Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.614
Filter
1.
J Korean Med Sci ; 39(25): e208, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952349

ABSTRACT

A 30-year-old Korean man with myelodysplastic syndrome admitted hospital due to undifferentiated fever and recurrent skin lesions. He received combination therapy with high doses of meropenem, tigecycline and amikacin, yielding carbapenem resistant Klebsiella pneumoniae (CRKP) harboring K. pneumoniae carbapenemase (KPC)-2 from blood cultures on hospital day (HD) 23. Ceftazidime/avibactam was started at HD 37 and CRKP was eradicated from blood cultures after 5 days. However, ceftazidime/avibactam-resistant CRKP carrying KPC-44 emerged after 26 days of ceftazidime/avibactam treatment and then ceftazidime/avibactam-resistant, carbapenem-susceptible K. pneumoniae carrying KPC-135 was isolated on HD 65. The 3-D homology of KPC protein showed that hot spot changes in the omega loop could be attributed to ceftazidime/avibactam resistance and loss of carbapenem resistance. Whole genome sequencing of serial isolates supported that phenotypic variation was due to clonal evolution than clonal replacement. The treatment regimen was changed from CAZ/AVI to meropenem-based therapy (meropenem 1 g iv q 8 hours and amikacin 600 mg iv per day) starting with HD 72. CAZ/AVI-susceptible CRKP was presented again from blood cultures on HD 84, and the patient expired on HD 85. This is the first Korean report on the acquisition of ceftazidime/avibactam resistance through the emergence of blaKPC variants.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacteremia , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Male , Azabicyclo Compounds/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/therapeutic use , Meropenem/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
3.
Front Cell Infect Microbiol ; 14: 1407246, 2024.
Article in English | MEDLINE | ID: mdl-38962322

ABSTRACT

Introduction: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Escherichia coli , Klebsiella pneumoniae , Whole Genome Sequencing , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Humans , Lebanon , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Gene Transfer, Horizontal , Genome, Bacterial , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tertiary Care Centers
4.
Org Lett ; 26(25): 5318-5322, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38888237

ABSTRACT

Herein we report the discovery of an azabicyclo[2.1.1]hexane piperazinium methanesulfonate salt from an unexpected rearrangement reaction in the preparation of ligand-directed degraders (LDDs). This bench-stable compound was found to be a versatile electrophile in a ring-opening reaction with various types of nucleophiles. Its utility as a versatile medicinal chemistry building block is further demonstrated in the synthesis of an LDD compound targeting degradation of the androgen receptor.


Subject(s)
Azabicyclo Compounds , Piperazines , Molecular Structure , Piperazines/chemistry , Piperazines/chemical synthesis , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/chemical synthesis , Chemistry, Pharmaceutical , Ligands , Salts/chemistry
5.
Acta Microbiol Immunol Hung ; 71(2): 110-120, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38837219

ABSTRACT

Carbapenem-resistant Enterobacterales (CRE) have become a major public health problem worldwide. The aim of this study was to investigate efficacy of ceftazidime/avibactam and plazomicin on carbapenem-resistant Klebsiella pneumoniae and Escherichia coli isolates. Susceptibility of imipenem, meropenem, ertapenem, ceftazidime/avibactam and plazomicin was investigated by broth-microdilution method. Major carbapenemases NDM, VIM, IMP, KPC, OXA-48 as well as other ß-lactamases namely, TEM, SHV, OXA-1-like, CTX-M, ACC, FOX, MOX, DHA, CIT, EBC, VEB, GES, PER were investigated by PCR. A total of 120 carbapenem-resistant isolates (60 E. coli and 60 K. pneumoniae) were included in this study and blaOXA-48-like was found in 78.33%, blaNDM in 26.66%, blaKPC in 7.5%, blaIMP in 5.83%, and blaVIM in 5%. Among 94 isolates with the blaOXA-48-like gene, 22.3% were resistant to ceftazidime/avibactam and 51.1% were resistant to plazomicin. Of 32 isolates with blaNDM, 31 (96.9%) were resistant to ceftazidime/avibactam and 30 (93.75%) were resistant to plazomicin, and both antibiotics had limited effects against blaNDM carriers (P < 0.001). Of the 12 isolates with blaNDM+OXA-48 combination, 11 (91.7%) were resistant to ceftazidime/avibactam and plazomicin. The effect of both antibiotics was significantly lower in strains with blaNDM+OXA-48 combination (P < 0.005).The most common carbapenemase genes in this study were blaOXA-48-like and blaNDM. Ceftazidime/avibactam demonstrated a good efficacy among OXA-48 producing K. pneumoniae and E. coli, however, plazomicin had a significantly lower antibacterial effect in our study. Both antimicrobial agents should be considered as an option by evaluating combined susceptibility results and gene patterns obtained by regional and global molecular data in the treatment of CRE infections.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenem-Resistant Enterobacteriaceae , Ceftazidime , Drug Combinations , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Sisomicin , beta-Lactamases , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Sisomicin/pharmacology , Sisomicin/analogs & derivatives , beta-Lactamases/genetics , Humans , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy
6.
Front Cell Infect Microbiol ; 14: 1410834, 2024.
Article in English | MEDLINE | ID: mdl-38903939

ABSTRACT

Introduction: Ceftazidime/avibactam (CZA) is indicated against multidrug-resistant Pseudomonas aeruginosa, particularly those that are carbapenem resistant. CZA resistance in P. aeruginosa producing PER, a class A extended-spectrum ß-lactamase, has been well documented in vitro. However, data regarding clinical isolates are scarce. Our aim was to analyze the contribution of PER to CZA resistance in non-carbapenemase-producing P. aeruginosa clinical isolates that were ceftazidime and/or carbapenem non-susceptible. Methods: Antimicrobial susceptibility was determined through agar dilution and broth microdilution, while bla PER gene was screened through PCR. All PER-positive isolates and five PER-negative isolates were analyzed through Whole Genome Sequencing. The mutational resistome associated to CZA resistance was determined through sequence analysis of genes coding for PBPs 1b, 3 and 4, MexAB-OprM regulators MexZ, MexR, NalC and NalD, AmpC regulators AmpD and AmpR, and OprD porin. Loss of bla PER-3 gene was induced in a PER-positive isolate by successive passages at 43°C without antibiotics. Results: Twenty-six of 287 isolates studied (9.1%) were CZA-resistant. Thirteen of 26 CZA-resistant isolates (50%) carried bla PER. One isolate carried bla PER but was CZA-susceptible. PER-producing isolates had significantly higher MICs for CZA, amikacin, gentamicin, ceftazidime, meropenem and ciprofloxacin than non-PER-producing isolates. All PER-producing isolates were ST309 and their bla PER-3 gene was associated to ISCR1, an insertion sequence known to mobilize adjacent DNA. PER-negative isolates were classified as ST41, ST235 (two isolates), ST395 and ST253. PER-negative isolates carried genes for narrow-spectrum ß-lactamases and the mutational resistome showed that all isolates had one major alteration in at least one of the genes analyzed. Loss of bla PER-3 gene restored susceptibility to CZA, ceftolozane/tazobactam and other ß-lactamsin the in vitro evolved isolate. Discussion: PER-3-producing ST309 P. aeruginosa is a successful multidrug-resistant clone with blaPER-3 gene implicated in resistance to CZA and other ß-lactams.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactamases , Ceftazidime/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/isolation & purification , Azabicyclo Compounds/pharmacology , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Chile , Whole Genome Sequencing , Mutation
7.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38849309

ABSTRACT

AIMS: To investigate alternative resistance mechanisms among seven ceftazidime-avibactam (CZA)-resistant carbapenem-resistant Klebsiella pneumoniae (CRKP) strains lacking common antimicrobial resistance genes (ARGs) using whole genome sequencing. METHODS AND RESULTS: ARG and virulence factors (VFs) were screened using the ARG database CARD and the VF database, respectively, and identified using genomic annotation data with BLAST+. Six strains were ST11 sequence types (STs), and one was ST2123. ST11 strains harbored more ARGs than the ST2123 strains. All seven strains carried multiple ARGs with efflux-mediated antibiotic resistance, including oqxA, oqxB, tet (A), qacEdltal, CRP, H-NS, Kpn-E, F, G, H, acrA, LptD, acrB, acrD, cpxA, mdtB, and mdtC. These efflux-mediated ARGs were identified in most strains and even all strains. Whole genome sequencing revealed that the ST11 strain carried multiple potential prophages, genomic islands, and integrative and conjugative elements, while the ST2123 strain carried an independent potential prophages and a genomic island. CONCLUSIONS: Whole genome sequencing analysis revealed that these seven CZA-resistant CRKP strains lacking common ARGs exhibited efflux-mediated antibiotic resistance-associated ARGs. The main mechanism by which CRKP resists CZA is antibiotic inactivation. Except for tet (A), no ARGs and validation experiments related to efflux were found. This study's results provide a new possibility for the resistance mechanism of CRKP to CZA, and we will verify this conclusion through experiments in the future.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Klebsiella pneumoniae , Microbial Sensitivity Tests , Whole Genome Sequencing , Ceftazidime/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Klebsiella Infections/microbiology , Carbapenems/pharmacology , Virulence Factors/genetics
8.
BMJ Case Rep ; 17(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38885998

ABSTRACT

A man in his 40s with type 2 diabetes mellitus had persistent right-sided watery nasal discharge for 6 months following cerebrospinal fluid (CSF) leak repair at another hospital, prompting his visit to us due to recurring symptoms. Imaging revealed a CSF leak from the mid-clivus for which revision endoscopic CSF leak repair was done. Regrettably, he developed postoperative meningitis caused by multidrug-resistant (MDR) Klebsiella pneumoniaeManaging this complex case was a challenging task due to the pathogen's resistance to conventional drugs and the scarcity of scientific evidence. We initiated a culture-guided combination regimen with ceftazidime, avibactam, aztreonam and tigecycline. This decision stemmed from meticulous literature review and observed antibiotic synergy while testing for this organism.After 4 weeks of vigilant treatment, the patient's symptoms improved significantly, and CSF cultures were sterile. We present our approach to effectively confront and manage a challenging instance of postoperative MDR bacterial meningitis.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Meningitis, Bacterial , Humans , Male , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/microbiology , Anti-Bacterial Agents/therapeutic use , Cerebrospinal Fluid Leak/therapy , Adult , Postoperative Complications/drug therapy , Postoperative Complications/microbiology , Ceftazidime/therapeutic use , Ceftazidime/administration & dosage , Cranial Fossa, Posterior/surgery , Aztreonam/therapeutic use , Aztreonam/administration & dosage , Tigecycline/therapeutic use , Tigecycline/administration & dosage , Drug Combinations , Azabicyclo Compounds
9.
Eur J Clin Microbiol Infect Dis ; 43(7): 1309-1318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38700663

ABSTRACT

PURPOSE: Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-ß-lactamase (MBL) and TEM type ß-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS: The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS: All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION: To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , Aztreonam/pharmacology , Aztreonam/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Animals , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Humans , beta-Lactamases/metabolism , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Therapy, Combination , Moths/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Disease Models, Animal
10.
Eur J Clin Microbiol Infect Dis ; 43(7): 1393-1405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38722450

ABSTRACT

PURPOSE: Aztreonam/avibactam is effective against serious infections caused by Gram-negative bacteria including Enterobacterales harboring metallo-ß-lactamases. While the utility of this combination has been established in vitro and in clinical trials, the purpose of this study is to enhance our understanding of the underlying mechanism responsible for their activities through metabolomic profiling of a multidrug-resistant Escherichia coli clinical isolate. METHODS: Metabolomic analyses of time-dependent changes in endogenous bacterial metabolites in a clinical isolate of a multidrug-resistant E. coli treated with aztreonam and avibactam were performed. E. coli metabolomes were compared at 15 min, 1 h and 24 h following treatments with either avibactam (4 mg/L), aztreonam (4 mg/L), or aztreonam (4 mg/L) + avibactam (4 mg/L). RESULTS: Drug treatment affected 326 metabolites with magnitude changes of at least 2-fold, most of which are involved primarily in peptidoglycan biosynthesis, nucleotide metabolism, and lipid metabolism. The feedstocks for peptidoglycan synthesis were depleted by aztreonam/avibactam combination; a significant downstream increase in nucleotide metabolites and a release of lipids were observed at the three timepoints. CONCLUSION: The findings indicate that the aztreonam/avibactam combination accelerates structural damage to the bacterial membrane structure and their actions were immediate and sustained compared to aztreonam or avibactam alone. By inhibiting the production of crucial cell wall precursors, the combination may have inflicted damages on bacterial DNA.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Drug Resistance, Multiple, Bacterial , Drug Synergism , Escherichia coli , Metabolomics , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Metabolome/drug effects
11.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Article in English | MEDLINE | ID: mdl-38808066

ABSTRACT

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Subject(s)
Abscess , Anti-Bacterial Agents , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mice , Abscess/drug therapy , Abscess/microbiology , Drug Combinations , Drug Resistance, Multiple, Bacterial , Female , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Azithromycin/administration & dosage , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Colistin/administration & dosage
12.
Ann Clin Microbiol Antimicrob ; 23(1): 47, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796461

ABSTRACT

BACKGROUND: Aztreonam-avibactam (ATM-AVI) combination shows promising effectiveness on most carbapenemase-producing Gram-negatives, yet standardized antibiotic susceptibility testing (AST) methods for evaluating the combination in clinical laboratories is lacking. We aimed to evaluate different ATM-AVI AST approaches. METHODS: 96 characterized carbapenem-resistant clinical isolates belonging to 9 Enterobacterales (EB; n = 80) and P. aeruginosa (PA; n = 16) species, including 90 carbapenemase producers and 72 strains resistant to both CAZ-AVI and ATM, were tested. Paper disk elution (DE; Bio-Rad) and E-test gradient strips stacking (SS; bioMérieux) were performed for the ATM + CAZ-AVI combination. MIC Test Strip (MTS; Liofilchem) was evaluated for ATM-AVI MIC determination. Results were interpreted applying ATM clinical breakpoints of the EUCAST guidelines and compared to the broth microdilution method (Sensititre, Thermofisher). RESULTS: According to broth microdilution method, 93% of EB and 69% of PA were tested susceptible to ATM-AVI. The synergistic effect of ATM-AVI was of 95% for EB, but of only 17% for PA. The MTS method yielded higher categorical and essential agreement (CA/EA) rates for both EB (89%/91%) and PA (94%/94%) compared to SS, where the rates were 87%/83% for EB and 81%/81% for PA. MTS and SS yielded 2 and 3 major discrepancies, respectively, while 3 very major discrepancies each were observed for both methods. Concerning the DE method, CA reached 91% for EB and 81% for PA, but high number of very major discrepancies were observed for EB (n = 6; 8%) and for PA (n = 3; 19%). CONCLUSIONS: The ATM-AVI association displayed excellent in vitro activity against highly resistant clinical Enterobacterales strains. MTS method offers accurate ATM-AVI AST results, while the SS method might serve as better alternative then DE method in assessing the efficacy of ATM + CAZ-AVI combination. However, further investigation is needed to confirm the methods' ability to detect ATM-AVI resistance.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Microbial Sensitivity Tests , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Humans , Gram-Negative Bacteria/drug effects , Drug Combinations , Pseudomonas aeruginosa/drug effects , beta-Lactamases/metabolism , Enterobacteriaceae/drug effects , Bacterial Proteins , Gram-Negative Bacterial Infections/microbiology
13.
Diagn Microbiol Infect Dis ; 109(3): 116344, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735147

ABSTRACT

Combinations of the ß-lactam/ß-lactamase inhibitor sulbactam-durlobactam and seventeen antimicrobial agents were tested against strains of Acinetobacter baumannii in checkerboard assays. Most combinations resulted in indifference with no instances of antagonism. These results suggest sulbactam-durlobactam antibacterial activity against A. baumannii is unlikely to be affected if co-dosed with other antimicrobial agents.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Azabicyclo Compounds , Microbial Sensitivity Tests , Sulbactam , Sulbactam/pharmacology , Acinetobacter baumannii/drug effects , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Acinetobacter calcoaceticus/drug effects , beta-Lactamase Inhibitors/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Drug Combinations
14.
PLoS One ; 19(5): e0303753, 2024.
Article in English | MEDLINE | ID: mdl-38758757

ABSTRACT

NDM-producing carbapenem-resistant bacterial infections became a challenge for clinicians. Combination therapy of aztreonam and ceftazidime-avibactam is a prudent choice for these infections. However, there is still no recommendation of a practically feasible method for testing aztreonam and ceftazidime-avibactam synergy. We proposed a simple method for testing aztreonam and ceftazidime-avibactam synergy and compared it with reference broth micro-dilution and other methods. Carbapenem-resistant Enterobacterales clinical isolates were screened for the presence of the NDM gene by the Carba R test. NDM harbouring isolates were tested for aztreonam and ceftazidime-avibactam synergy by broth microdilution (reference method), E strip-disc diffusion, double disc diffusion, and disc replacement methods. In the newly proposed method, the MHA medium was supplemented with ceftazidime-avibactam (corresponding to an aztreonam concentration of 4µg/ml). The MHA medium was then inoculated with the standard inoculum (0.5 McFarland) of the test organism. An AZT disc (30 µg) was placed on the supplemented MHA medium, and the medium was incubated overnight at 37°C. Aztreonam zone diameter on the supplemented MHA medium (in the presence of ceftazidime-avibactam) was compared with that from a standard disc diffusion plate (without ceftazidime-avibactam), performed in parallel. Interpretation of synergy was based on the restoration of aztreonam zone diameter (in the presence of ceftazidime-avibactam) crossing the CLSI susceptibility breakpoint, i.e., ≥ 21 mm. Of 37 carbapenem-resistant NDM-producing isolates, 35 (94.6%) were resistant to aztreonam and tested synergy positive by the proposed method. Its sensitivity and specificity were 97.14% and 100%, respectively. Cohen's kappa value showed substantial agreement of the reference method with the proposed method (κ = 0.78) but no other methods. The proposed method is simple, easily interpretable, and showed excellent sensitivity, specificity, and agreement with the reference method. Therefore, the new method is feasible and reliable for testing aztreonam synergy with avibactam in NDM-producing Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Humans , Drug Synergism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy
15.
Virulence ; 15(1): 2348251, 2024 12.
Article in English | MEDLINE | ID: mdl-38697754

ABSTRACT

OBJECTIVES: This study aimed at revealing the underlying mechanisms of the loss and gain of ceftazidime-avibactam susceptibility in a non-carbapenemase-producing hypervirulent Klebsiella pneumoniae (hvKp). METHODS: Here we longitudinally recovered 3 non-carbapenemase-producing K1-ST23 hvKp strains at a one-month interval (KP29105, KP29499 and KP30086) from an elderly male. Antimicrobial susceptibility testing, whole genome sequencing, transcriptomic sequencing, gene cloning, plasmid conjugation, quantitative real-time PCR (qRT-PCR), and SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) were conducted. RESULTS: Among the 3 hvKp strains, KP29105 was resistant to the third- and fourth-generation cephalosporins, KP29499 acquired resistance to both ceftazidime-avibactam and carbapenems, while KP30086 restored its susceptibility to ceftazidime-avibactam, imipenem and meropenem but retained low-level resistance to ertapenem. KP29105 and KP29499 carried plasmid-encoded genes blaCTX-M-15 and blaCTX-M-71, respectively, but KP30086 lost both. Cloning of gene blaCTX-M-71 and conjugation experiment of blaCTX-M-71-carrying plasmid showed that the transformant and transconjugant were susceptible to ceftazidime-avibactam but had a more than 8-fold increase in MICs. Supplementation with an outer membrane permeabilizer could reduce the MIC of ceftazidime-avibactam by 32 folds, indicating that porins play a key role in ceftazidime-avibactam resistance. The OmpK35 of the 3 isolates was not expressed, and the OmpK36 of KP29499 and KP30086 had a novel amino acid substitution (L359R). SDS-PAGE and qRT-PCR showed that the expression of porin OmpK36 of KP29499 and KP30086 was significantly down-regulated compared with KP29105. CONCLUSIONS: In summary, we reported the rare ceftazidime-avibactam resistance in a non-carbapenemase-producing hvKp strain. Resistance plasmid carrying blaCTX-M-71 and mutated OmpK36 had a synergetic effect on the resistance.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Ceftazidime/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/enzymology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Male , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Aged , Drug Resistance, Multiple, Bacterial/genetics , Virulence , Plasmids/genetics , Whole Genome Sequencing
16.
Microbiol Spectr ; 12(6): e0410523, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38700337

ABSTRACT

Resistance to ceftazidime-avibactam (CZA) due to Klebsiella pneumoniae carbapenemase (KPC) variants is increasing worldwide. We characterized two CZA-resistant clinical Klebsiella pneumoniae strains by antimicrobial susceptibility test, conjugation assays, and WGS. Isolates belonged to ST258 and ST45, and produced a KPC-31 and a novel variant KPC-197, respectively. The novel KPC variant presents a deletion of two amino acids on the Ω-loop (del_168-169_EL) and an insertion of two amino acids in position 274 (Ins_274_DS). Continued surveillance of KPC variants conferring CZA resistance in Colombia is warranted. IMPORTANCE: Latin America and the Caribbean is an endemic region for carbapenemases. Increasingly high rates of Klebsiella pneumoniae carbapenemase (KPC) have established ceftazidime-avibactam (CZA) as an essential antimicrobial for the treatment of infections due to MDR Gram-negative pathogens. Although other countries in the region have reported the emergence of CZA-resistant KPC variants, this is the first description of such enzymes in Colombia. This finding warrants active surveillance, as dissemination of these variants could have devastating public health consequences.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Colombia , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy
17.
Microb Pathog ; 192: 106668, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697232

ABSTRACT

OBJECTIVES: The emergence of carbapenem-resistant Pseudomonas putida (CRPP) has raised public awareness. This study investigated two strains from the Pseudomonas putida group that were resistant to carbapenem, tigecycline, and aztreonam-avibactam (ATM-AVI), with a focus on their microbial and genomic characteristics. METHODS: We assessed the antibiotic resistance profile using broth dilution, disk diffusion, and E-test methods. Efflux pump phenotype testing and real-time quantitative PCR were employed to evaluate efflux pump activity in tigecycline resistance, while polymerase chain reaction was utilized to detect common carbapenem genes. Additionally, whole-genome sequencing was performed to analyze genomic characteristics. The transferability of blaIMP-1 and blaAFM-4 was assessed through a conjugation experiment. Furthermore, growth kinetics and biofilm formation were examined using growth curves and crystal violet staining. RESULTS: Both strains demonstrated resistance to carbapenem, tigecycline, and ATM-AVI. Notably, NMP can restore sensitivity to tigecycline. Subsequent analysis revealed that they co-produced blaIMP-1, blaAFM-4, tmexCD-toprJ, and blaOXA-1041, belonging to a novel sequence type ST268. Although they were closely related on the phylogenetic tree, they exhibited different levels of virulence. Genetic environment analysis indicated variations compared to prior studies, particularly regarding the blaIMP-1 and blaAFM-4 genes, which showed limited horizontal transferability. Moreover, it was observed that temperature exerted a specific influence on their biological factors. CONCLUSION: We initially identified two P. putida ST268 strains co-producing blaIMP-1, blaAFM-4, blaOXA-1041, and tmexCD-toprJ. The resistance to tigecycline and ATM-AVI can be attributed to the presence of multiple drug resistance determinants. These findings underscore the significance of P. putida as a reservoir for novel antibiotic resistance genes. Therefore, it is imperative to develop alternative antibiotic therapies and establish effective monitoring of bacterial resistance.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Microbial Sensitivity Tests , Pseudomonas putida , Tigecycline , beta-Lactamases , Pseudomonas putida/genetics , Pseudomonas putida/drug effects , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , China , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Whole Genome Sequencing , Humans , Drug Combinations , Biofilms/drug effects , Biofilms/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas Infections/microbiology , Carbapenems/pharmacology
18.
Indian J Med Microbiol ; 49: 100603, 2024.
Article in English | MEDLINE | ID: mdl-38705276

ABSTRACT

OBJECTIVE: To find the prevalence of Ceftazidime-Avibactam (CAZ-AVI) resistant Klebsiella pneumoniae in clinical isolates and to determine the genes responsible for Ceftazidime-Avibactam resistance using PCR. METHODS: A total of 89 carbapenem resistant Klebsiella pneumoniae from various clinical samples were included in the study. CAZ-AVI resistance was tested using E-test. CAZ-AVI resistant strains were subjected to conventional PCR for detection of carbapenamase genes blaNDM- 1, blaOXA-48, blaVIM, blaIMP, blaKPC. RESULTS: Of the 89 isolates screened for CAZ-AVI resistance, 45(50.5%) isolates were found to be resistant. 42 isolates were subjected to PCR for detection of ß lactamase genes.34 isolates were positive for blaNDM-1 and all 42 isolates were positive for blaOXA-48. Co-expression of NDM-1 and OXA-48 was seen in 34 isolates. Sensitivity of mCIM test to identify a carbapenamse compared to PCR was 61.9%. Sensitivity of eCIM test to identify NDM-1 was 80%. CONCLUSION: CAZ-AVI was effective in vitro in 49.4% of the isolates. Indicating that CAZ-AVI is a promising addition to antibiotics against CRE as well as a carbapenem sparing drug in ESBL producing organisms. ß-Lactamase-related mutations are the main mechanism leading to CAZ-AVI resistance.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Genotype , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Polymerase Chain Reaction
19.
Emerg Microbes Infect ; 13(1): 2361007, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38801099

ABSTRACT

Ceftazidime-avibactam resistance attributable to the blaKPC-2 gene mutation is increasingly documented in clinical settings. In this study, we characterized the mechanisms leading to the development of ceftazidime-avibactam resistance in ST11-K47 hypervirulent Klebsiella pneumoniae that harboured the blaKPC-135 gene. This strain possessed fimbriae and biofilm, demonstrating pathogenicity. Compared with the wild-type KPC-2 carbapenemase, the novel KPC-135 enzyme exhibited a deletion of Glu168 and Leu169 and a 15-amino acid tandem repeat between Val262 and Ala276. The blaKPC-135 gene was located within the Tn6296 transposon truncated by IS26 and carried on an IncFII/IncR-type plasmid. Compared to the blaKPC-2-positive cloned strain, only the MIC of ceftazidime increased against blaKPC-135-positive K. pneumoniae and wasn't inhibited by avibactam (MIC 32 µg/mL), while clavulanic acid and vaborbactam demonstrated some inhibition. Kinetic parameters revealed that KPC-135 exhibited a lower Km and kcat/Km with ceftazidime and carbapenems, and a higher (∼26-fold) 50% inhibitory concentration with avibactam compared to KPC-2. The KPC-135 enzyme exerted a detrimental effect on fitness relative to the wild-type strain. Furthermore, this strain possessed hypervirulent determinants, which included the IncHI1B/FIB plasmid with rmpA2 and expression of type 1 and 3 fimbriae. In conclusion, we reported a novel KPC variant, KPC-135, in a clinical ST11-K47 hypervirulent K. pneumoniae strain, which conferred ceftazidime-avibactam resistance, possibly through increased ceftazidime affinity and decreased avibactam susceptibility. This strain simultaneously harboured resistance and virulence genes, posing an elevated challenge in clinical treatment.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/enzymology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Virulence , Biofilms/drug effects , Biofilms/growth & development , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Animals
20.
Emerg Microbes Infect ; 13(1): 2356146, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38743401

ABSTRACT

Ceftazidime-avibactam (CZA) is employed for the treatment of infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP). Resistance to CZA is frequently linked to point mutations in the blaKPC. We conducted in vitro simulations of in vivo blaKPC mutations using CZA. Four pre-therapy KPC-KP isolates (K1, K2, K3, and K4) were evaluated, all initially exhibited susceptibility to CZA and produced KPC-2. The crucial distinction was that following CZA treatment, the blaKPC-2 mutated in K1, K2, and K3, rendering them resistant to CZA, while K4 achieved microbiological clearance, and blaKPC-2 remained unaltered. The induction assay identified various blaKPC-2 variants, including blaKPC-25, blaKPC-127, blaKPC-100, blaKPC-128, blaKPC-137, blaKPC-138, blaKPC-144 and blaKPC-180. Our findings suggest that the resistance of KPC-KP to CZA primarily results from the emergence of KPC variants, complemented by increased blaKPC expression. A close correlation exists between avibactam concentration and the rate of increased CZA minimum Inhibitory concentration, as well as blaKPC mutation. Inadequate avibactam concentration is more likely to induce resistance in strains against CZA, there is also a higher likelihood of mutation in the blaKPC-2 and the optimal avibactam ratio remains to be determined. Simultaneously, we selected a blaKPC-33-producing K. pneumoniae strain (mutated from blaKPC-2) and induced it with imipenem and meropenem, respectively. The blaKPC-2 was detected during the process, indicating that the mutation is reversible. Clinical use of carbapenems to treat KPC variant strains increases the risk of infection, as the gene can mutate back to blaKPC-2, rendering the strain even more cross-resistant to carbapenems and CZA.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Mutation , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Phenotype , Hydrolysis , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL