carbon and nitrogen concentrations, and seed mass of the milkweed species predicted the R(max) of aphid populations, while specific leaf weight, carbon concentration, latex, water content, and trichome density were significant predictors of the strength of density dependence. Thus, plant traits that probably evolved for primary and defensive functions contribute to the ecological dynamics of herbivore populations.


Subject(s)
Adaptation, Physiological , Plants/chemistry , Animals , Aphids , Asclepias/chemistry , Asclepias/growth & development , Ecology , Feeding Behavior , Plant Development , Plant Leaves/chemistry , Population Density , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...