Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.039
Filter
1.
Sci Rep ; 14(1): 17360, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075089

ABSTRACT

Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.


Subject(s)
Anoctamin-1 , Axons , Dinoprostone , Ganglia, Spinal , NAV1.8 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Animals , Dinoprostone/pharmacology , Dinoprostone/metabolism , Axons/metabolism , Axons/drug effects , Axons/physiology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Rats , Anoctamin-1/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Action Potentials/drug effects , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Rats, Sprague-Dawley , Cells, Cultured , Solute Carrier Family 12, Member 2/metabolism , Cyclic AMP/metabolism
2.
J Comp Neurol ; 532(7): e25652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962882

ABSTRACT

Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.


Subject(s)
Axons , Neocortex , Neural Pathways , Thalamus , Animals , Thalamus/cytology , Thalamus/anatomy & histology , Neocortex/cytology , Neocortex/anatomy & histology , Neural Pathways/cytology , Neural Pathways/anatomy & histology , Axons/physiology , Mammals/anatomy & histology , Vesicular Glutamate Transport Protein 2/metabolism , Species Specificity
3.
Sci Signal ; 17(843): eadr3505, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954639

ABSTRACT

Opioids trigger myelin insulation of reward circuit axons in a feedforward loop of addiction.


Subject(s)
Analgesics, Opioid , Humans , Analgesics, Opioid/pharmacology , Animals , Axons/metabolism , Axons/physiology , Myelin Sheath/metabolism , Reward , Opioid-Related Disorders
4.
Zhen Ci Yan Jiu ; 49(7): 767-776, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020496

ABSTRACT

Stroke brings the pathological changes of brain tissues such as hematoma formation or ischemia and hypoxia, which leads to neuronal death and axon degeneration. Axon regeneration after its injury is mainly dependent on the surrounding microenvironment and the related proteins, including glial scar, myelin associated inhibitory factors, axon guidance molecules, and neurotrophic factors. All of them affect axon growth by regulating the morphology and orientation of growth cones, the synaptic stability, and the proliferation and differentiation of neural stem cells. This article summarizes the mechanism of acupuncture in regulating axon regeneration after stroke. Acupuncture inhibits glial scar formation, alleviates the inhibitory effects of its physical and chemical barriers on axon growth, reverses the inhibitory effects of myelin-related inhibitory factors on axon growth, and adjusts the level of axon guidance molecules to promote the proliferation and differentiation of neural stem cells and the regeneration of injured axons, and up-regulates neurotrophic factors. Eventually, post-stroke nerve injury can be ameliorated.


Subject(s)
Acupuncture Therapy , Axons , Nerve Regeneration , Stroke , Humans , Animals , Axons/metabolism , Axons/physiology , Stroke/therapy , Stroke/metabolism , Stroke/physiopathology , Neural Stem Cells/metabolism
5.
Elife ; 132024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052321

ABSTRACT

Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.


Subject(s)
Axons , Drosophila Proteins , Drosophila melanogaster , Neurons , Signal Transduction , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Axons/metabolism , Axons/physiology , Neurons/metabolism , Neurons/physiology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Netrins/metabolism , Netrins/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Larva/metabolism , Mushroom Bodies/metabolism
6.
Elife ; 122024 Jul 26.
Article in English | MEDLINE | ID: mdl-39057843

ABSTRACT

Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.


Subject(s)
Acetylcholine , Optogenetics , Visual Cortex , Animals , Visual Cortex/physiology , Mice , Acetylcholine/metabolism , Cholinergic Neurons/physiology , Locomotion/physiology , Male , Photic Stimulation , Axons/physiology , Neurons/physiology
7.
Elife ; 132024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012795

ABSTRACT

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remain poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta, and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal, and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.


Whether we are memorising facts or reacting to a loud noise, nerve cells in different brain areas must be able to communicate with one another through precise, meaningful signals. Specialized nerve cells known as interneurons act as "traffic lights" to precisely regulate when and where this information flows in neural circuits. Axo-axonic cells are a rare type of inhibitory interneuron that are thought to be particularly important for controlling the passage of information between different groups of excitatory neurons. This is because they only connect to one key part of their target cell ­ the axon-initial segment ­ where the electrical signals needed for brain communication (known as action potentials) are initiated. Since axo-axonic cells are inhibitory interneurons, this connection effectively allows them to 'veto' the generation of these signals at their source. Although axo-axonic cells have been identified in three brain regions using traditional anatomical methods, there were no 'tags' readily available that can reliably identify them. Therefore, much about these cells remained unknown, including how widespread they are in the mammalian brain. To solve this problem, Raudales et al. investigated which genes are switched on in axo-axonic cells but not in other cells, identifying a unique molecular signature that could be used to mark, record, and manipulate these cells. Microscopy imaging of brain tissue from mice in which axo-axonic cells had been identified revealed that they are present in many more brain areas than previously thought, including nearly all regions of the broadly defined cerebral cortex and even the hypothalamus, which controls many innate behaviors. Axo-axonic cells were also 'wired up' differently, depending on where they were located; for example, those in brain areas associated with memory and emotions had wider-ranging input connections than other areas. The finding of Raudales et al. provide, for the first time, a method to directly track and manipulate axo-axonic cells in the brain. Since dysfunction in axo-axonic cells is also associated with neurological disorders like epilepsy and schizophrenia, gaining an insight into their distribution and connectivity could help to develop better treatments for these conditions.


Subject(s)
GABAergic Neurons , Interneurons , Animals , Interneurons/physiology , Interneurons/metabolism , GABAergic Neurons/physiology , GABAergic Neurons/metabolism , Mice , Brain/physiology , Brain/cytology , Synapses/physiology , Synapses/metabolism , Axons/physiology , Axons/metabolism , Male
8.
Sci Rep ; 14(1): 16643, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025960

ABSTRACT

Circuit implementations of neuronal networks so far have been focusing on synaptic weight changes as network growth principles. Besides these weight changes, however, it is also useful to incorporate additional network growth principles such as guided axon growth and pruning. These allow for dynamical signal delays and a higher degree of self-organization, and can thus lead to novel circuit design principles. In this work we develop an ideal, bio-inspired electrical circuit mimicking growth and pruning controlled by guidance cues. The circuit is based on memristively coupled neuronal oscillators. As coupling element, we use memsensors consisting of a general sensor, two gradient sensors, and two memristors. The oscillators and memsensors are arranged in a grid structure, where oscillators and memsensors realize nodes and edges, respectively. This allows for arbitrary 2D growth scenarios with axon growth controlled by guidance cues. Simulation results show that the circuit successfully mimics a biological example in which two neurons initially grow towards two target neurons, where undesired connections are pruned later on.


Subject(s)
Axons , Models, Neurological , Nerve Net , Axons/physiology , Nerve Net/physiology , Neurons/physiology , Computer Simulation , Animals , Humans
9.
Sci Rep ; 14(1): 16096, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997331

ABSTRACT

Peripheral nerve injury is a prevalent clinical problem that often leads to lifelong disability and reduced quality of life. Although peripheral nerves can regenerate, recovery after severe injury is slow and incomplete. The current gold standard treatment, autologous nerve transplantation, has limitations including donor site morbidity and poor functional outcomes, highlighting the need for improved repair strategies. We developed a reproducible in vitro hollow channel collagen gel construct to investigate peripheral nerve regeneration (PNR) by exploring the influence of key extracellular matrix (ECM) proteins on axonal growth and regeneration. Channels were coated with ECM proteins: collagen IV, laminin, or fibronectin and seeded with dorsal root ganglia (DRG) collected from E16 rat embryos to compare the ability of the ECM proteins to enhance axonal growth. Robust axonal extension and Schwann cell (SC) infiltration were observed in fibronectin-coated channels, suggesting its superiority over other ECM proteins. Differential effects of ECM proteins on axons and SCs indicated direct growth stimulation beyond SC-mediated guidance. In vitro laceration injury modeling further confirmed fibronectin's superior pro-regenerative effects, showcasing its potential in enhancing axonal regrowth post-injury. Advancing in vitro modeling that closely replicates native microenvironments will accelerate progress in overcoming the limitations of current nerve repair approaches.


Subject(s)
Extracellular Matrix Proteins , Ganglia, Spinal , Nerve Regeneration , Peripheral Nerve Injuries , Animals , Nerve Regeneration/physiology , Rats , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/metabolism , Ganglia, Spinal/metabolism , Extracellular Matrix Proteins/metabolism , Axons/physiology , Axons/metabolism , Collagen/metabolism , Schwann Cells/metabolism , Schwann Cells/physiology , Fibronectins/metabolism , Rats, Sprague-Dawley , Tissue Scaffolds/chemistry , Peripheral Nerves/physiology , Laminin/metabolism
10.
J Biomed Sci ; 31(1): 69, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992696

ABSTRACT

BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.


Subject(s)
Neuronal Plasticity , RNA-Binding Proteins , Synaptic Transmission , Vesicular Glutamate Transport Protein 2 , Animals , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Mice, Knockout , Axons/metabolism , Axons/physiology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Protein Biosynthesis
11.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949652

ABSTRACT

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Subject(s)
Caenorhabditis elegans , Microtubules , Protein Processing, Post-Translational , Tubulin , Animals , Tubulin/metabolism , Tubulin/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Microtubules/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Acetylation , Axons/metabolism , Axons/physiology , Phosphorylation , Nerve Regeneration , Kinesins/metabolism , Kinesins/genetics
12.
Exp Neurol ; 379: 114889, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019303

ABSTRACT

Neuroscience dogma avers that astrocytic "scars" inhibit axonal regeneration after spinal cord injury (SCI). A recent report suggested however that astrocytes form "borders" around lesions that are permissive rather than inhibitory to axonal growth. We now provide further evidence supporting a facilitatory role of astrocytes in axonal regeneration after SCI. First, even 6months after SCI, injured axons are retained within regions of densely reactive astrocytes, in direct contact with astrocyte processes without being repelled. Second, 6 month-delayed implants of neural stem cells extend axons into reactive astrocyte borders surrounding lesions, densely contacting astrocyte surfaces. Third, bioengineered hydrogels implanted into sites of SCI re-orient reactive astrocytic processes to align along the rostral-to-caudal spinal cord axis resulting in successful regeneration into the lesion/scaffold in close association with astrocytic processes. Fourth, corticospinal axons regenerate into neural progenitor cells implanted six months after injury in close association with host astrocytic processes. Thus, astrocytes do not appear to inhibit axonal regeneration, and the close association of newly growing axons with astrocytic processes suggests a facilitatory role in axonal regeneration.


Subject(s)
Astrocytes , Axons , Nerve Regeneration , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Astrocytes/physiology , Animals , Nerve Regeneration/physiology , Axons/physiology , Rats , Female , Neural Stem Cells/transplantation , Neural Stem Cells/physiology , Disease Models, Animal , Chronic Disease , Rats, Sprague-Dawley
13.
J Neural Eng ; 21(3)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38862011

ABSTRACT

Objective.Commonly used cable equation approaches for simulating the effects of electromagnetic fields on excitable cells make several simplifying assumptions that could limit their predictive power. Bidomain or 'whole' finite element methods have been developed to fully couple cells and electric fields for more realistic neuron modeling. Here, we introduce a novel bidomain integral equation designed for determining the full electromagnetic coupling between stimulation devices and the intracellular, membrane, and extracellular regions of neurons.Approach.Our proposed boundary element formulation offers a solution to an integral equation that connects the device, tissue inhomogeneity, and cell membrane-induced E-fields. We solve this integral equation using first-order nodal elements and an unconditionally stable Crank-Nicholson time-stepping scheme. To validate and demonstrate our approach, we simulated cylindrical Hodgkin-Huxley axons and spherical cells in multiple brain stimulation scenarios.Main Results.Comparison studies show that a boundary element approach produces accurate results for both electric and magnetic stimulation. Unlike bidomain finite element methods, the bidomain boundary element method does not require volume meshes containing features at multiple scales. As a result, modeling cells, or tightly packed populations of cells, with microscale features embedded in a macroscale head model, is simplified, and the relative placement of devices and cells can be varied without the need to generate a new mesh.Significance.Device-induced electromagnetic fields are commonly used to modulate brain activity for research and therapeutic applications. Bidomain solvers allow for the full incorporation of realistic cell geometries, device E-fields, and neuron populations. Thus, multi-cell studies of advanced neuronal mechanisms would greatly benefit from the development of fast-bidomain solvers to ensure scalability and the practical execution of neural network simulations with realistic neuron morphologies.


Subject(s)
Electromagnetic Fields , Finite Element Analysis , Models, Neurological , Neurons , Neurons/physiology , Neurons/radiation effects , Humans , Computer Simulation , Animals , Axons/physiology , Axons/radiation effects , Action Potentials/physiology , Action Potentials/radiation effects , Brain/physiology
14.
J Neurophysiol ; 132(1): 136-146, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38863430

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease, but its mechanisms of action remain unclear. Detailed multicompartment computational models of STN neurons are often used to study how DBS electric fields modulate the neurons. However, currently available STN neuron models have some limitations in their biophysical realism. In turn, the goal of this study was to update a detailed rodent STN neuron model originally developed by Gillies and Willshaw in 2006. Our design requirements consisted of explicitly representing an axon connected to the neuron and updating the ion channel distributions based on the experimental literature to match established electrophysiological features of rodent STN neurons. We found that adding an axon to the STN neuron model substantially altered its firing characteristics. We then used a genetic algorithm to optimize biophysical parameters of the model. The updated model exhibited spontaneous firing, action potential shape, hyperpolarization response, and frequency-current curve that aligned well with experimental recordings from STN neurons. Subsequently, we evaluated the general compatibility of the updated biophysics by applying them to 26 different STN neuron morphologies derived from three-dimensional anatomical reconstructions. The different morphologies affected the firing behavior of the model, but the updated biophysics were robustly capable of maintaining the desired electrophysiological features. The new STN neuron model developed in this work offers a valuable tool for studying STN neuron firing properties and may find application in simulating STN local field potentials and analyzing the effects of STN DBS.NEW & NOTEWORTHY This study presents an anatomically and biophysically realistic rodent STN neuron model. The work showcases the use of a genetic algorithm to optimize the model parameters. We noted a substantial influence of the axon on the electrophysiological characteristics of STN neurons. The updated model offers a valuable tool to investigate the firing of STN neurons and their modulation by intrinsic and/or extrinsic factors.


Subject(s)
Action Potentials , Models, Neurological , Neurons , Subthalamic Nucleus , Subthalamic Nucleus/physiology , Subthalamic Nucleus/cytology , Animals , Neurons/physiology , Action Potentials/physiology , Rats , Axons/physiology , Deep Brain Stimulation
15.
Neuroscience ; 551: 299-306, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38848775

ABSTRACT

BACKGROUND: This study aimed to investigate whether moxibustion could affect PI3K/Akt pathway to regulate Transforming acidic coiled-coil containing protein 3 (TACC3) and promote axonal regeneration to improve learning and memory function in middle cerebral artery occlusion (MCAO) rats. METHODS: Sixty SD rats were randomly divided into 4 groups: sham-operated control group (SC), model control group (MC), model + moxibustion group (MM), and model + inhibitor + moxibustion group (MIM). The rats in MC, MM, and MIM groups were made into MCAO models, and PI3K inhibitor LY294002 was injected into the rats in MIM group before modeling; while the rats in SC group were only treated with artery separation without monofilament inserting. After that, the rats in MM and MIM groups were intervented with moxibustion. We used the Zea-Longa scale, micro-Magnetic Resonance Imaging (micro-MRI), Morris water maze (MWM), TUNEL, western blot (WB), immunofluorescence and immunohistochemistry to evaluate the neurological deficits, cerebral infarct volume, learning and memory, apoptotic cell percentage in the hippocampal, the expression level of axonal regeneration and PI3K/AKt related proteins, the expression level of TACC3. The detection of 2 h after surgery showed the result before moxibustion and 7 days after the intervention showed the results after moxibustion. RESULTS: After 7 d of intervention, the scores of Zea-Longa and the cerebral infarct volume, the escape latency, the percentage of apoptosis cells of MM group were lower than that of MC and MIM groups; the frequency of rats crossed the previous platform location, PI3K, p-Akt/t-Akt and TACC3, the level of GAP-43 in MM group was more than MC and MIM groups (P < 0.05). While no statistical difference existed between MIM group and MC group (P > 0.05). CONCLUSION: Moxibustion can promote axonal regeneration and improve learning and memory of Post-stroke cognitive impairment via activating the PI3K/AKT signaling pathway and TACC3.


Subject(s)
Axons , Cognitive Dysfunction , Memory , Microtubule-Associated Proteins , Moxibustion , Nerve Regeneration , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Proto-Oncogene Proteins c-akt/metabolism , Moxibustion/methods , Male , Phosphatidylinositol 3-Kinases/metabolism , Rats , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Axons/physiology , Memory/physiology , Nerve Regeneration/physiology , Microtubule-Associated Proteins/metabolism , Stroke/therapy , Stroke/complications , Signal Transduction/physiology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/complications , Nerve Tissue Proteins , Intercellular Signaling Peptides and Proteins
16.
Glia ; 72(9): 1572-1589, 2024 09.
Article in English | MEDLINE | ID: mdl-38895764

ABSTRACT

The velocity of axonal impulse propagation is facilitated by myelination and axonal diameters. Both parameters are frequently impaired in peripheral nerve disorders, but it is not known if the diameters of myelinated axons affect the liability to injury or the efficiency of functional recovery. Mice lacking the adaxonal myelin protein chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 (CMTM6) specifically from Schwann cells (SCs) display appropriate myelination but increased diameters of peripheral axons. Here we subjected Cmtm6-cKo mice as a model of enlarged axonal diameters to a mild sciatic nerve compression injury that causes temporarily reduced axonal diameters but otherwise comparatively moderate pathology of the axon/myelin-unit. Notably, both of these pathological features were worsened in Cmtm6-cKo compared to genotype-control mice early post-injury. The increase of axonal diameters caused by CMTM6-deficiency thus does not override their injury-dependent decrease. Accordingly, we did not detect signs of improved regeneration or functional recovery after nerve compression in Cmtm6-cKo mice; depleting CMTM6 in SCs is thus not a promising strategy toward enhanced recovery after nerve injury. Conversely, the exacerbated axonal damage in Cmtm6-cKo nerves early post-injury coincided with both enhanced immune response including foamy macrophages and SCs and transiently reduced grip strength. Our observations support the concept that larger peripheral axons are particularly susceptible toward mechanical trauma.


Subject(s)
Axons , Animals , Axons/pathology , Axons/metabolism , Axons/physiology , Mice , Mice, Knockout , Disease Models, Animal , Mice, Inbred C57BL , Schwann Cells/metabolism , Schwann Cells/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology
17.
Exp Neurol ; 379: 114877, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38944331

ABSTRACT

In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.


Subject(s)
Axons , Fibronectins , Nerve Regeneration , Optic Nerve Injuries , Retinal Ganglion Cells , Animals , Nerve Regeneration/physiology , Fibronectins/metabolism , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Axons/pathology , Axons/physiology , Mice , Retinal Ganglion Cells/metabolism , Mice, Inbred C57BL , Cells, Cultured , Integrin alpha5/metabolism , Integrin alpha5/genetics , Nerve Crush , Female
18.
Synapse ; 78(4): e22304, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896000

ABSTRACT

The goal of this report is to explore how K2P channels modulate axonal excitability by using the crayfish ventral superficial flexor preparation. This preparation allows for simultaneous recording of motor nerve extracellular action potentials (eAP) and intracellular excitatory junctional potential (EJP) from a muscle fiber. Previous pharmacological studies have demonstrated the presence of K2P-like channels in crayfish. Fluoxetine (50 µM) was used to block K2P channels in this study. The blocker caused a gradual decline, and eventually complete block, of motor axon action potentials. At an intermediate stage of the block, when the peak-to-peak amplitude of eAP decreased to ∼60%-80% of the control value, the amplitude of the initial positive component of eAP declined at a faster rate than that of the negative peak representing sodium influx. Furthermore, the second positive peak following this sodium influx, which corresponds to the after-hyperpolarizing phase of intracellularly recorded action potentials (iAP), became larger during the intermediate stage of eAP block. Finally, EJP recorded simultaneously with eAP showed no change in amplitude, but did show a significant increase in synaptic delay. These changes in eAP shape and EJP delay are interpreted as the consequence of depolarized resting membrane potential after K2P channel block. In addition to providing insights to possible functions of K2P channels in unmyelinated axons, results presented here also serve as an example of how changes in eAP shape contain information that can be used to infer alterations in intracellular events. This type of eAP-iAP cross-inference is valuable for gaining mechanistic insights here and may also be applicable to other model systems.


Subject(s)
Action Potentials , Astacoidea , Axons , Fluoxetine , Motor Neurons , Animals , Astacoidea/drug effects , Astacoidea/physiology , Fluoxetine/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Motor Neurons/drug effects , Motor Neurons/physiology , Axons/drug effects , Axons/physiology
19.
Biol Open ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38887972

ABSTRACT

Regular spatial patterns are ubiquitous forms of organization in nature. In animals, regular patterns can be found from the cellular scale to the tissue scale, and from early stages of development to adulthood. To understand the formation of these patterns, how they assemble and mature, and how they are affected by perturbations, a precise quantitative description of the patterns is essential. However, accessible tools that offer in-depth analysis without the need for computational skills are lacking for biologists. Here, we present PatternJ, a novel toolset to analyze regular one-dimensional patterns precisely and automatically. This toolset, to be used with the popular imaging processing program ImageJ/Fiji, facilitates the extraction of key geometric features within and between pattern repeats in static images and time-lapse series. We validate PatternJ with simulated data and test it on images of sarcomeres from insect muscles and contracting cardiomyocytes, actin rings in neurons, and somites from zebrafish embryos obtained using confocal fluorescence microscopy, STORM, electron microscopy, and brightfield imaging. We show that the toolset delivers subpixel feature extraction reliably even with images of low signal-to-noise ratio. PatternJ's straightforward use and functionalities make it valuable for various scientific fields requiring quantitative one-dimensional pattern analysis, including the sarcomere biology of muscles or the patterning of mammalian axons, speeding up discoveries with the bonus of high reproducibility.


Subject(s)
Axons , Image Processing, Computer-Assisted , Sarcomeres , Somites , Zebrafish , Animals , Axons/physiology , Image Processing, Computer-Assisted/methods , Sarcomeres/ultrastructure , Somites/embryology , Software , Algorithms
20.
Lab Chip ; 24(13): 3252-3264, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38841815

ABSTRACT

In our brains, different neurons make appropriate connections; however, there remain few in vitro models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in vitro in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other - an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.


Subject(s)
Axotomy , Induced Pluripotent Stem Cells , Neurons , Humans , Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Cells, Cultured , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Axons/physiology , Axons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL