Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 484
Filter
1.
J Korean Med Sci ; 39(25): e208, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952349

ABSTRACT

A 30-year-old Korean man with myelodysplastic syndrome admitted hospital due to undifferentiated fever and recurrent skin lesions. He received combination therapy with high doses of meropenem, tigecycline and amikacin, yielding carbapenem resistant Klebsiella pneumoniae (CRKP) harboring K. pneumoniae carbapenemase (KPC)-2 from blood cultures on hospital day (HD) 23. Ceftazidime/avibactam was started at HD 37 and CRKP was eradicated from blood cultures after 5 days. However, ceftazidime/avibactam-resistant CRKP carrying KPC-44 emerged after 26 days of ceftazidime/avibactam treatment and then ceftazidime/avibactam-resistant, carbapenem-susceptible K. pneumoniae carrying KPC-135 was isolated on HD 65. The 3-D homology of KPC protein showed that hot spot changes in the omega loop could be attributed to ceftazidime/avibactam resistance and loss of carbapenem resistance. Whole genome sequencing of serial isolates supported that phenotypic variation was due to clonal evolution than clonal replacement. The treatment regimen was changed from CAZ/AVI to meropenem-based therapy (meropenem 1 g iv q 8 hours and amikacin 600 mg iv per day) starting with HD 72. CAZ/AVI-susceptible CRKP was presented again from blood cultures on HD 84, and the patient expired on HD 85. This is the first Korean report on the acquisition of ceftazidime/avibactam resistance through the emergence of blaKPC variants.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacteremia , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Male , Azabicyclo Compounds/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/therapeutic use , Meropenem/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
2.
Eur J Clin Microbiol Infect Dis ; 43(7): 1309-1318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38700663

ABSTRACT

PURPOSE: Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-ß-lactamase (MBL) and TEM type ß-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS: The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS: All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION: To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , Aztreonam/pharmacology , Aztreonam/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Animals , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Humans , beta-Lactamases/metabolism , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Therapy, Combination , Moths/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Disease Models, Animal
3.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Article in English | MEDLINE | ID: mdl-38808066

ABSTRACT

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Subject(s)
Abscess , Anti-Bacterial Agents , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mice , Abscess/drug therapy , Abscess/microbiology , Drug Combinations , Drug Resistance, Multiple, Bacterial , Female , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Azithromycin/administration & dosage , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Colistin/administration & dosage
4.
Front Cell Infect Microbiol ; 14: 1404404, 2024.
Article in English | MEDLINE | ID: mdl-38779560

ABSTRACT

Background: Ceftazidime-avibactam is a treatment option for carbapenem-resistant gram-negative bacilli (CR-GNB) infections. However, the risk factors associated with ceftazidime-avibactam (CAZ-AVI) treatment failure in kidney transplant (KT) recipients and the need for CAZ-AVI-based combination therapy remain unclear. Methods: From June 2019 to December 2023, a retrospective observational study of KT recipients with CR-GNB infection treated with CAZ-AVI was conducted, with the primary outcome being 30-day mortality and secondary outcomes being clinical cure, microbiological cure, and safety. Risk factors for 30-day mortality and clinical failure were also investigated. Results: A total of 81 KT recipients treated with CAZ-AVI were included in this study. Forty recipients (49.4%) received CAZ-AVI monotherapy, with a 30-day mortality of 22.2%. The clinical cure and microbiological cure rates of CAZ/AVI therapy were 72.8% and 66.7%, respectively. CAZ-AVI alone or in combination with other medications had no effect on clinical cure or 30-day mortality. Multivariate logistic regression analysis revealed that a higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (odds ratio [OR]: 4.517; 95% confidence interval [CI]: 1.397-14.607; P = 0.012) was an independent risk factor for 30-day mortality. Clinical cure was positively associated with the administration of CAZ-AVI within 48 hours of infection onset (OR: 11.009; 95% CI: 1.344-90.197; P=0.025) and negatively associated with higher APACHE II scores (OR: 0.700; 95% CI: 0.555-0.882; P=0.002). Four (4.9%) recipients experienced recurrence within 90 days after the initial infection, 3 (3.7%) recipients experienced CAZ-AVI-related adverse events, and no CAZ-AVI resistance was identified. Conclusion: CAZ-AVI is an effective medication for treating CR-GNB infections following kidney transplantation, even as monotherapy. Optimization of CAZ/AVI therapy (used within 48 hours of infection onset) is positively associated with potential clinical benefit. Further larger-scale studies are needed to validate these findings.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Drug Combinations , Gram-Negative Bacterial Infections , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Retrospective Studies , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Male , Female , Middle Aged , Risk Factors , Azabicyclo Compounds/therapeutic use , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/mortality , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Adult , Gram-Negative Bacteria/drug effects , Treatment Outcome , Aged , Transplant Recipients
5.
Eur J Clin Microbiol Infect Dis ; 43(8): 1579-1587, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38811482

ABSTRACT

PURPOSE: Amongst all etiologic hospital-acquired infection factors, K. pneumoniae strains producing New Delhi metallo-ß-lactamase (KP-NDM) belong to pathogens with the most effective antibiotic resistance mechanisms. Clinical guidelines recommend using ceftazidime/avibactam with aztreonam (CZA + AT) as the preferred option for NDM-producing Enterobacterales. However, the number of observations on such treatment regimen is limited. This retrospective study reports the clinical and microbiological outcomes of 23 patients with KP-NDM hospital-acquired infection treated with CZA + AT at a single center in Poland. METHODS: The isolates were derived from the urine, lungs, blood, peritoneal cavity, wounds, and peritonsillar abscess. In microbiological analysis, mass spectrometry for pathogen identification, polymerase chain reaction, or an immunochromatographic assay for detection of carbapenemase, as well as VITEK-2 system, broth microdilution, and microdilution in agar method for antimicrobial susceptibility tests were used, depending of the pathogens' nature. CZA was administered intravenously (IV) at 2.5 g every eight hours in patients with normal kidney function, and aztreonam was administered at 2 g every eight hours IV. Such dosage was modified when renal function was reduced. RESULTS: KP-NDM was eradicated in all cases. Four patients (17.4%) died: three of them had a neoplastic disease, and one - a COVID-19 infection. CONCLUSION: The combination of CZA + AT is a safe and effective therapy for infections caused by KP-NDM, both at the clinical and microbiological levels. The synergistic action of all compounds resulted in a good agreement between the clinical efficacy of CZA + AT and the results of in vitro susceptibility testing.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Aztreonam/pharmacology , Aztreonam/therapeutic use , beta-Lactamases/metabolism , Male , Azabicyclo Compounds/therapeutic use , Azabicyclo Compounds/pharmacology , Female , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Middle Aged , Retrospective Studies , Aged , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Poland , Microbial Sensitivity Tests , Adult , Aged, 80 and over , Treatment Outcome , Cross Infection/drug therapy , Cross Infection/microbiology
6.
Eur J Clin Microbiol Infect Dis ; 43(7): 1453-1459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676856

ABSTRACT

We present our findings on interpatient transmission, epidemic control measures, and the outcomes of a series of ten critically ill burn patients who were either colonized or infected with carbapenem-resistant Acinetobacter baumannii (CRAB). None of the five infected patients achieved clinical cure, and all experienced relapses. Microbiological failure was observed in 40% of the infected patients. The isolated CRAB strains were found to carry blaOXA-23 and armA resistance genes. Despite the lack of clinical cure, all five infected patients survived and were discharged from the Burn Intensive Care Unit.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Disease Outbreaks , Drug Combinations , Intensive Care Units , Sulbactam , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Humans , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Male , Azabicyclo Compounds/therapeutic use , Azabicyclo Compounds/pharmacology , Sulbactam/therapeutic use , Sulbactam/pharmacology , Female , Middle Aged , Adult , Carbapenems/pharmacology , Carbapenems/therapeutic use , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Burns/complications , Burns/microbiology , Drug Therapy, Combination , Treatment Outcome , Aged , Cross Infection/microbiology , Cross Infection/drug therapy , Cross Infection/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics , Burn Units
7.
Ann Intern Med ; 177(5): 559-572, 2024 May.
Article in English | MEDLINE | ID: mdl-38639548

ABSTRACT

BACKGROUND: The U.S. antibiotic market failure has threatened future innovation and supply. Understanding when and why clinicians underutilize recently approved gram-negative antibiotics might help prioritize the patient in future antibiotic development and potential market entry rewards. OBJECTIVE: To determine use patterns of recently U.S. Food and Drug Administration (FDA)-approved gram-negative antibiotics (ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, plazomicin, eravacycline, imipenem-relebactam-cilastatin, and cefiderocol) and identify factors associated with their preferential use (over traditional generic agents) in patients with gram-negative infections due to pathogens displaying difficult-to-treat resistance (DTR; that is, resistance to all first-line antibiotics). DESIGN: Retrospective cohort. SETTING: 619 U.S. hospitals. PARTICIPANTS: Adult inpatients. MEASUREMENTS: Quarterly percentage change in antibiotic use was calculated using weighted linear regression. Machine learning selected candidate variables, and mixed models identified factors associated with new (vs. traditional) antibiotic use in DTR infections. RESULTS: Between quarter 1 of 2016 and quarter 2 of 2021, ceftolozane-tazobactam (approved 2014) and ceftazidime-avibactam (2015) predominated new antibiotic usage whereas subsequently approved gram-negative antibiotics saw relatively sluggish uptake. Among gram-negative infection hospitalizations, 0.7% (2551 [2631 episodes] of 362 142) displayed DTR pathogens. Patients were treated exclusively using traditional agents in 1091 of 2631 DTR episodes (41.5%), including "reserve" antibiotics such as polymyxins, aminoglycosides, and tigecycline in 865 of 1091 episodes (79.3%). Patients with bacteremia and chronic diseases had greater adjusted probabilities and those with do-not-resuscitate status, acute liver failure, and Acinetobacter baumannii complex and other nonpseudomonal nonfermenter pathogens had lower adjusted probabilities of receiving newer (vs. traditional) antibiotics for DTR infections, respectively. Availability of susceptibility testing for new antibiotics increased probability of usage. LIMITATION: Residual confounding. CONCLUSION: Despite FDA approval of 7 next-generation gram-negative antibiotics between 2014 and 2019, clinicians still frequently treat resistant gram-negative infections with older, generic antibiotics with suboptimal safety-efficacy profiles. Future antibiotics with innovative mechanisms targeting untapped pathogen niches, widely available susceptibility testing, and evidence demonstrating improved outcomes in resistant infections might enhance utilization. PRIMARY FUNDING SOURCE: U.S. Food and Drug Administration; NIH Intramural Research Program.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacterial Infections , Practice Patterns, Physicians' , Humans , Gram-Negative Bacterial Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , United States , Practice Patterns, Physicians'/statistics & numerical data , Drug Combinations , Male , Tazobactam/therapeutic use , Female , Middle Aged , Cephalosporins/therapeutic use , Cefiderocol , Azabicyclo Compounds/therapeutic use , Drug Approval , Sisomicin/analogs & derivatives , Sisomicin/therapeutic use , Gram-Negative Bacteria/drug effects , United States Food and Drug Administration , Ceftazidime , Tetracyclines
8.
Antimicrob Agents Chemother ; 68(5): e0147423, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38602418

ABSTRACT

Pseudomonas aeruginosa harboring Verona Integron-encoded metallo-ß-lactamase enzymes (VIM-CRPA) have been associated with infection outbreaks in several parts of the world. In the US, however, VIM-CRPA remain rare. Starting in December 2018, we identified a cluster of cases in our institution. Herein, we present our epidemiological investigation and strategies to control/manage these challenging infections. This study was conducted in a large academic healthcare system in Miami, FL, between December 2018 and January 2022. Patients were prospectively identified via rapid molecular diagnostics when cultures revealed carbapenem-resistant P. aeruginosa. Alerts were received in real time by the antimicrobial stewardship program and infection prevention teams. Upon alert recognition, a series of interventions were performed as a coordinated effort. A retrospective chart review was conducted to collect patient demographics, antimicrobial therapy, and clinical outcomes. Thirty-nine VIM-CRPA isolates led to infection in 21 patients. The majority were male (76.2%); the median age was 52 years. The majority were mechanically ventilated (n = 15/21; 71.4%); 47.6% (n = 10/21) received renal replacement therapy at the time of index culture. Respiratory (n = 20/39; 51.3%) or bloodstream (n = 13/39; 33.3%) were the most common sources. Most infections (n = 23/37; 62.2%) were treated with an aztreonam-avibactam regimen. Six patients (28.6%) expired within 30 days of index VIM-CRPA infection. Fourteen isolates were selected for whole genome sequencing. Most of them belonged to ST111 (12/14), and they all carried blaVIM-2 chromosomally. This report describes the clinical experience treating serious VIM-CRPA infections with either aztreonam-ceftazidime/avibactam or cefiderocol in combination with other agents. The importance of implementing infection prevention strategies to curb VIM-CRPA outbreaks is also demonstrated.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactamases , Adult , Female , Humans , Male , Middle Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Antimicrobial Stewardship , Azabicyclo Compounds/therapeutic use , Aztreonam/therapeutic use , Aztreonam/pharmacology , beta-Lactamases/genetics , Carbapenems/therapeutic use , Carbapenems/pharmacology , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Drug Combinations , Drug Resistance, Multiple, Bacterial/genetics , Integrons/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Retrospective Studies
9.
Antimicrob Agents Chemother ; 68(5): e0169823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38567976

ABSTRACT

Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe, difficult-to-treat infections that are frequently antibiotic resistant. Sulbactam-durlobactam (SUL-DUR) is a targeted ß-lactam/ß-lactamase inhibitor combination antibiotic designed to treat ABC infections, including those caused by multidrug-resistant strains. In a global, pathogen-specific, randomized, controlled phase 3 trial (ATTACK), the efficacy and safety of SUL-DUR were compared to colistin, both dosed with imipenem-cilastatin as background therapy, in patients with serious infections caused by carbapenem-resistant ABC. Results from ATTACK showed that SUL-DUR met the criteria for non-inferiority to colistin for the primary efficacy endpoint of 28-day all-cause mortality with improved clinical and microbiological outcomes compared to colistin. This report describes the characterization of the baseline ABC isolates from patients enrolled in ATTACK, including an analysis of the correlation of microbiological outcomes with SUL-DUR MIC values and the molecular drivers of SUL-DUR resistance.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Colistin , Microbial Sensitivity Tests , Sulbactam , Humans , Male , Acinetobacter baumannii/drug effects , Acinetobacter calcoaceticus/drug effects , Acinetobacter calcoaceticus/genetics , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Cilastatin, Imipenem Drug Combination/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Drug Resistance, Multiple, Bacterial , Sulbactam/therapeutic use , Sulbactam/pharmacology
10.
J Antimicrob Chemother ; 79(5): 1118-1125, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517465

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality but has the potential to alter the pharmacokinetics (PK) of antimicrobials. Imipenem/cilastatin/relebactam is an antibiotic with utility in treating certain multi-drug resistant Gram-negative infections. Herein, we describe the population pharmacokinetics of imipenem and relebactam in critically ill patients supported on ECMO. METHODS: Patients with infection supported on ECMO received 4-6 doses of imipenem/cilastatin/relebactam per current prescribing information based on estimated creatinine clearance. Blood samples were collected following the final dose of the antibiotic. Concentrations were determined via LC-MS/MS. Population PK models were fit with and without covariates using Pmetrics. Monte Carlo simulations of 1000 patients assessed joint PTA of fAUC0-24/MIC ≥ 8 for relebactam, and ≥40% fT > MIC for imipenem for each approved dosing regimen. RESULTS: Seven patients supported on ECMO were included in PK analyses. A two-compartment model with creatinine clearance as a covariate on clearance for both imipenem and relebactam fitted the data best. The mean ±â€Šstandard deviation parameters were: CL0, 15.21 ±â€Š6.52 L/h; Vc, 10.13 ±â€Š2.26 L; K12, 2.45 ±â€Š1.16 h-1 and K21, 1.76 ±â€Š0.49 h-1 for imipenem, and 6.95 ±â€Š1.34 L/h, 9.81 ±â€Š2.69 L, 2.43 ±â€Š1.13 h-1 and 1.52 ±â€Š0.67 h-1 for relebactam. Simulating each approved dose of imipenem/cilastatin/relebactam according to creatinine clearance yielded PTAs of ≥90% up to an MIC of 2 mg/L. CONCLUSIONS: Imipenem/cilastatin/relebactam dosed according to package insert in patients supported on ECMO is predicted to achieve exposures sufficient to treat susceptible Gram-negative isolates, including Pseudomonas aeruginosa.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Critical Illness , Extracorporeal Membrane Oxygenation , Imipenem , Microbial Sensitivity Tests , Humans , Imipenem/pharmacokinetics , Imipenem/administration & dosage , Male , Middle Aged , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Female , Adult , Azabicyclo Compounds/pharmacokinetics , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/therapeutic use , Aged , Monte Carlo Method , Tandem Mass Spectrometry , Cilastatin, Imipenem Drug Combination/pharmacokinetics
11.
J Antimicrob Chemother ; 79(5): 1069-1080, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526879

ABSTRACT

OBJECTIVES: The emergence and expansion of carbapenem-resistant Klebsiella pneumoniae infections is a concern due to the lack of 'first-line' antibiotic treatment options. The ceftazidime/avibactam is an important clinical treatment for carbapenem-resistant K. pneumoniae infections but there is an increasing number of cases of treatment failure and drug resistance. Therefore, a potential solution is combination therapies that result in synergistic activity against K. pneumoniae carbapenemase: producing K. pneumoniae (KPC-Kp) isolates and preventing the emergence of KPC mutants resistant to ceftazidime/avibactam are needed in lieu of novel antibiotics. METHODS: To evaluate their synergistic activity, antibiotic combinations were tested against 26 KPC-Kp strains. Antibiotic resistance profiles, molecular characteristics and virulence genes were investigated by susceptibility testing and whole-genome sequencing. Antibiotic synergy was evaluated by in vitro chequerboard experiments, time-killing curves and dose-response assays. The mouse thigh model was used to confirm antibiotic combination activities in vivo. Additionally, antibiotic combinations were evaluated for their ability to prevent the emergence of ceftazidime/avibactam resistant mutations of blaKPC. RESULTS: The combination of ceftazidime/avibactam plus meropenem showed remarkable synergistic activity against 26 strains and restored susceptibility to both the partnering antibiotics. The significant therapeutic effect of ceftazidime/avibactam combined with meropenem was also confirmed in the mouse model and bacterial loads in the thigh muscle of the combination groups were significantly reduced. Furthermore, ceftazidime/avibactam plus meropenem showed significant activity in preventing the occurrence of resistance mutations. CONCLUSIONS: Our results indicated that the combination of ceftazidime/avibactam plus meropenem offers viable therapeutic alternatives in treating serious infections due to KPC-Kp.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Disease Models, Animal , Drug Combinations , Drug Synergism , Klebsiella Infections , Klebsiella pneumoniae , Meropenem , Microbial Sensitivity Tests , beta-Lactamases , Animals , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Meropenem/pharmacology , Meropenem/administration & dosage , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mice , beta-Lactamases/genetics , Bacterial Proteins/genetics , Female , Whole Genome Sequencing , Drug Therapy, Combination , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics
12.
J Antimicrob Chemother ; 79(5): 1182-1186, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38546808

ABSTRACT

OBJECTIVES: The use of extracorporeal membrane oxygenation (ECMO) may alter blood levels of several drugs, including antibiotics, leading to under dosing of these drugs and thus to potential treatment failure. No data exist on pharmacokinetics of new antimicrobial, in particular ceftazidime/avibactam. We therefore perform this study to evaluate ceftazidime/avibactam blood levels in ECMO patients and find factors associated with underdosing. METHODS: Retrospective observational study of patients on ECMO having received ceftazidime/avibactam and in whom trough blood levels of ceftazidime and avibactam were available. Main outcome measurement was the number of patients with ceftazidime and avibactam blood levels above predefined cut-off values, derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints for Enterobacteriaceae and Pseudomonas aeruginosa, namely 8 mg/L for ceftazidime and 4 mg/L for avibactam, and explored factors associated with underdosing. RESULTS: Twenty-three ceftazidime/avibactam trough levels were available in 14 ECMO patients, all of them having received veno-venous ECMO for SARS-CoV-2-associated pneumonia. Although ceftazidime levels were above 8 mg/L in all except one patient, nine (39%) of the avibactam dosages were below 4 mg/L. Increased renal clearance (creatinine clearance > 130 mL/min) was the main factor associated with under dosing, since 7 out of the 10 dosages below the predefined cut-offs were measured in patients with this condition. CONCLUSIONS: In ECMO patients receiving ceftazidime/avibactam, ceftazidime and avibactam serum levels are above EUCAST breakpoints in most cases, justifying the use of normal dosing in ECMO patients. Increased renal clearance may lead to ceftazidime and avibactam under dosing.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Extracorporeal Membrane Oxygenation , Humans , Ceftazidime/pharmacokinetics , Ceftazidime/administration & dosage , Ceftazidime/therapeutic use , Ceftazidime/blood , Azabicyclo Compounds/pharmacokinetics , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/therapeutic use , Azabicyclo Compounds/blood , Male , Female , Retrospective Studies , Middle Aged , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/blood , Adult , Aged , Pseudomonas aeruginosa/drug effects , Microbial Sensitivity Tests , Enterobacteriaceae/drug effects
13.
Int J Antimicrob Agents ; 63(5): 107152, 2024 May.
Article in English | MEDLINE | ID: mdl-38513747

ABSTRACT

INTRODUCTION: Ceftazidime-avibactam (CAZ-AVI) is a new option to treat KPC- and OXA-48 carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. However, clinical evidence is limited regarding its use in treating CRKP infections, especially in solid organ transplantation (SOT) recipients. In this study, we assessed the efficacy of CAZ-AVI in treating CRKP infections in both the general population and the SOT recipients in comparison with other antibiotic regimens. METHODS: This is a single-centre retrospective cohort study of patients admitted between January 1, 2018 and June 30, 2021 with the diagnosis of CRKP infections receiving either CAZ-AVI or other regimens ≥ 72 hours and clinical outcomes were analysed. RESULTS: Of 200 patients with CRKP infections, 67 received CAZ-AVI, 133 received other regimens, and 50 were SOT recipients. In the SOT cohort, 30 patients received CAZ-AVI, and 20 received other regimens. The overall 30-day mortality was 38% in the SOT cohort. Compared with patients receiving other regimens, CAZ-AVI therapy resulted in lower 30-day mortality (23.3% vs. 60%, P = 0.014) and 90-day mortality (35.7% vs. 86.7%, P = 0.003), higher clinical cure (93.3% vs. 40%, P < 0.001) and microbiological clearance. Similar promising results of CAZ-AVI were also shown in the whole population cohort. Moreover, clinical outcomes of SOT recipients receiving CAZ-AVI were not inferior to those without SOT. CONCLUSIONS: CAZ-AVI therapy was associated with better clinical outcomes in CRKP infections in both the general population and SOT recipients. Considering the limitations of the present study, well-conducted RCTs are still warranted to confirm these findings.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Organ Transplantation , Humans , Ceftazidime/therapeutic use , Azabicyclo Compounds/therapeutic use , Male , Female , Retrospective Studies , Middle Aged , Klebsiella pneumoniae/drug effects , Klebsiella Infections/drug therapy , Klebsiella Infections/mortality , Klebsiella Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Aged , Organ Transplantation/adverse effects , Carbapenem-Resistant Enterobacteriaceae/drug effects , Transplant Recipients , Adult , Carbapenems/therapeutic use , Treatment Outcome , Microbial Sensitivity Tests
14.
Am J Infect Control ; 52(7): 774-784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428591

ABSTRACT

BACKGROUND: Novel ß-lactams have in vitro activity against Pseudomonas aeruginosa (PA), but their clinical performances and the selection criteria for practical use are still not clear. We aimed to evaluate the efficacy of novel ß-lactams for PA infection in various sites and to compare the efficacy of each agent. METHODS: We searched PubMed, Embase, Cochrane Library, and Web of Science for randomized controlled trials that used novel ß-lactams to treat PA infection. The primary outcomes were clinical cure and favorable microbiological response. Subgroup analyses were performed based on drug type, drug resistance of pathogens, and site of infection. Network meta-analysis was carried out within a Bayesian framework. RESULTS: In all studies combined (16 randomized controlled trials), novel ß-lactams indicated comparable performance to other treatment regimens in both outcome measures (relative risk = 1.04; 95% confidence interval 0.94-1.15; P = .43) (relative risk = 0.97; 95% confidence interval 0.81-1.17; P = .76). Subgroup analyses showed that the efficacy of ceftolozane-tazobactam (TOL-TAZ), ceftazidime-avibactam (CAZ-AVI), imipenem-cilastatin-relebactam, and cefiderocol had no apparent differences compared to control groups among different infection sites, drug types and drug resistance of PA. In network meta-analysis, the results showed no statistically significant differences between TOL-TAZ, CAZ-AVI, and cefiderocol. CONCLUSIONS: TOL-TAZ, CAZ-AVI, imipenem-cilastatin-relebactam, and cefiderocol are not inferior to other agents in the treatment of PA infection. Their efficacy is also comparable between TOL-TAZ, CAZ-AVI, and cefiderocol.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactams , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , beta-Lactams/therapeutic use , beta-Lactams/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Treatment Outcome , Randomized Controlled Trials as Topic , Drug Combinations , Azabicyclo Compounds/therapeutic use , Tazobactam/therapeutic use , Tazobactam/pharmacology , Ceftazidime/therapeutic use , Cephalosporins/therapeutic use
15.
J Antimicrob Chemother ; 79(4): 820-825, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38366379

ABSTRACT

OBJECTIVES: To describe the pharmacokinetics/pharmacodynamics (PK/PD) of ceftazidime/avibactam in critically ill patients with CNS infections. METHODS: A prospective study of critically ill patients with CNS infections who were treated with ceftazidime/avibactam and the steady-state concentration (Css) of ceftazidime/avibactam in serum and/or CSF was conducted between August 2020 and May 2023. The relationship between PK/PD goal achievement, microbial eradication and the clinical efficacy of ceftazidime/avibactam was evaluated. RESULTS: Seven patients were finally included. The ceftazidime/avibactam target attainment in plasma was optimal for three, quasi-optimal for one and suboptimal for three. In three patients with CSF drug concentrations measured, ceftazidime/avibactam target attainment in CSF was 100% (3/3), which was optimal. The AUCCSF/serum values were 0.59, 0.44 and 0.35 for ceftazidime and 0.57, 0.53 and 0.51 for avibactam. Of the seven patients, 100% (7/7) were treated effectively, 71.4% (5/7) achieved microbiological eradication, 85.7% (6/7) survived and 14.3% (1/7) did not survive. CONCLUSIONS: The limited clinical data suggest that ceftazidime/avibactam is effective in the treatment of CNS infections caused by MDR Gram-negative bacilli (MDR-GNB), can achieve the ideal drug concentration of CSF, and has good blood-brain barrier penetration.


Subject(s)
Ceftazidime , Central Nervous System Infections , Humans , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Carbapenems , Critical Illness , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Central Nervous System Infections/drug therapy , Microbial Sensitivity Tests
16.
Int J Antimicrob Agents ; 63(4): 107105, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325719

ABSTRACT

OBJECTIVES: Trends in the susceptibility to ceftazidime-avibactam (CZA) and tigecycline (TGC) among Enterobacter species from different geographic areas are unknown.This study aimed to analyse the trends in CZA and TGC susceptibility changes across different continents from 2014 to 2021 utilizing Antimicrobial Testing Leadership and Surveillance (ATLAS) data. METHODS: A total of 23 669 isolates of Enterobacter species were collected over an 8-y period. RESULTS: The overall non-susceptibility rate of Enterobacter isolates to both CZA and TGC was 3.2%. India (16.5%), Guatemala (15.4%), and the Philippines (13.1%) exhibited the highest resistance to CZA. The increase in CZA resistance rates was particularly evident in Asia, with an increase from 4.0% to 8.3%, and in Latin America, from 1.5% to 5%. The non-susceptibility rate for TGC mildly increased in Africa/Middle East but decreased in other continents during the study period. The overall rate of carbapenem resistance increased from 2.9% in 2014-2017 to 4.3% in 2018-2021. Among carbapenem-resistant Enterobacter isolates, the CZA resistance rate was highest in Asia (87.4%), followed by Europe (69.2%) and Africa/Middle East (60.8%). Among the 380 Enterobacter isolates resistant to CZA and carbapenem, the most common genotype of carbapenemase genes was blaNDM (59.2%), followed by blaVIM (24.2%), blaOXA (4.2%), blaIMP (1.1%), and blaKPC (1.1%). The susceptibility of carbapenem-resistant Enterobacter to TGC remained high, with an overall susceptibility rate of 90%. CONCLUSIONS: The heterogeneous distribution of CZA resistance rates among different geographical regions highlights the divergent therapeutic options for drug-resistant Enterobacter species.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Enterobacter/genetics , Leadership , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Tigecycline , beta-Lactamases/genetics , Microbial Sensitivity Tests
18.
Am J Health Syst Pharm ; 81(12): 509-520, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38365226

ABSTRACT

PURPOSE: Multidrug-resistant (MDR) infections are challenging to treat due to underlying patient conditions, pathogen characteristics, and high antibiotic resistance rates. As newer antibiotic therapies come to market, limited data exist about their real-world utilization. METHODS: This was a national retrospective cohort study of ceftazidime/avibactam (approved in 2015) utilization among inpatients from the Veterans Affairs (VA) Healthcare System, from 2015 through 2021. Joinpoint regression was used to estimate time trends in utilization. RESULTS: Ceftazidime/avibactam use increased by 52.3% each year (days of therapy per 1,000 bed days; 95% confidence interval, 12.4%-106.4%). We identified 1,048 unique predominantly male (98.3%) and white (66.2%; Black, 27.7%) patients treated with ceftazidime/avibactam, with a mean (SD) age of 71.5 (11.9) years. The most commonly isolated organisms were Pseudomonas aeruginosa (36.3%; carbapenem resistant, 80.6%; MDR, 65.0%) and Klebsiella species (34.1%; carbapenem resistant, 78.4%; extended-spectrum cephalosporin resistant, 90.7%). Common comorbid conditions included hypertension (74.8%), nervous system disorders (60.2%), diabetes mellitus (48.7%), and cancer (45.1%). Median time to ceftazidime/avibactam initiation from admission was 6 days, with a median of 3 changes in therapy before ceftazidime/avibactam initiation and a subsequent median length of inpatient stay of 14 days (median of 8 days of ceftazidime/avibactam therapy). Treatment heterogeneity was high, both before ceftazidime/avibactam initiation (89.6%) and during ceftazidime/avibactam treatment (85.6%), and common concomitant antibiotics included vancomycin (41.4%), meropenem (24.1%), cefepime (15.2%), and piperacillin/tazobactam (15.2%). The inpatient mortality rate was 23.6%, and 20.8% of patients had a subsequent admission with ceftazidime/avibactam treatment. CONCLUSION: Utilization of ceftazidime/avibactam increased from 2015 to 2021 in the national VA Healthcare System. Ceftazidime/avibactam was utilized in complex, difficult-to-treat patients, with substantial treatment heterogeneity and variation in the causative organism and culture sites.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , United States Department of Veterans Affairs , Humans , Ceftazidime/therapeutic use , Ceftazidime/administration & dosage , Male , Retrospective Studies , Female , Azabicyclo Compounds/therapeutic use , Aged , Middle Aged , United States , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Inpatients , Aged, 80 and over , Cohort Studies , Veterans
19.
Clin Infect Dis ; 79(1): 33-42, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38306487

ABSTRACT

Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of ß-lactamases. The early ß-lactamase inhibitors (BLIs) are characterized by spectra limited to class A ß-lactamases and ineffective against carbapenemases and most extended spectrum ß-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.


Subject(s)
Anti-Bacterial Agents , Pseudomonas aeruginosa , beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/metabolism , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Bacterial Proteins , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Meropenem/pharmacology , Meropenem/therapeutic use , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology
20.
Medicine (Baltimore) ; 103(3): e36938, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241533

ABSTRACT

BACKGROUND: Multidrug-resistant Escherichia coli infections are a global health challenge, notably in North America, Europe, Asia, and Africa. This systematic review and meta-analysis evaluates the effectiveness and safety of cefotaxime combined with avibactam, aiming to mitigate these infections' impact and lessen their burden on healthcare systems worldwide. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and PICO frameworks, we conducted a comprehensive literature search across 4 primary databases on May 6, 2023. Studies evaluating the efficacy and safety of cefotaxime and avibactam were included. Key outcomes included treatment success, adverse effects, and microbiological eradication. Quality assessment utilized the Cochrane Collaboration Risk of Bias instrument. Heterogeneity was analyzed using chi-square statistics and the I2 index. Both fixed- and random-effects models were applied as appropriate. Publication bias was rigorously evaluated using Egger linear regression test and funnel plot analysis, ensuring the study's integrity and reliability. RESULTS: The clinical cure rate derived from 8 studies showed no significant difference between the treatment groups (odds ratio [OR] = 1.97, 95% CI: 0.69 to 1.36, P = .86). Analysis of the bacterial clearance rate from the 5 studies also indicated no significant difference (OR = 0.97, 95% CI: 0.42 to 2.25, P = .36). Notably, a reduced mortality rate favoring the experimental group was observed in 6 studies (OR = 0.64, 95% CI: 0.44 to 0.92, P = .012). Comprehensive sensitivity analyses and the assessment of publication bias strengthened the reliability of the results. CONCLUSIONS: Ceftazidime combined with avibactam significantly reduced mortality among patients with multidrug-resistant Escherichia coli infections, indicating its potential as a therapeutic option, especially for carbapenem-resistant Enterobacteriaceae. However, extensive large-scale clinical trials are required to validate these findings.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Humans , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/adverse effects , Azabicyclo Compounds/therapeutic use , Cefotaxime/adverse effects , Cefotaxime/therapeutic use , Ceftazidime/adverse effects , Ceftazidime/therapeutic use , Drug Combinations , Escherichia coli , Escherichia coli Infections/drug therapy , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL