ABSTRACT
Breast cancer (BC) accounts for 24.2% of all women's malignant tumors, with rising survival rates due to advancements in chemotherapy and targeted treatments. However, second primary cancers, particularly lung cancer (LC), have become more prevalent, often emerging approximately 10 years after BC treatment. This study presents a case series of 9 women diagnosed with second primary LC following BC, treated at a high-complexity hospital in Colombia between 2014 and 2019. All initial BCs were ductal carcinomas, 7 were triple negative, 1 was human epidermal growth factor receptor 2 positive, and 1 was estrogen and progesterone positive. Each patient had undergone radiation therapy, and 7 had received chemotherapy, increasing their LC risk. The second primary LCs, all adenocarcinomas, were confirmed using immunohistochemical stains for thyroid transcription factor-1 (TTF-1), Napsin A, and estrogen receptor (ER) status. The interval between treatments and LC detection ranged from 1 to 17 years, with 4 cases identified after 10 years and 3 within 1 to 3 years, underscoring the need for prolonged surveillance. Seven LCs were ipsilateral to the BC and radiation site, while 2 were contralateral, highlighting the necessity of monitoring both sides for potential LC development. This case series enhances the local epidemiological understanding, showing that prior radiotherapy for BC and histological analysis are key in characterizing second primary LC patients. The study emphasizes the critical role of accurate histological diagnosis in guiding treatment approaches for lung lesions in BC survivors.
Subject(s)
Breast Neoplasms , Lung Neoplasms , Neoplasms, Second Primary , Humans , Female , Lung Neoplasms/pathology , Neoplasms, Second Primary/pathology , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Aged , Adult , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Aspartic Acid Endopeptidases , ColombiaABSTRACT
Despite the great effort that has gone into developing new molecules as multitarget compounds to treat Alzheimer's disease (AD), none of these have been approved to treat this disease. Therefore, it will be interesting to determine whether benzazoles such as benzimidazole, benzoxazole, and benzothiazole, employed as pharmacophores, could act as multitarget drugs. AD is a multifactorial disease in which several pharmacological targets have been identified-some are involved with amyloid beta (Aß) production, such as beta secretase (BACE1) and beta amyloid aggregation, while others are involved with the cholinergic system as acetylcholinesterase (AChE) and butirylcholinesterase (BChE) and nicotinic and muscarinic receptors, as well as the hyperphosphorylation of microtubule-associated protein (tau). In this review, we describe the in silico and in vitro evaluation of benzazoles on three important targets in AD: AChE, BACE1, and Aß. Benzothiazoles and benzimidazoles could be the best benzazoles to act as multitarget drugs for AD because they have been widely evaluated as AChE inhibitors, forming π-π interactions with W286, W86, Y72, and F338, as well as in the AChE gorge and catalytic site. In addition, the sulfur atom from benzothiazol interacts with S286 and the aromatic ring from W84, with these compounds having an IC50 value in the µM range. Also, benzimidazoles and benzothiazoles can inhibit Aß aggregation. However, even though benzazoles have not been widely evaluated on BACE1, benzimidazoles evaluated in vitro showed an IC50 value in the nM range. Therefore, important chemical modifications could be considered to improve multitarget benzazoles' activity, such as substitutions in the aromatic ring with electron withdrawal at position five, or a linker 3 or 4 carbons in length, which would allow for better interaction with targets.
Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cholinesterase Inhibitors , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Humans , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Protein Aggregates/drug effects , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , AnimalsABSTRACT
BACKGROUND: Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS: We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting ß-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS: These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.
Subject(s)
Alzheimer Disease , Genome, Bacterial , Kefir , Lactobacillus , Microbiota , Peptides , Kefir/microbiology , Lactobacillus/genetics , Brazil , Peptides/chemistry , Peptides/pharmacology , Humans , Molecular Docking Simulation , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Metagenomics/methodsABSTRACT
INTRODUCTION: Candida albicans is the most common opportunistic pathogen causing fungal infections worldwide, especially in high-risk patients. Its pathogenicity is related to virulence factors gene expression, such as hyphal growth (HWP1), cell adhesion (ALS3), and protease secretion (SAP1) during infection spreading mechanisms. In recent years, an increase in non-albicans Candida infections has been reported, which may present coinfection or competitive interactions with C. albicans, potentially aggravating the patient's condition. This study aims to evaluate the expression of genes related to virulence factors of C. albicans and non-albicans Candida during planktonic stage. METHODS: C. albicans (ATCC MYA-3573) as well as with three clinical strains (C. albicans DCA53, C. tropicalis DCT6, and C. parapsilosis DCP1) isolated from blood samples, were grown in 24-well plates at 37°C for 20 h, either in monocultures or mixed cultures. Quantitative real-time polymerase chain reaction was used to evaluate the expression levels of the genes HWP1, ALS3, and SAP1 in cells collected during the planktonic stage. In addition, hyphal filamentation was observed using a Scanning Electron Microscope. RESULTS: The overexpression of HWP1 and ASL3 genes in mixed growth conditions between C. albicans and non-albicans Candida species suggests a synergistic relationship as well as an increased capacity for hyphal growth and adhesion. In contrast, C. parapsilosis versus C. tropicalis interaction shows an antagonistic relationship during mixed culture, suggesting a decreased virulence profile of C. parapsilosis during initial coinfection with C. tropicalis. CONCLUSION: The expression of HWP1, ALS3, and SAP1 genes associated with virulence factors varies under competitive conditions among species of the genus Candida during planktonic stage.
Subject(s)
Candida albicans , Fungal Proteins , Virulence Factors , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Virulence Factors/genetics , Candida albicans/pathogenicity , Candida albicans/genetics , Virulence/genetics , Hyphae/genetics , Gene Expression Regulation, Fungal , Candidiasis/microbiology , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Plankton/genetics , Candida/pathogenicity , Candida/genetics , Membrane GlycoproteinsABSTRACT
Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aß) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, ß-secretase (BACE1), Glycogen synthase kinase 3ß (GSK-3ß) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aß production, GSK-3ß is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3ß and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.
Subject(s)
Acetylcholinesterase , Alzheimer Disease , Humans , Glycogen Synthase Kinase 3 beta , Amyloid beta-Peptides , Amyloid Precursor Protein Secretases , Neurobiology , Neuroinflammatory Diseases , Aspartic Acid EndopeptidasesABSTRACT
BACKGROUND: In recent years, the rising global demand for cheese, the high cost and limited supply of calf rennet, and consumer choices have increased research into new alternatives to animal or recombinant chymosins for cheese making. Plant proteases with caseinolytic activity (CA) and milk-clotting activity (MCA) have been proposed as alternatives for milk clotting to obtain artisanal cheeses with new organoleptic properties. They have been named vegetable rennets (vrennets). The aim of this study was to evaluate the performance of two Solanum tuberosum aspartic proteases (StAP1 and StAP3) as vrennets for cheese making and to obtain a statistical model that could predict and optimize their enzymatic activity. RESULTS: To optimize the CA and MCA activities, a response surface methodology was used. Maximum values of CA and MCA for both enzymes were found at pH 5.0 and 30-35 °C. Analysis of the degradation of casein subunits showed that it is possible to tune the specificity of both enzymes by changing the pH. At pH 6.5, the αS - and ß- subunit degradation is reduced while conserving a significant MCA. CONCLUSION: The statistical models obtained in this work showed that StAP1 and StAP3 exert CA and MCA under pH and temperature conditions compatible with those used for cheese making. The casein subunit degradation percentages obtained also allowed us to select the best conditions for the degradation of the κ-casein subunit by StAPs. These results suggest that StAP1 and StAP3 are good candidates as vrennets for artisan cheese making. © 2023 Society of Chemical Industry.
Subject(s)
Cheese , Solanum tuberosum , Animals , Solanum tuberosum/metabolism , Cheese/analysis , Caseins/chemistry , Chymosin/analysis , Aspartic Acid Endopeptidases , Peptide Hydrolases/metabolism , Milk/chemistryABSTRACT
The accumulation of amyloid-ß (Aß) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of ß-secretase (ß-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aß peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aß generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.
Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic useABSTRACT
The ß-secretase-1 enzyme (BACE-1) performs a key role in the production of beta-Amyloid protein (Aß), which is associated with the development of Alzheimer's disease (AD). The inhibition of BACE-1 has been an important pharmacological strategy in the treatment of this neurodegenerative disease. This study aims to identify new potential candidates for the treatment of Alzheimer's with the help of in silico studies, such as molecular docking and ADME prediction, from a broad list of candidates provided by the DrugBank database. From this analysis, 1145 drugs capable of interacting with the enzyme with a higher coupling energy than Verubecestat were obtained, subsequently only 83 presented higher coupling energy than EJ7. Applying the oral route of administration as inclusion criteria, only 41 candidates met this requirement; however, 6 of them are associated with diagnostic tests and not treatment, so 33 candidates were obtained. Finally, five candidates were identified as possible BACE-1 inhibitors drugs: Fluphenazine, Naratriptan, Bazedoxifene, Frovatriptan, and Raloxifene. These candidates exhibit pharmacophore-specific features, including the indole or thioindole group, and interactions with key amino acids in BACE-1. Overall, this study provides insights into the potential use of in silico methods for drug repurposing and identification of new candidates for the treatment of Alzheimer's disease, especially those targeting BACE-1.
Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Pharmaceutical Preparations , Molecular Docking Simulation , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolismABSTRACT
This study aimed to explore the roles of SAP2 and GCN4 in itraconazole (ITR) resistance of C. albicans under different conditions, and their correlations. A total of 20 clinical strains of C. albicans, including 10 ITR resistant strains and 10 sensitive strains, were used. Then, SAP2 sequencing and GCN4 sequencing were performed, and the biofilm formation ability of different C. albicans strains was determined. Finally, real-time quantitative PCR was used to measure the expression of SAP2 and GCN4 in C. albicans under planktonic and biofilm conditions, as well as their correlation was also analyzed. No missense mutations and three synonymous mutation sites, including T276A, G543A, and A675C, were found in SAP2 sequencing. GCN4 sequencing showed one missense mutation site (A106T (T36S)) and six synonymous mutation sites (A147C, C426T, T513C, T576A, G624A and C732T). The biofilm formation ability of drug-resistant C. albicans strains was significantly higher than that of sensitive strains (P < 0.05). Additionally, SAP2 and GCN4 were up-regulated in the ITR-resistant strains, and were both significantly higher in C. albicans under biofilm condition. The mRNA expression levels of SAP2 and GCN4 had significantly positive correlation. The higher expression levels of SAP2 and GCN4 were observed in the ITR-resistant strains of C. albicans under planktonic and biofilm conditions, as well as there was a positive correlation between SAP2 and GCN4 mRNA expression.
Subject(s)
Aspartic Acid Proteases , Candida albicans , Candida albicans/genetics , Candida albicans/metabolism , Itraconazole/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Aspartic Acid Proteases/genetics , Aspartic Acid Endopeptidases/genetics , RNA, Messenger/genetics , Antifungal Agents/pharmacologyABSTRACT
Alzheimer's disease (AD) is a neurodegenerative, progressive, and fatal disorder characterized by marked atrophy of the cerebral cortex and loss of basal forebrain cholinergic neurons. The main pathological features of AD are related to neuronal degeneration and include extracellular deposition of amyloid beta plaques (Aß plaques), intracellular formation of neurofibrillary tangles (NFTs), and neuroinflammation. So far, drugs used to treat AD have symptomatic and palliative pharmacological effects, disappearing with continued use due to neuron degeneration and death. Therefore, there are still problems with an effective drug for treating AD. Few approaches evaluate the action of natural products other than alkaloids on the molecular targets of ß-amyloid protein (Aß protein) and/or tau protein, which are important targets for developing neuroprotective drugs that will effectively contribute to finding a prophylactic drug for AD. This review gathers and categorizes classes of natural products, excluding alkaloids, which in silico analysis (molecular docking) and in vitro and/or in vivo assays can inhibit the BACE1 and GSK-3ß enzymes involved in AD.
Subject(s)
Alzheimer Disease , Biological Products , Humans , Amyloid beta-Peptides/metabolism , Glycogen Synthase Kinase 3 beta , Molecular Docking Simulation , Amyloid Precursor Protein Secretases/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Aspartic Acid Endopeptidases/therapeutic use , Alzheimer Disease/metabolism , tau Proteins/metabolism , tau Proteins/therapeutic useABSTRACT
BACKGROUND: Alzheimer's disease is a progressive neurodegenerative process with multifactorial characteristics. This disease follows the natural aging process, affecting mainly people over 65 years. Pharmacotherapeutic treatment currently combats symptoms related to cognitive function. Several targets have begun to attract the interest of the scientific community to develop new drug candidates which have better pharmacokinetic and lower toxicity parameters. OBJECTIVE: The present study aims to design new candidates for acetylcholinesterase/ß-secretase (AChE/BACE1) multitarget inhibitor drugs. METHODS: 17 natural products were selected from the literature with anticholinesterase activity and 1 synthetic molecule with inhibitory activity for BACE1. Subsequently, the molecular docking study was performed, followed by the derivation of the pharmacophoric pattern and prediction of pharmacokinetic and toxicological properties. Finally, the hybrid prototype was designed. RESULTS: All selected molecules showed interactions with their respective target enzymes. Derivation of the pharmacophoric pattern from molecules that interacted with the AChE enzyme resulted in 3 pharmacophoric regions: an aromatic ring, an electron-acceptor region and a hydrophobic region. The molecules showed good pharmacokinetic and toxicological results, showing no warnings of mutagenicity and/or carcinogenicity. After the hybridization process, three hybrid molecules were obtained, which showed inhibitory activity for both targets. CONCLUSION: It is concluded that research in the field of medicinal chemistry is advancing towards the discovery of new drug candidates that bring a better quality of life to patients with AD.
Subject(s)
Acetylcholinesterase , Amyloid Precursor Protein Secretases , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Quality of LifeABSTRACT
Metformin (MET) is among the most consumed drugs around the world, and thus, it is considered the uppermost drug in mass discharged into water settings. Nonetheless, data about the deleterious consequences of MET on water organisms are still scarce and require further investigation. Herein, we aimed to establish whether or not chronic exposure to MET (1, 20, and 40 µg/L) may alter the swimming behavior and induce neurotoxicity in Danio rerio adults. After 4 months of exposure, MET-exposed fish exhibited less swimming activity when compared to control fish. Moreover, compared with the control group, MET significantly inhibited the activity of AChE and induced oxidative damage in the brain of fish. Concerning gene expression, MET significantly upregulated the expression of Nrf1, Nrf2, BAX, p53, BACE1, APP, PSEN1, and downregulated CASP3 and CASP9. Although MET did not overexpress the CASP3 gene, we saw a meaningful rise in the activity of this enzyme in the blood of fish exposed to MET compared to the control group, which we then confirmed by a high number of apoptotic cells in the TUNEL assay. Our findings demonstrate that chronic exposure to MET may impair fish swimming behavior, making them more vulnerable to predators.
Subject(s)
Metformin , Water Pollutants, Chemical , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Behavior, Animal , Caspase 3/metabolism , Metformin/toxicity , NF-E2-Related Factor 2/metabolism , Swimming , Tumor Suppressor Protein p53/metabolism , Water/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , bcl-2-Associated X Protein/metabolismABSTRACT
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Sever cognitive and memory impairments, huge increase in the prevalence of the disease, and lacking definite cure have absorbed worldwide efforts to develop therapeutic approaches. Since many drugs have failed in the clinical trials due to multifactorial nature of AD, symptomatic treatments are still in the center attention and now, nootropic medicinal plants have been found as versatile ameliorators to reverse memory disorders. In this work, anti-Alzheimer's activity of aqueous extract of areca nuts (Areca catechu L.) was investigated via in vitro and in vivo studies. It depicted good amyloid ß (Aß) aggregation inhibitory activity, 82% at 100 µg/mL. In addition, it inhibited beta-secretase 1 (BACE1) with IC50 value of 19.03 µg/mL. Evaluation of neuroprotectivity of the aqueous extract of the plant against H2O2-induced cell death in PC12 neurons revealed 84.5% protection at 1 µg/mL. It should be noted that according to our results obtained from Morris Water Maze (MWM) test, the extract reversed scopolamine-induced memory deficit in rats at concentrations of 1.5 and 3 mg/kg.
La enfermedad de Alzheimer (EA) es un trastorno neurodegenerativo relacionado con la edad. Los severos deterioros cognitivos y de la memoria, el enorme aumento de la prevalencia de la enfermedad y la falta de una cura definitiva han absorbido los esfuerzos mundiales para desarrollar enfoques terapéuticos. Dado que muchos fármacos han fallado en los ensayos clínicos debido a la naturaleza multifactorial de la EA, los tratamientos sintomáticos siguen siendo el centro de atención y ahora, las plantas medicinales nootrópicas se han encontrado como mejoradores versátiles para revertir los trastornos de la memoria. En este trabajo, se investigó la actividad anti-Alzheimer del extracto acuoso de nueces de areca (Areca catechu L.) mediante estudios in vitro e in vivo. Representaba una buena actividad inhibidora de la agregación de amiloide ß (Aß), 82% a 100 µg/mL. Además, inhibió la beta-secretasa 1 (BACE1) con un valor de CI50 de 19,03 µg/mL. La evaluación de la neuroprotección del extracto acuoso de la planta contra la muerte celular inducida por H2O2 en neuronas PC12 reveló una protección del 84,5% a 1 µg/mL. Cabe señalar que, de acuerdo con nuestros resultados obtenidos de la prueba Morris Water Maze (MWM), el extracto revirtió el déficit de memoria inducido por escopolamina en ratas a concentraciones de 1,5 y 3 mg/kg.
Subject(s)
Animals , Rats , Areca/chemistry , Plant Extracts/administration & dosage , Alzheimer Disease/drug therapy , beta-Amylase/antagonists & inhibitors , Amyloid beta-Peptides/drug effects , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/drug effects , Neuroprotective Agents , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/drug effects , Alzheimer Disease/enzymology , Alzheimer Disease/prevention & control , Morris Water Maze Test , Medicine, TraditionalABSTRACT
The genus Candida spp. has been highlighted as one of the main etiological agents causing fungal infections, with Candida albicans being the most prominent, responsible for most cases of candidemia. Due to its capacity for invasion and tissue adhesion, it is associated with the formation of biofilms, mainly in the environment and hospital devices, decreasing the effectiveness of available treatments. The repositioning of drugs, which is characterized by the use of drugs already on the market for other purposes, together with molecular-docking methods can be used aiming at the faster development of new antifungals to combat micro-organisms. This study aimed to evaluate the antifungal effect of diazepam on mature C. albicans biofilms in vitro and its action on biofilm in formation, as well as its mechanism of action and interaction with structures related to the adhesion of C. albicans, ALS3 and SAP5. To determine the MIC, the broth microdilution test was used according to protocol M27-A3 (CLSI, 2008). In vitro biofilm formation tests were performed using 96-well plates, followed by molecular-docking protocols to analyse the binding agent interaction with ALS3 and SAP5 targets. The results indicate that diazepam has antimicrobial activity against planktonic cells of Candida spp. and C. albicans biofilms, interacting with important virulence factors related to biofilm formation (ALS3 and SAP5). In addition, treatment with diazepam triggered a series of events in C. albicans cells, such as loss of membrane integrity, mitochondrial depolarization and increased production of EROs, causing DNA damage and consequent cell apoptosis.
Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida/drug effects , Diazepam/pharmacology , Drug Resistance, Fungal/drug effects , Aspartic Acid Endopeptidases/metabolism , Candida/pathogenicity , Fluconazole/pharmacology , Fungal Proteins/metabolismABSTRACT
Calotropis procera produces a milky sap containing proteolytic enzymes. At low concentrations, they induce milk-clotting (60 µg/ml) and to dehair hides (0.05 and 0.1%). A protocol for obtaining the enzymes is reported. The latex was mixed with distilled water and the mixture was cleaned through centrifugation. It was dialyzed with distilled water and centrifuged again to recover the soluble fraction [EP]. The dialyze is a key feature of the process. EP was characterized in terms of protein profile, chemical stability, among other criteria. Wild plants belonging to ten geographic regions and grown in different ecological conditions were used as latex source. Collections were carried out, spaced at three-month, according to the seasons at the site of the study. Proteolytic activity was measured as an internal marker and for determining stability of the samples. EP was also analyzed for metal content and microbiology. EP showed similar magnitude of proteolysis, chromatographic and electrophoretic profiles of proteins. Samples stored at 25 °C exhibited reduced solubility (11%) and proteolytic capacity (11%) after six months. Enzyme autolysis was negligible. Microbiological and metal analyses revealed standard quality of all the samples tested. EP induced milk clotting and hide dehairing after storage for up to six months.
Subject(s)
Aspartic Acid Endopeptidases/metabolism , Calotropis/enzymology , Chemistry Techniques, Analytical/standards , Ecosystem , Latex/chemistry , Plant Proteins/metabolism , Seasons , Animal Fur/drug effects , Animals , Aspartic Acid Endopeptidases/analysis , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/pharmacology , Cattle , Goats , Hair Removal/methods , Latex/isolation & purification , Plant Proteins/analysis , Plant Proteins/chemistry , Plant Proteins/pharmacology , Proteolysis , Reference Standards , SolubilityABSTRACT
BACKGROUND: The most common milk-clotting enzymes in the cheese industry are recombinant chymosins. Food naturalness is a factor underpinning consumers' food choice. For consumers who avoid food with ingredients from genetically modified organisms (GMOs), the use of vegetable-based rennet substitute in the cheese formulation may be a suitable solution. Artichokes that deviate from optimal products, when allowed to bloom due to flower protease composition, are excellent as raw material for vegetable rennet preparation. As enzymatic milk clotting exerts a significant impact on the characteristics of the final product, this product should be studied carefully. RESULTS: Mature flowers from unharvested artichokes (Cynara scolymus cv. Francés) that did not meet aesthetic standards for commercialization were collected and used to prepare a flower extract. This extract, as a coagulant preparation, enabled the manufacture of cheeses with distinctive characteristics compared with cheeses prepared with chymosin. Rennet substitution did not affect the actual yield but led to significant changes in dry matter yield, humidity, water activity, protein content, and color, and conferred antioxidant activity to the cheeses. The rennet substitution promoted significant modifications in springiness, and in the microstructure of the cheese, with a more porous protein matrix and an increment in the size of the fat globules. Both formulations showed a similar microbiota evolution pattern with excellent microbiological quality and good sensory acceptance. CONCLUSIONS: The rennet substitute studied here produced a cheese adapted to specific market segments that demand more natural and healthier products made with a commitment to the environment but well accepted by a general cheese consumer. © 2020 Society of Chemical Industry.
Subject(s)
Antioxidants/chemistry , Cheese/analysis , Cynara scolymus/chemistry , Plant Extracts/chemistry , Animals , Aspartic Acid Endopeptidases/chemistry , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Cattle , Cheese/microbiology , Flowers/chemistry , Food Handling , Humans , Microbiota , Milk/chemistry , TasteABSTRACT
Alzheimer's disease (AD) is a neurodegenerative process that compromises cognitive functions. The physiopathology of AD is multifactorial and is mainly supported by the cholinergic and amyloid hypotheses, which allows the identification the fundamental role of some markers, such as the enzymes acetylcholinesterase (AChE) and ß-secretase (BACE-1), and the ß-amyloid peptide (Aß). In this work, we prepared a series of chalcones and 2'-aminochalcones, which were tested against AChE and BACE-1 enzymes and on the aggregation of Aß. All compounds inhibited AChE activity with different potencies. We have found that the majority of chalcones having the amino group are able to inhibit BACE-1, which was not observed for chalcones without this group. The most active compound is the one derived from 2,3-dichlorobenzaldeyde, having an IC50 value of 2.71 µM. A molecular docking study supported this result, showing a good interaction of the amino group with aspartic acid residues of the catalytic diade of BACE-1. Thioflavin-T fluorescence emission is reduced in 30 - 40%, when Aß42 is incubated in the presence of some chalcones under aggregation conditions. In vitro cytotoxicity and in silico prediction of pharmacokinetic properties were also conducted in this study.
Subject(s)
Chalcones/pharmacology , Cholinesterase Inhibitors/pharmacology , Protease Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Cell Line, Tumor , Chalcones/chemical synthesis , Chalcones/metabolism , Chalcones/pharmacokinetics , Chlorocebus aethiops , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacokinetics , Electrophorus , Humans , Mice , Molecular Docking Simulation , Peptide Fragments/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Protein Binding , Protein Multimerization/drug effects , Vero CellsABSTRACT
Therapeutic drugs for Alzheimer's disease have been extensively studied due to its recurrence and abundance among neurodegenerative diseases. It is thought that the accumulation of amyloid precursor protein (APP) products, a consequence of an up-regulation of the ß-site APP-cleaving enzyme 1 (BACE1), is the main triggering mechanism during the early stages of the disease. This study aims to explore the ability of a multifunctional conjugate based on magnetite nanoparticles for the cellular delivery of siRNA against the expression of the BACE1 gene. We immobilized the siRNA strand on PEGylated magnetite nanoparticles and investigated the effects on biocompatibility and efficacy of the conjugation. Similarly, we co-immobilized the translocating protein OmpA on PEGylated nanoparticles to enhance cellular uptake and endosomal escape. BACE1 suppression was statistically significant in HFF-1 cells, without any presence of a cytotoxic effect. The delivery of the nanoconjugate was achieved through endocytosis pathways, where endosome formation was likely escaped due to the proton-sponge effect characteristic of PEGylated nanoparticles or mainly by direct translocation in the case of OmpA/PEGylated nanoparticles.
Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , Gene Silencing , Magnetite Nanoparticles/therapeutic use , RNA, Small Interfering/therapeutic use , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Animals , Brain/metabolism , Cell Line , Endocytosis/physiology , Endosomes/metabolism , Gene Transfer Techniques , Humans , Materials TestingABSTRACT
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive disturbance as a consequence of the loss of cholinergic neurons in the brain, neuritic plaques and hyperphosphorylation of TAU protein. Although the underlying mechanisms leading to these events are unclear, mutations in presenilin 1 (PSEN1), e.g., E280A (PSEN1 E280A), are causative factors for autosomal dominant early-onset familial AD (FAD). Despite advances in the understanding of the physiopathology of AD, there are no efficient therapies to date. Limitations in culturing brain-derived live neurons might explain the limited effectiveness of AD research. Here, we show that mesenchymal stromal (stem) cells (MSCs) can be used to model FAD, providing novel opportunities to study cellular mechanisms and to establish therapeutic strategies. Indeed, we cultured MSCs with the FAD mutation PSEN1 E280A and wild-type (WT) PSEN1 from umbilical cords and characterized the transdifferentiation of these cells into cholinergic-like neurons (ChLNs). PSEN1 E280A ChLNs but not WT PSEN1 ChLNs exhibited increased intracellular soluble amyloid precursor protein (sAPPf) fragments and extracellular Aß42 peptide and TAU phosphorylation (at residues Ser202/Thr205), recapitulating the molecular pathogenesis of FAD caused by mutant PSEN1. Furthermore, PSEN1 E280A ChLNs presented oxidative stress (OS) as evidenced by the oxidation of DJ-1Cys106-SH into DJ-1Cys106-SO3 and the detection of DCF-positive cells and apoptosis markers such as activated pro-apoptosis proteins p53, c-JUN, PUMA and CASPASE-3 and the concomitant loss of the mitochondrial membrane potential and DNA fragmentation. Additionally, mutant ChLNs displayed Ca2+ flux dysregulation and deficient acetylcholinesterase (AChE) activity compared to control ChLNs. Interestingly, the inhibitor JNK SP600125 almost completely blocked TAU phosphorylation. Our findings demonstrate that FAD MSC-derived cholinergic neurons with the PSEN1 E280A mutation provide important clues for the identification of targetable pathological molecules.
Subject(s)
Alzheimer Disease , Cholinergic Neurons , Mesenchymal Stem Cells , Presenilin-1 , Umbilical Cord , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Apoptosis , Aspartic Acid Endopeptidases/metabolism , Calcium/metabolism , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mutation , Oxidative Stress , Presenilin-1/genetics , Presenilin-1/metabolism , Umbilical Cord/metabolism , Umbilical Cord/pathology , tau Proteins/metabolismABSTRACT
Nine tumor and various potential biomarkers were measured and combined the information to diagnose disease, all patients accepted fiber bronchoscopy brush liquid based cytologyand histopathology examination in order to reliably detect lung cancer. The samples from 314 Chinese lung cancer patients were obtained and CK5/6, P63, P40, CK7, TTF-1, NapsinA CD56, Syn and CgA were measured with the immunohistochemical SP method and analyzed correlation of the expression of these markers with pathological and clinical features of squamous cell carcinoma, adenocarcinoma, and small cell lung carcinoma. Squamous cell carcinoma, adenocarcinoma and small cell carcinoma were 61 cases, 114 cases and 139 cases,CK5/6 and P63 expression were more frequent in squamous cell carcinoma, with sensitivity and specificity of 77.05 % and 96.44 %, 83.61 % and 88.93 %,and compared with adenocarcinoma and small cell carcinoma difference was statistically significant (P<0.05), The incidences of a positive P40 expression were 100 % in squamous cell carcinoma, with specificity of 98.81 %.CK7, TTF-1 and NapsinA expression were more frequent in adenocarcinoma, with sensitivity and specificity of 85.09 % and 78.69 %, 79.82 % and 93.44 %, 56.14 % and 95.08 %, and compared with squamous cell carcinoma and small cell carcinoma difference was statistically significant (P<0.05). TTF-1, Syn, CgA and CD56 expression were more frequent in adenocarcinoma, with sensitivity and specificity of 86.33 % and 93.44 %, 89.21 % and 98.36 %, 74.10 % and 100 %, 96.40 % and 96.72 %. The combined detection of CK5/6, P63 and P40 were more useful and specific in differentiating squamous cell carcinoma. CK7, TTF-1 and NapsinA were more useful and specific in differentiating lung adenocarcinoma. The impaired CD56, TTF-1, Syn and CgA reflects the progression of small cell lung cancer.
Se midieron tumores y utilizaron nueve biomarcadores potenciales y se analizó la información para diagnosticar la enfermedad. A todos los pacientes se les realizó citología en líquido con broncoscopía de fibra y examen histopatológico para detectar de manera confiable el cáncer pulmonar. Se obtuvieron muestras de 314 pacientes chinos con cáncer de pulmón y CK5 / 6, P63, P40, CK7, TTF-1, Napsina A, CD56, Syn y CgA se midieron a través de histoquímica SP y analizaron la correlación de la expresión de estos marcadores con características patológicas y clínicas de carcinoma de células escamosas, adenocarcinoma y carcinoma de células pequeñas en el cáncer de pulmón. El carcinoma de células escamosas, el adenocarcinoma y el carcinoma de células pequeñas fueron 61 casos, 114 casos y 139 casos, respectivamente, la expresión de CK5 / 6 y P63 fueron más frecuentes en el carcinoma de células escamosas, con una sensibilidad y especificidad del 77,05 % y 96,44 %, 83,61 % y 88,93 %, y en comparación con el adenocarcinoma y el carcinoma de células pequeñas, la diferencia fue estadísticamente significativa (P <0,05). La incidencia de ap la expresión positiva P40 fue del 100 % en el carcinoma de células escamosas, con una especificidad del 98,81 %. La expresión de CK7, TTF-1 y NapsinA fueron más frecuentes en el adenocarcinoma, con una sensibilidad y especificidad del 85,09 % y 78,69 %, 79,82 % y 93,44 %, 56,14 % y 95,08 %, y en comparación con el carcinoma de células escamosas y la diferencia de carcinoma de células pequeñas fue estadísticamente significativa (P <0,05) .TTF-1, Syn, CgA y la expresión de CD56 fueron más frecuentes en adenocarcinoma, con sensibilidad y especificidad de 86.33 % y 93.44 %, 89.21 % y 98.36 %, 74.10 % y 100 %, 96.40 % y 96.72 %. La detección combinada de CK5 / 6, P63 y P40 fue más útil y específica en la diferenciación del carcinoma de células escamosas. CK7, TTF-1 y NapsinA fueron más útiles y específicos para diferenciar el adenocarcinoma de pulmón. El deterioro de CD56, TTF-1, Syn y CgA refleja la progresión del cáncer de pulmón de células pequeñas.