Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 885
Filter
1.
Future Med Chem ; 16(12): 1267-1281, 2024.
Article in English | MEDLINE | ID: mdl-38989985

ABSTRACT

Cancer exhibits heterogeneity that enables adaptability and remains grand challenges for effective treatment. Chemotherapy is a validated and critically important strategy for the treatment of cancer, but the emergence of multidrug resistance which may lead to recurrence of disease or even death is a major hurdle for successful chemotherapy. Azoles and sulfonamides are important anticancer pharmacophores, and azole-sulfonamide hybrids have the potential to simultaneously act on dual/multiple targets in cancer cells, holding great promise to overcome drug resistance. This review outlines the current scenario of azole-sulfonamide hybrids with the anticancer potential, and the structure-activity relationships as well as mechanisms of action are also discussed, covering articles published from 2020 onward.


[Box: see text].


Subject(s)
Antineoplastic Agents , Azoles , Neoplasms , Sulfonamides , Humans , Sulfonamides/chemistry , Sulfonamides/pharmacology , Azoles/chemistry , Azoles/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Molecular Structure
2.
Chem Rec ; 24(7): e202300347, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984727

ABSTRACT

The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.


Subject(s)
Antineoplastic Agents , Azoles , Ferrous Compounds , Heterocyclic Compounds , Metallocenes , Azoles/chemistry , Azoles/pharmacology , Azoles/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Metallocenes/chemistry , Metallocenes/pharmacology , Metallocenes/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis
3.
Bioorg Med Chem Lett ; 110: 129852, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38925524

ABSTRACT

The global outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 virus had led to profound respiratory health implications. This study focused on designing organoselenium-based inhibitors targeting the SARS-CoV-2 main protease (Mpro). The ligand-binding pathway sampling method based on parallel cascade selection molecular dynamics (LB-PaCS-MD) simulations was employed to elucidate plausible paths and conformations of ebselen, a synthetic organoselenium drug, within the Mpro catalytic site. Ebselen effectively engaged the active site, adopting proximity to H41 and interacting through the benzoisoselenazole ring in a π-π T-shaped arrangement, with an additional π-sulfur interaction with C145. In addition, the ligand-based drug design using the QSAR with GFA-MLR, RF, and ANN models were employed for biological activity prediction. The QSAR-ANN model showed robust statistical performance, with an r2training exceeding 0.98 and an RMSEtest of 0.21, indicating its suitability for predicting biological activities. Integration the ANN model with the LB-PaCS-MD insights enabled the rational design of novel compounds anchored in the ebselen core structure, identifying promising candidates with favorable predicted IC50 values. The designed compounds exhibited suitable drug-like characteristics and adopted an active conformation similar to ebselen, inhibiting Mpro function. These findings represent a synergistic approach merging ligand and structure-based drug design; with the potential to guide experimental synthesis and enzyme assay testing.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Drug Design , Isoindoles , Machine Learning , Molecular Dynamics Simulation , Organoselenium Compounds , Protease Inhibitors , Quantitative Structure-Activity Relationship , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Isoindoles/chemistry , Isoindoles/pharmacology , Isoindoles/chemical synthesis , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Humans , Azoles/chemistry , Azoles/pharmacology , Azoles/chemical synthesis , COVID-19/virology , Catalytic Domain
4.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891954

ABSTRACT

While research has identified several inhibitors of the main protease (Mpro) of SARS-CoV-2, a significant portion of these compounds exhibit reduced activity in the presence of reducing agents, raising concerns about their effectiveness in vivo. Furthermore, the conventional biosafety level 3 (BSL-3) for cellular assays using viral particles poses a limitation for the widespread evaluation of Mpro inhibitor efficacy in a cell-based assay. Here, we established a BSL-1 compatible cellular assay to evaluate the in vivo potential of Mpro inhibitors. This assay utilizes mammalian cells expressing a tagged Mpro construct containing N-terminal glutathione S-transferase (GST) and C-terminal hemagglutinin (HA) tags and monitors Mpro autodigestion. Using this method, GC376 and boceprevir effectively inhibited Mpro autodigestion, suggesting their potential in vivo activity. Conversely, carmofur and ebselen did not exhibit significant inhibitory effects in this assay. We further investigated the inhibitory potential of selenoneine on Mpro using this approach. Computational analyses of binding energies suggest that noncovalent interactions play a critical role in facilitating the covalent modification of the C145 residue, leading to Mpro inhibition. Our method is straightforward, cost-effective, and readily applicable in standard laboratories, making it accessible to researchers with varying levels of expertise in infectious diseases.


Subject(s)
Antiviral Agents , Azoles , Coronavirus 3C Proteases , Isoindoles , Organoselenium Compounds , Proline , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Isoindoles/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Azoles/pharmacology , Azoles/chemistry , Proline/analogs & derivatives , Proline/pharmacology , Proline/chemistry , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , COVID-19 Drug Treatment , COVID-19/virology , HEK293 Cells , Lactams , Leucine/analogs & derivatives , Sulfonic Acids
5.
Future Med Chem ; 16(11): 1163-1180, 2024.
Article in English | MEDLINE | ID: mdl-38916566

ABSTRACT

During the last decades, five or six member rings azaheterocycles compounds appear to be an extremely valuable source of antifungal agents. Their use seems to be a very attractive solution in antifungal therapy and to overcome antifungal resistance in agriculture. The present review highlights the main results obtained in the field of hybrid and chimeric azine (especially pyridine, quinoline, phenanthroline, bypyridine, naphthyridine and their fused derivatives) derivatives presented in scientific literature from the last 10 years, with emphasis on antifungal activity of the mentioned compounds. A special attention was played to hybrid and chimeric azole-azine class, having in view the high antifungal potential of azoles.


[Box: see text].


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Humans , Azoles/chemistry , Azoles/pharmacology , Azoles/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Fungi/drug effects , Molecular Structure , Structure-Activity Relationship , Quinolines/chemistry , Quinolines/pharmacology
6.
Nature ; 631(8019): 87-93, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697196

ABSTRACT

Structure-activity relationship (SAR) studies are fundamental to drug and agrochemical development, yet only a few synthetic strategies apply to the nitrogen heteroaromatics frequently encountered in small molecule candidates1-3. Here we present an alternative approach in which we convert pyrimidine-containing compounds into various other nitrogen heteroaromatics. Transforming pyrimidines into their corresponding N-arylpyrimidinium salts enables cleavage into a three-carbon iminoenamine building block, used for various heterocycle-forming reactions. This deconstruction-reconstruction sequence diversifies the initial pyrimidine core and enables access to various heterocycles, such as azoles4. In effect, this approach allows heterocycle formation on complex molecules, resulting in analogues that would be challenging to obtain by other methods. We anticipate that this deconstruction-reconstruction strategy will extend to other heterocycle classes.


Subject(s)
Chemistry Techniques, Synthetic , Pyrimidines , Azoles/chemistry , Nitrogen/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Chemistry Techniques, Synthetic/methods
7.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731487

ABSTRACT

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Subject(s)
Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732115

ABSTRACT

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Subject(s)
Antiviral Agents , Machine Learning , Molecular Dynamics Simulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Density Functional Theory , Thermodynamics , Isoindoles/chemistry , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Azoles/chemistry , Azoles/pharmacology
9.
Environ Sci Pollut Res Int ; 31(20): 29148-29161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568307

ABSTRACT

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.


Subject(s)
Ferrosoferric Oxide , Pesticides , Water Pollutants, Chemical , Catalysis , Water Pollutants, Chemical/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Azoles/chemistry
10.
Med Chem ; 20(4): 422-433, 2024.
Article in English | MEDLINE | ID: mdl-38351695

ABSTRACT

OBJECTIVE: This study aimed to overcome the growing antibiotic resistance. Moreover, the new series of emodin alkyl azoles were synthesized. METHOD: The novel emodin alkyl azoles were synthesized using commercial emodin and azoles by alkylation. The NMR and HRMS spectra were employed to confirm the structures of novel prepared compounds. The in vitro antibacterial and antifungal activities of the prepared emodin compounds were studied by the 96-well plate method. The binding behavior between emodin 4-nitro imidazole compound 3c and S. aureus DNA was researched using an ultraviolet-visible spectrophotometer. Furthermore, fluorescence spectrometry was used to explore the interaction with human serum albumin (HSA). RESULTS: The in vitro antimicrobial results displayed that compound 3c gave relatively strong activities with MIC values of 4-16 µg/mL. Notably, this compound exhibited 2-fold more potent activity against S. aureus (MIC = 4 µg/mL) and E. coli (MIC = 8 µg/mL) strains than clinical drug Chloromycin (MIC = 8 and 16 µg/mL). The UV-vis absorption spectroscopy showed that 4-nitro imidazole emodin 3c could form the 3c-DNA complex by intercalating into S. aureus DNA, inhibiting antimicrobial activities. The simulation results displayed that the emodin 3c and DNA complex were formed by hydrogen bonds. The spectral experiment demonstrated that compound 3c could be transported by human serum albumin (HSA) via hydrogen bonds. The molecular simulation found that the hydroxyl group and the nitroimidazole ring of the emodin compound showed an important role in transportation behavior. CONCLUSION: This work may supply useful directions for the exploration of novel antimicrobial agents.


Subject(s)
Azoles , Emodin , Microbial Sensitivity Tests , Molecular Docking Simulation , Serum Albumin, Human , Staphylococcus aureus , Emodin/pharmacology , Emodin/chemistry , Emodin/chemical synthesis , Emodin/analogs & derivatives , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Staphylococcus aureus/drug effects , Azoles/chemistry , Azoles/pharmacology , Azoles/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , DNA/metabolism , DNA/chemistry , Structure-Activity Relationship , Molecular Structure , DNA, Bacterial/drug effects , DNA, Bacterial/metabolism
11.
Future Med Chem ; 16(2): 157-171, 2024 01.
Article in English | MEDLINE | ID: mdl-38205647

ABSTRACT

Background: Azole and sulfonamide molecular frameworks are endowed with potent antimicrobial activity. Materials & methods: A series of azole-sulfonamide conjugates were synthesized using click reaction of N-propargylated imidazole with azide of sulfonamide and its antimicrobial efficacy was evaluated. Results: The compounds 7c, 7i and 7r displayed promising antibacterial activities, better than the standards sulfonamide and norfloxacin. All molecules exhibited promising antifungal activity, more potent than fluconazole. Docking studies of the active conjugates signified the importance of hydrophobic interactions in hosting the molecules in the active site of dihydrofolate reductase. Conclusion: Azole-sulfonamide conjugates are more active than single sulfonamide moieties and 7c, 7i and 7r may prove valuable leads for further optimization as novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Azoles , Azoles/chemistry , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Fluconazole , Sulfanilamide , Sulfonamides/pharmacology , Sulfonamides/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Molecular Structure , Microbial Sensitivity Tests
12.
Biochimie ; 220: 167-178, 2024 May.
Article in English | MEDLINE | ID: mdl-38158037

ABSTRACT

Candida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C-terminal end with either a His-tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal-affinity and size-exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity.


Subject(s)
Antifungal Agents , Azoles , Candida albicans , Drug Resistance, Fungal , Fungal Proteins , Membrane Transport Proteins , Azoles/pharmacology , Azoles/chemistry , Azoles/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Candida albicans/drug effects , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Candida glabrata/drug effects , Candida glabrata/genetics , Candida glabrata/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry
13.
Future Med Chem ; 15(16): 1527-1548, 2023 08.
Article in English | MEDLINE | ID: mdl-37610862

ABSTRACT

Chemotherapy is a critical treatment modality for cancer patients, but multidrug resistance remains one of the major challenges in cancer therapy, creating an urgent need for the development of novel potent chemical entities. Azoles, particularly pyrazole, could interact with different biological targets and exhibit diverse biological properties including anticancer activity. Many clinically used anticancer agents own an azole moiety, demonstrating that azoles are privileged and pivotal templates in the discovery of novel anticancer chemotherapeutics. The present article is an attempt to highlight the recent advances in pyrazole-azole hybrids with anticancer potential and discuss the structure-activity relationships, covering articles published from 2018 to present, to facilitate the rational design of more effective anticancer candidates.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Azoles/chemistry , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Pyrazoles/pharmacology , Pyrazoles/therapeutic use
14.
Chem Biol Drug Des ; 102(3): 606-639, 2023 09.
Article in English | MEDLINE | ID: mdl-37220949

ABSTRACT

Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4-triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α-demethylase (CYP51) is responsible for the oxidative removal of 14α-methyl group of sterol precursors lanosterol and 24(28)-methylene-24,25-dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole- as well as non-azoles-based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.


Subject(s)
Antifungal Agents , Lanosterol , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Sterol 14-Demethylase/chemistry , Azoles/pharmacology , Azoles/chemistry , Drug Development
15.
J Med Chem ; 66(11): 7497-7515, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37218609

ABSTRACT

Triazoles have demonstrated significant efficacy in the treatment of fungal infections. However, increasing drug resistance is a growing concern that negatively impacts their effectiveness. By designing a well-crafted side chain, triazoles can be endowed with advantages, like higher potency and the ability to overcome drug resistance. This highlights the diverse interactions between side chains and CYP51. To explore novel triazole antifungal agents, we synthesized three series of fluconazole-core compounds and focused on optimizing the chain based on molecule docking and in vitro results. The most potent S-F24 exhibited excellent broad-spectrum antifungal activity that was better or comparable to clinically used azoles. S-F24 maintained its potency even against multi-resistant Candida albicans. Additionally, S-F24 displayed a good safety profile with high selectivity, low hemolytic effects, and low tendency to induce resistance. Our findings collectively demonstrated that there was still a high potential for side-chain modification in the development of novel azoles.


Subject(s)
Antifungal Agents , Triazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Microbial Sensitivity Tests , Fluconazole/pharmacology , Azoles/pharmacology , Azoles/chemistry , Candida albicans
16.
Eur J Med Chem ; 256: 115436, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37146343

ABSTRACT

This work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectrometric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6-75.3 µM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 µM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 µM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 µM) as miconazole (MIC: 74.9 µM) and more than 5 times more active than fluconazole (MIC: 209.0 µM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.


Subject(s)
Antifungal Agents , Cryptococcus gattii , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Azoles/pharmacology , Azoles/chemistry , Miconazole/pharmacology , Candida , Fluconazole , Eugenol/pharmacology , Eugenol/chemistry , Microbial Sensitivity Tests , Candida albicans , Imidazoles/pharmacology , Ergosterol
17.
Chem Biodivers ; 20(5): e202300096, 2023 May.
Article in English | MEDLINE | ID: mdl-37042439

ABSTRACT

Working principle of azoles as antifungals is the inhibition of fungal CYP51/lanosterol-14α-demethylase via selective coordination with heme iron. This interaction can also cause side effects by binding to host lanosterol-14α-demethylase. Hence, it is necessary to design, synthesize and test new antifungal agents that have different structures than those of azoles and other antifungal drugs of choice in clinical practice. Consequently, a series of steroidal 1,4-dihydropyridine analogs 16-21 were synthesized and screened for their in vitro anti-fungal activity against three Candida species as steroids-based medications have low toxicity, less vulnerability to multi-drug resistance, and high bioavailability by being capable of penetrating the cell wall and binding to specific receptors. Initially, Claisen-Schmidt condensation takes place between steroidal ketone (dehydroepiandrosterone) and an aromatic aldehyde forming steroidal benzylidene 8-13 followed by Hantzsch 1,4-dihydropyridine synthesis resulting in steroidal 1,4-dihydropyridine derivatives 16-21. The results exhibited that compound 17 has significant anti-fungal potential with an MIC value of 750 µg/ml for C. albicans and C. glabrata and 800 µg/ml for C. tropicalis. In silico molecular docking and ADMET studies were also performed for compounds 16-21.


Subject(s)
Antifungal Agents , Lanosterol , Molecular Docking Simulation , Lanosterol/pharmacology , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Azoles/chemistry , Azoles/pharmacology , Candida albicans
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122582, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36905738

ABSTRACT

Hydrogen sulfide (H2S) is a central signaling and antioxidant biomolecule involved in various biological processes. As inappropriate levels of H2S in the human body are closely related to various diseases, including cancer, a tool capable of detecting H2S with high selectivity and sensitivity in living systems is urgently required. In this work, we intended to develop a biocompatible and activatable fluorescent molecular probe for detecting H2S generation in living cells. The 7-nitro-2,1,3-benzoxadiazole-imbedded naphthalimide (1) probe presented here responds specifically to H2S and produces readily detectable fluorescence at 530 nm. Interestingly, probe 1 exhibited significant fluorescence responses to changes in endogenous H2S levels as well as high biocompatibility and permeability in living HeLa cells. This allowed for the real-time monitoring of endogenous H2S generation as an antioxidant defense response in the oxidatively stressed cells.


Subject(s)
Hydrogen Sulfide , Naphthalimides , Humans , Antioxidants/pharmacology , Fluorescent Dyes , HeLa Cells , Naphthalimides/pharmacology , Signal Transduction , Azoles/chemistry
19.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675123

ABSTRACT

Ebselen is a low-molecular-weight organoselenium compound that has been broadly studied for its antioxidant, anti-inflammatory, and cytoprotective properties. These advantageous properties were initially associated with mimicking the activity of selenoprotein glutathione peroxidase, but the biomedical impact of this compound appear to be far more complex. Ebselen serves as a substrate or inhibitor with multiple protein/enzyme targets, whereas inhibition typically originates from the covalent modification of cysteine residues by opening the benzisoselenazolone ring and S-Se bond formation. The inhibition of enzymes of various classes and origins has been associated with substantial antimicrobial potential among other activities. In this contribution, we summarize the current state of the art regarding the antibacterial activity of ebselen. This activity, alone and in combination with commercial pharmaceuticals, against pathogens, including those resistant to drugs, is presented, together with the molecular mechanism behind the reactivity. The specific inactivation of thioredoxin reductase, bacterial toxins, and other resistance factors is considered to have certain therapeutic implications. Synergistic action and sensitization to common antibiotics assisted with the use of ebselen appear to be promising directions in the treatment of persistent infections.


Subject(s)
Anti-Bacterial Agents , Organoselenium Compounds , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Isoindoles , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Azoles/pharmacology , Azoles/chemistry
20.
Curr Med Chem ; 30(2): 220-249, 2023.
Article in English | MEDLINE | ID: mdl-35392780

ABSTRACT

BACKGROUND: Azoles are the famous and widespread scaffold in the pharmaceutical industry due to their wide range of activities, high efficacy, good tolerability, and oral availability. Furthermore, azole derivatives have attracted attention as potent antimicrobial agents. INTRODUCTION: The purpose of this review is to provide an overview of pharmacological aspects of the main scaffolds of azoles, including imidazole, benzimidazole, triazole, and tetrazole, which possess antimicrobial activity, reported from 2016 to 2020, as well as all of our publication in this field. In addition, we discuss the relationship between structure and activity and molecular docking studies of the azole derivatives to provide critical features and valuable information for the synthesis of novel azole compounds with desirable biological activities. The presented structures in this review have been tested against several bacteria and fungi, such as E. coli and C. albicans, which have been common in all of these studies. RESULTS: A comparison of the reported MIC for tested compounds showed fluconazole base structures as the most active antifungal agents, and triazole derivatives bearing nitrophenyl and coumarin moieties to have the most dominant antibacterial activity. CONCLUSION: Triazole and imidazole scaffolds are more important for designing antimicrobial compounds than other azole derivatives, like benzimidazole or tetrazole. All the most active compounds were observed to fulfill the Lipinski rule.


Subject(s)
Antifungal Agents , Azoles , Humans , Antifungal Agents/chemistry , Azoles/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Escherichia coli , Microbial Sensitivity Tests , Imidazoles/pharmacology , Candida albicans , Anti-Bacterial Agents/chemistry , Triazoles/pharmacology , Tetrazoles , Benzimidazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL