ABSTRACT
Atrazine is one of the most used herbicides in the world, although it is banned in several countries. Pollution of terrestrial and aquatic ecosystems represents a threat to non-target organisms, with various damages already reported in different species. However, there is controversy in studies on atrazine. The question of whether atrazine increases animal mortality is not yet clearly resolved. In this context, this study aimed to carry out a meta-analytic review, focusing on studies on environmental concentrations of the herbicide atrazine to evaluate its lethal effects on various animal species. We identified and analyzed 107 datasets through a selection process that used the Scopus, PubMed, and Web of Science (WoS) databases. A significant increase in the mortality rate of animals exposed to environmental concentrations of atrazine was observed. Nematodes, amphibians, molluscs, insects, and fish showed increased mortality after exposure to atrazine. Animals in the larval and juvenile stages showed greater susceptibility when exposed to different concentrations of atrazine. Furthermore, both commercial and pure formulations resulted in high mortality rates for exposed animals. Atrazine and other pesticides had a synergistic effect, increasing the risk of mortality in animals. There are still many gaps to be filled, and this study can serve as a basis for future regulations involving atrazine.
Subject(s)
Atrazine , Herbicides , Atrazine/toxicity , Animals , Herbicides/toxicity , Mortality , Environmental Pollutants/toxicityABSTRACT
Biobeds are presented as an alternative for good pesticide wastewater management on farms. This work proposes a new test for in-situ biomonitoring of pesticide detoxification in biobeds. It is based on the assessment of visually appreciable injuries to Eisenia fetida. The severity of the injury to each exposed individual is assessed from the morphological changes observed in comparison with the patterns established in seven categories and, an injury index is calculated. A linear relationship between the proposed injury index and the pesticide concentration was determined for each pesticide sprayed individually in the biomixture. The five pesticides used were atrazine, prometryn, clethodim, haloxyfop-P-methyl and dicamba. In addition, a multiple linear regression model (i.e., a multivariate response surface) was fitted, which showed a good generalization capacity. The sensitivity range of the injury test was tested from 0.01 to 630 mg kg-1 as the total pesticide concentration. This index is then used to monitor the detoxification of these pesticides in a biomixture (composed of wheat stubble, river waste, and soil, 50:25:25% by volume) over 210 days. The results are compared with standardized tests (Eisenia fetida avoidance test and Lactuca sativa seed germination test) carried out on the same biomixture. The results are also compared with data on the removal of pesticides. The injury test showed a better correlation with the removal of pesticides than the avoidance test and seed germination test. This simple and inexpensive test has proved to be useful for decontamination in-situ monitoring in biobeds.
Subject(s)
Biological Monitoring , Oligochaeta , Pesticides , Pesticides/analysis , Pesticides/metabolism , Oligochaeta/metabolism , Biological Monitoring/methods , Animals , Atrazine/toxicity , Atrazine/analysis , Soil Pollutants/analysis , Soil Pollutants/toxicity , Environmental Monitoring/methods , Wastewater/chemistry , Prometryne/toxicity , DicambaABSTRACT
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Subject(s)
Atrazine , Climate Change , Herbicides , Testis , Water Pollutants, Chemical , Zebrafish , Animals , Atrazine/toxicity , Zebrafish/physiology , Male , Water Pollutants, Chemical/toxicity , Testis/drug effects , Herbicides/toxicity , Spermatogenesis/drug effects , Reproduction/drug effectsABSTRACT
Atrazine is an herbicide with a high soil leaching capacity, contaminating subsurface water sources. Once the water table is contaminated, riparian species can be exposed to atrazine. In this way, understanding the impacts of this exposure must be evaluated for planning strategies that minimize the effects of this herbicide on native forest species. We aimed to evaluate forest species' sensitivity and antioxidant response to exposure to subsurface waters contaminated with atrazine, as well the dissipation this herbicide. The experiment was conducted in a greenhouse in a completely randomized design, with three replications and one plant per experimental unit. The treatments were arranged in a 2 × 10 factorial. The first factor corresponded to the presence or absence (control) of the atrazine in the subsurface water. The second factor comprised 10 forest species: Amburana cearensis, Anadenanthera macrocarpa, Bauhinia cheilantha, Enterolobium contortisiliquum, Hymenaea courbaril, Libidibia ferrea, Mimosa caesalpiniifolia, Mimosa tenuiflora, Myracrodruon urundeuva, and Tabebuia aurea. The forest species studied showed different sensitivity levels to atrazine in subsurface water. A. cearensis and B. cheilantha species do not have efficient antioxidant systems to prevent severe oxidative damage. The species A. macrocarpa, E. contortisiliquum, L. ferrea, and M. caesalpiniifolia are moderately affected by atrazine. H. courbaril, M. urundeuva, and T. aurea showed greater tolerance to atrazine due to the action of the antioxidant system of these species, avoiding membrane degradation events linked to the production of reactive oxygen species (ROS). Among the forest species, H. courbaril has the most significant remedial potential due to its greater tolerance and reduced atrazine concentrations in the soil.
Subject(s)
Antioxidants , Atrazine , Forests , Herbicides , Seedlings , Water Pollutants, Chemical , Atrazine/analysis , Herbicides/analysis , Antioxidants/metabolism , Antioxidants/analysis , Water Pollutants, Chemical/analysis , Seedlings/drug effects , Soil Pollutants/analysis , Soil/chemistryABSTRACT
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 µg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Subject(s)
Atrazine , Microplastics , Water Pollutants, Chemical , Atrazine/toxicity , Microplastics/toxicity , Animals , Water Pollutants, Chemical/toxicity , Gills/drug effectsABSTRACT
Atrazine (ATZ) is the third most sold herbicide in Brazil, occupying the seventh position between most widely used pesticides. Due to its easy outflow, low reactivity and solubility, moderate adsorption to organic matter and clay, and long soil persistence, residual herbicide can be identified after long periods following application, and its usage has been prohibited in diverse countries. Amphibians are important bioindicators to assess impact of pesticide like atrazine, due to having a partial aquatic life cycle. This study had as objective to assess the response of bullfrog (Lithobates catesbeianus) tadpoles when exposed to this herbicide. Animals were exposed for a total of 168h to following concentrations: negative control, 40 µg/L, 200 µg/L, 2000 µg/L, 20000 µg/L of ATZ. Analysis of swimming activity was performed, and biochemical profile was assessed by analysis of blood and plasma glucose levels, urea, creatinine, cholesterol, HDL, triglycerides, glutamic pyruvic transaminase (GPT), alkaline phosphatase (AP), calcium, total proteins, phenol, peroxidase and polyphenol oxidase activity. Results exhibited malnutrition, anemia, likely muscle mass loss, and hepatic damage, indicating that ATZ can lead to an increase in energy to maintain homeostasis for animal survival.
Subject(s)
Atrazine , Herbicides , Pesticides , Water Pollutants, Chemical , Animals , Herbicides/metabolism , Larva , Pesticides/metabolism , Rana catesbeiana/metabolism , Water Pollutants, Chemical/metabolismABSTRACT
Several studies have shown that chronic exposure to the herbicide atrazine (ATR) causes alterations in locomotor activity and markers of the dopaminergic systems of male rats. However, few studies have evaluated the sex-dependent effects of atrazine exposure. The aim of the present study was to evaluate whether chronic ATR exposure causes alterations in behavioral performance and dopaminergic systems of female rats. At weaning, two groups of rats were exposed to 1 or 10 mg ATR/kg body weight daily thorough the food, while the control group received food without ATR for 14 months. Spontaneous locomotor activity was evaluated monthly for 12 months, while anxiety, egocentric and spatial memory, motor coordination, and olfactory function tasks were evaluated between 13 and 14 months of ATR exposure. Tyrosine hydroxylase (TH) and monoamine content in brain tissue were assessed at the end of ATR treatment. Female rats treated with 1 or 10 mg ATR showed vertical hypoactivity compared to the control group only in the first month of ATR exposure. Impairments in olfactory functions were found due to ATR exposure. Nevertheless, no alterations in anxiety, spatial and egocentric memory, or motor coordination tasks were observed, while the levels of TH and dopamine and its metabolites in brain tissue were similar among groups. These results suggest that female rats could present greater sensitivity to the neurotoxic effects of ATR on spontaneous locomotor activity in the early stages of development. However, they are unaffected by chronic ATR exposure later in life compared to male rats. More studies are necessary to unravel the sex-related differences observed after chronic ATR exposure.
Subject(s)
Atrazine , Herbicides , Rats , Male , Female , Animals , Atrazine/toxicity , Rats, Sprague-Dawley , Herbicides/toxicity , Dopamine/metabolism , LocomotionABSTRACT
Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.
Subject(s)
Atrazine , Herbicides , Soil Pollutants , Atrazine/analysis , Glyphosate , Soil/chemistry , Argentina , Tandem Mass Spectrometry , Soil Pollutants/analysis , Herbicides/chemistry , Glycine max , Crop Production , 2,4-Dichlorophenoxyacetic AcidABSTRACT
We experimentally assessed the impact of the application of herbicides and fertilizers derived from agricultural activity through the individual and simultaneous addition of glyphosate, atrazine, and nutrients (nitrogen 'N' and phosphorus 'P') on the biofilm community and their resilience when the experimental factors were removed. We hypothesize that i) the presence of agrochemicals negatively affects the biofilm community leading to the simplification of the community structure; ii) the individual or simultaneous addition of herbicides and nutrients produces differential responses in the biofilm; and iii) the degree of biofilm recovery differs according to the treatment applied. Environmentally relevant concentrations of glyphosate (0.7 mgL-1), atrazine (44 µgL-1), phosphorus (1 mg P L-1 [KH2PO4]), and nitrogen (3 mg N L-1[NaNO3]) were used. Chlorophyll a, ash-free dry weight, abundance of main biofilm groups and nutrient contents in biofilm were analyzed. At initial exposure time, all treatments were dominated by Cyanobacteria; through the exposure period, it was observed a progressive replacement by Bacillariophyceae. This replacement occurred on day 3 for the control and was differentially delayed in all herbicides and/or nutrient treatments in which the abundance of cyanobacteria remains significant yet in T5. A significant correlation was observed between the abundance of cyanobacteria and the concentration of atrazine, suggesting that this group is less sensitive than diatoms. The presence of agrochemicals exerted differential effects on the different algal groups. Herbicides contributed to phosphorus and nitrogen inputs. The most frequently observed interactions between experimental factors (nutrients and herbicides) was additivity excepting for species richness (antagonistic effect). In the final recovery time, no significant differences were found between the treatments and the control in most of the evaluated parameters, evincing the resilience of the community.
Subject(s)
Atrazine , Cyanobacteria , Diatoms , Herbicides , Water Pollutants, Chemical , Herbicides/toxicity , Atrazine/toxicity , Chlorophyll A , Glyphosate , Phosphorus , Biofilms , Nitrogen/analysis , Fertilization , Water Pollutants, Chemical/toxicityABSTRACT
In the cropping systems that integrate the corn crop, the insertion of Crotalaria ochroleuca G. Don is predominantly intercropped. In this context, there is a need to observe herbicides that present selectivity for this sunn hemp species. The objective of this study was to evaluate the selectivity of pre and post-emergent herbicides on C. ochroleuca. Two field experiments were conducted in randomized blocks with four replications, involving the pre-emergence and post-emergence application of different herbicide treatments. For the pre-emergent ones, amicarbazone, atrazine and flumioxazin provided phytotoxicity higher than 90% and, consequently, low plant biomass. On the other hand, acetochlor and s-metolachlor did not cause phytotoxicity and did not affect the dry mass of crotalaria. In post-emergence, atrazine + mesotrione showed phytotoxicity >95%, followed by nicosulfuron and 2.4-D with phytotoxicity between 50-60%, whereas tembotrione did not cause injury to the plants. Thus, it was found that among the pre-emergent, acetochlor and s-metolachlor were selective, and for the emerging powders, only tembotrione was the most selective for all parameters analyzed.
Subject(s)
Atrazine , Crotalaria , Herbicides , Herbicides/toxicity , Zea maysABSTRACT
In the field of agriculture, nanopesticides have been developed as an alternative to the conventional pesticides, being more efficient for pest control. However, before their widespread application it is essential to evaluate their safe application and no environmental impacts. In this paper, we evaluated the toxicological effects of two kinds of atrazine nanoformulations (ATZ NPs) in different biological models (Raphidocelis subcapitata, Danio rerio, Lemna minor, Artemia salina, Lactuca sativa and Daphnia magna) and compared the results with nanoparticle stability over time and the presence of natural organic matter (NOM). The systems showed different characteristics for Zein (ATZ NPZ) (184 ± 2 nm with a PDI of 0.28 ± 0.04 and zeta potential of (30.4 ± 0.05 mV) and poly(epsilon-caprolactone (ATZ PCL) (192 ± 3 nm, polydispersity (PDI) of 0.28 ± 0.28 and zeta potential of -18.8 ± 1.2 mV) nanoparticles. The results showed that there is a correlation between nanoparticles stability and the presence of NOM in the medium and Environmental Concentrations (EC) values. The stability loss or an increase in nanoparticle size result in low toxicity for R. subcapitata and L. minor. For D. magna and D. rerio, the presence of NOM in the medium reduces the ecotoxic effects for ATZ NPZ nanoparticles, but not for ATZ NPs, showing that the nanoparticles characteristics and their interaction with NOM can modulate toxic effects. Nanoparticle stability throughout the evaluation must be considered and become an integral part of toxicity protocol guidelines for nanopesticides, to ensure test quality and authentic results regarding nanopesticide effects in target and non-target organisms.
Subject(s)
Atrazine , Nanoparticles , Pesticides , Water Pollutants, Chemical , Animals , Aquatic Organisms , Atrazine/toxicity , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Pesticides/toxicity , Zebrafish , DaphniaABSTRACT
Extracting practical information from the large amounts of data gathered during the live imaging analysis of plant organs is a challenging issue. The present work investigates the use of the logistic growth model to analyze experimental data from root elongation assays performed in milli-fluidic devices with in situ imaging. Lactuca sativa was used as a bioindicator and was subjected to wide concentration ranges of four different herbicides: 2,4-D, atrazine, glyphosate, and paraquat. The model parameters were directly connected to standard indicators of toxicity and plant development, such as the LD50 and the absolute growth rate, respectively. In addition, it was found that realistic predictions of the maximum root length can be achieved about 60 h before the bioassay end point, which could significantly shorten the turnaround time. The combination of milli-fluidic devices, real-time imaging, and model-based data analysis becomes a powerful tool for environmental studies and ecotoxicity testing.
Subject(s)
Atrazine , Herbicides , Herbicides/pharmacology , Lactuca , Diagnostic Imaging , ParaquatABSTRACT
Nanoporous carbons were prepared via chemical and physical activation from mangosteen-peel-derived chars. The removal of atrazine was studied due to the bifunctionality of the N groups. Pseudo-first-order, pseudo-second-order, and intraparticle pore diffusion kinetic models were analyzed. Adsorption isotherms were also analyzed according to the Langmuir and Freundlich models. The obtained results were compared against two commercially activated carbons with comparable surface chemistry and porosimetry. The highest uptake was found for carbons with higher content of basic surface groups. The role of the oxygen-containing groups in the removal of atrazine was estimated experimentally using the surface density. The results were compared with the adsorption energy of atrazine theoretically estimated on pristine and functionalized graphene with different oxygen groups using periodic DFT methods. The energy of adsorption followed the same trend observed experimentally, namely the more basic the pH, the more favored the adsorption of atrazine. Micropores played an important role in the uptake of atrazine at low concentrations, but the presence of mesoporous was also required to inhibit the pore mass diffusion limitations. The present work contributes to the understanding of the interactions between triazine-based pollutants and the surface functional groups on nanoporous carbons in the liquid-solid interface.
Subject(s)
Atrazine , Garcinia mangostana , Nanopores , Atrazine/chemistry , Adsorption , Charcoal/chemistry , Kinetics , Hydrogen-Ion ConcentrationABSTRACT
The Aquidauana River is an important ecological corridor in the Pantanal biome. However, the growth of agricultural and urban areas along its banks has contributed to the deterioration of its water quality, consequently putting the aquatic biota at risk. Our objectives were to evaluate: 1) the composition of the landscape around six sampling sites located in the Aquidauana River middle section; and 2) the quality of its water by determining limnological parameters, concentrations of contaminants of emerging concern (CECs), and the risks to native aquatic biota. Water samples were collected in November 2020. We observed the conversion of native riparian vegetation to extensive pasture areas and anthropic occupation around the sampling sites. We observed that the chlorophyll and total ammoniacal nitrogen values were above the standards established by Brazilian legislation in all samples. Studies focused on the quantification of CECs in the Pantanal waters are scarce, and to the best of our knowledge, this is the first study that investigated the presence of pharmaceuticals in the Aquidauana River. All 30 CECs analyzed were detected in at least one water sample. Eleven CECs were quantified with eight pesticides (atrazine, diuron, hexazinone, tebuthiuron, azoxystrobin, carbendazim, tebuconazole, and fipronil) and one atrazine degradation product (atrazine-2-hydroxy), caffeine, and bisphenol A. The concentrations of atrazine herbicide observed in the water samples pose risks for protecting aquatic biota (RQs >1). Therefore, the native biota of the Pantanal biome is vulnerable to several types of toxic contaminants observed in the water, which can cause the disappearance of native and endemic species in this region. Establishing a monitoring program, improving sanitation infrastructure, and intensifying good agricultural practices are essential for reducing and controlling the entry of CECs into the Aquidauana River and the Pantanal water system.
Subject(s)
Atrazine , Pesticides , Water Pollutants, Chemical , Environmental Monitoring , Brazil , Water Pollutants, Chemical/analysis , Pesticides/analysis , Rivers/chemistryABSTRACT
Atrazine is a broad-spectrum herbicide widely used worldwide to control grassy and broadleaf weeds. Atrazine's popularity is attributable to its cost-effectiveness and reliable performance. Relatedly, it is also an important micropollutant with a potential negative impact on biodiversity and human health. Atrazine has long been regularly detected in several environmental compartments, and its widespread use has resulted in ubiquitous and unpreventable contamination. Among pesticides sold in Brazil, atrazine has remained among the top-ranked active ingredients for the last several years. Thus, this study aimed to evaluate the occurrence of atrazine and three degradation products (hydroxyatrazine, desisopropylatrazine, and desethylatrazine) in surface water (Capivari and Atibaia rivers) and treated water, monthly sampling from two drinking water treatment plants in Campinas (São Paulo, Brazil). An analytical method using solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to determine target compounds simultaneously. The method presented instrument quantification limits from 0.5 to 4.0 ng mL-1 and recovery values from 80 to 112%, with a maximum relative standard deviation of 6%. All analytes had a detection frequency of 100% from 2 to 2744 ng L-1. Statistical analysis showed no analyte removal after conventional water treatment. Also, the Capivari River showed greater analyte concentration than the Atibaia River. Performed risk assessments according to current Brazilian standards showed no human and environmental health risks. However, other risk assessment approaches may indicate potential risks, advocating for further research and ongoing surveillance.
Subject(s)
Atrazine , Drinking Water , Water Pollutants, Chemical , Humans , Atrazine/analysis , Chromatography, Liquid/methods , Drinking Water/analysis , Brazil , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Environmental MonitoringABSTRACT
Pesticide contamination in water resources is a global threat. Although usually found at low concentrations, pesticides raise considerable toxicological concerns, mainly when mixtures are considered. The occurrence of 22 pesticides (2,4 D, alachlor, aldicarb, aldrin, atrazine, carbendazim, carbofuran, chlordane, chlorpyrifos, DDT, diuron, glyphosate, lindane, mancozeb, methamidophos, metolachlor, molinate, profenofos, simazine, tebuconazole, terbufos, and trifluralin) was investigated, through consolidated database information, in surface freshwaters of Brazil. Moreover, scenarios of environmental risk assessment considering isolated compounds and mixtures were performed, as well as a meta-analytic approach for toxicity purposes. Pesticides in freshwater have been reported from 719 cities (12.9% of Brazilian cities), where 179 (3.2%) showed pesticide occurrence above the limit of detection or quantification. Considering cities with more than five quantified, 16 cities were prone to environmental risks considering individual risks. However, the number increased to 117 cities when the pesticide mixture was considered. The mixture risk was driven by atrazine, chlorpyrifos, and DDT. The national maximum acceptable concentrations (MAC) for nearly all pesticides are higher than the predicted no-effect concentration (PNEC) for the species evaluated, except aldrin. Our results show the need to consider mixtures in the environmental risk assessment to avoid underestimation and review MAC to protect aquatic ecosystems. The results presented here may guide the revision of the national environmental legislation to ensure the protection of Brazilian aquatic ecosystems.
Subject(s)
Atrazine , Chlorpyrifos , Pesticides , Water Pollutants, Chemical , Pesticides/toxicity , Pesticides/analysis , Brazil , Ecosystem , Aldrin , DDT , Water Pollutants, Chemical/toxicity , Fresh Water , Risk Assessment , Environmental Monitoring/methodsABSTRACT
Pesticide usage has increased over the last decades, leading to concerns regarding its effects on non-target organisms, especially amphibians. Tadpoles of Rhinella icterica were collected in a pesticide-free place, acclimated in the laboratory (21 days) and exposed (7 days) to three herbicides (20 µg/L atrazine (A); 250 µg/L glyphosate (G); 20 µg/L quinclorac (Q)) and their mixtures. Only 2% mortality was observed over the 28 days of the study. Despite this, significant variations were observed for markers of oxidative balance and body condition when comparing all experimental groups. K and Kn factor showed the lowest values in the group A+G+Q, as well as the activity levels of GST and SOD. In contrast to this, the CAT activity was higher in the same group (A+G+Q). The mixture of the three herbicides proved to be more harmful, which points to the need for more restrictive laws for the use of mixed herbicides.
Subject(s)
Atrazine , Herbicides , Water Pollutants, Chemical , Animals , Herbicides/toxicity , Larva , Antioxidants , Bufonidae , Atrazine/toxicity , Water Pollutants, Chemical/toxicityABSTRACT
Atrazine (ATZ) is one of the most used active principles in agricultural systems. This pesticide has the ability to easily accumulate in terrestrial and aquatic environments, causing impacts with chronic adverse effects. Avoidance tests are tests that seek to assess the concentration from which a given organism escapes, that is, migrates to another habitat. They are being used as a modality of innovative and minimally invasive ecotoxicological tests. Our objective was to evaluate the sensitivity and possible toxic effects of ATZ in bullfrog tadpoles (Lithobates catesbeianus), through avoidance tests and oxidative stress analyses. We performed the behavioral avoidance test lasting 12 h, with observations every 60 min in a linear multi-compartment system with seven compartments. Each compartment corresponded to a concentration: negative control, 1, 2, 20, 200, 2000, 20,000 µg L-1. After the selection of habitat, organisms were forcedly maintained in the chosen concentrations for 48 h and then, metabolic effects were measured assessing the blood plasma amino acid profile and liver protein degradation. We also determined the effective concentrations of ATZ tested at 0 h and 48 h. The results showed that there was an effect of the treatment on the distribution of tadpoles, but not on the hours or on the combined effect (interaction). The biochemical analyses also showed a concentration-dependent relationship which caused significant toxic effects even in a short period of time. In conclusion, these frogs were able to avoid places with high concentrations of ATZ in the first hours of exposure, which suggests that in the natural environment these animals can migrate or avoid areas contaminated by this herbicide; however, depending on the selected concentration, serious biochemical consequences can occur.
Subject(s)
Atrazine , Herbicides , Animals , Atrazine/toxicity , Rana catesbeiana , Larva , Herbicides/toxicity , AnuraABSTRACT
The influence of temperature (25 and 32 °C) on the biomarker responses of bullfrog tadpoles (Lithobates catesbeianus) to different concentrations of the atrazine metabolite 2-hydroxyatrazine (2-HA, 0, 10, 50 and 200 ng.L-1, 16 days), was evaluated. Temperature affected the activities of superoxide dismutase, glutathione S-transferase and acetylcholinesterase. The activities of catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase and carboxylesterase presented no alterations. Frequencies of micronuclei and nuclear abnormalities were also not altered. 2-HA decreased SOD activity at 25 °C and caused histopathological changes in the liver and the kidney at both temperatures, with the kidney being more affected by the combination of higher temperature and 2-HA exposure, presenting glomerular shrinkage and an increase in Bowman's space. Our results indicate that at environmentally relevant concentrations, 2-HA can cause changes in biomarker responses as well as in the morphology of liver and kidney in L. catesbeianus tadpoles. Temperature has an important influence on biomarker response and histopathological alterations.
Subject(s)
Atrazine , Water Pollutants, Chemical , Animals , Rana catesbeiana , Atrazine/metabolism , Larva/metabolism , Temperature , Acetylcholinesterase/metabolism , Water Pollutants, Chemical/toxicity , Biomarkers/metabolismABSTRACT
The present work synthesized two new materials of functionalized multi-walled carbon nanotubes (MWCNT-OH and MWCNT-COOH) impregnated with magnetite (Fe3O4) using solution precipitation methodology. The resulting MWCNT-OH-Mag and MWCNT-COOH-Mag materials were characterized by scanning electron microscopy coupled with energy dispersion X-ray spectroscopy, Fourier transform infrared, X-ray diffraction, atomic force microscopy, and electrical force microscopy. The characterization results indicate that the -OH functional groups in the MWCNT interact effectively with magnetite iron favoring impregnation and indicating the regular distribution of nanoparticles on the surface of the synthesized materials. The adsorption efficiency of the MWCNT-OH-Mag and MWCNT-COOH-Mag materials was tested using the pollutants 2,4-D and Atrazine. Over batch studies carried out under different pH ranges, it was found that the optimal condition for 2,4-D adsorption was at pH 2, while for Atrazine, it was found at pH 6. The rapid adsorption kinetics of 2,4-D and Atrazine reaches equilibrium within 30 min. The pseudo-first-order model described 2,4-D adsorption well. The General-order model described better atrazine adsorption. The magnetically doped adsorbent functionalized with -OH surface groups (MWCNT-OH-Mag) demonstrated superior adsorption performance and increased Fe-doped sites. The Sips model described the adsorption isotherms accurately. MWCNT-OH-Mag presented the greatest adsorption capacity at 51.4 and 47.7 mg g-1 for 2,4-D and Atrazine, respectively. Besides, electrostatic forces and complexation rule the molecular interactions between metals and pesticides. The leaching and regeneration tests of the synthesized materials indicate high stability in an aqueous solution. Furthermore, experiments with wastewater samples contaminated with the model pollutants indicate that the novel adsorbents are highly promising for enhancing water purification by adsorptive separation.