Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37024272

ABSTRACT

It is known that members of the bacterial genus Azospirillum can promote the growth of a great variety of plants, an ability harnessed by the industry to create bioproducts aimed to enhance the yield of economically relevant crops. Its versatile metabolism allows this bacterium to adapt to numerous environments, from optimal to extreme or highly polluted. The fact of having been isolated from soil and rhizosphere samples collected worldwide and many other habitats proves its remarkable ubiquity. Azospirillum rhizospheric and endophytic lifestyles are governed by several mechanisms, leading to efficient niche colonization. These mechanisms include cell aggregation and biofilm formation, motility, chemotaxis, phytohormone and other signaling molecules production, and cell-to-cell communication, in turn, involved in regulating Azospirillum interactions with the surrounding microbial community. Despite being infrequently mentioned in metagenomics studies after its introduction as an inoculant, an increasing number of studies detected Azospirillum through molecular tools (mostly 16S rRNA sequencing) as part of diverse, even unexpected, microbiomes. This review focuses on Azospirillum traceability and the performance of the available methods, both classical and molecular. An overview of Azospirillum occurrence in diverse microbiomes and the less-known features explaining its notorious ability to colonize niches and prevail in multiple environments is provided.


Subject(s)
Azospirillum , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Azospirillum/genetics , Azospirillum/metabolism , Plant Growth Regulators/metabolism , Plants/microbiology , Signal Transduction , Rhizosphere , Plant Roots/microbiology , Soil Microbiology
2.
J Bacteriol ; 204(4): e0001022, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35352964

ABSTRACT

Bacterial resistance to ß-lactam antibiotics is often mediated by ß-lactamases and lytic transglycosylases. Azospirillum baldaniorum Sp245 is a plant-growth-promoting rhizobacterium that shows high levels of resistance to ampicillin. Investigating the molecular basis of ampicillin resistance and its regulation in A. baldaniorum Sp245, we found that a gene encoding lytic transglycosylase (Ltg1) is organized divergently from a gene encoding an extracytoplasmic function (ECF) σ factor (RpoE7) in its genome. Inactivation of rpoE7 in A. baldaniorum Sp245 led to increased ability to form cell-cell aggregates and produce exopolysaccharides and biofilm, suggesting that rpoE7 might contribute to antibiotic resistance. Inactivation of ltg1 in A. baldaniorum Sp245, however, adversely affected its growth, indicating a requirement of Ltg1 for optimal growth. The expression of rpoE7, as well that of as ltg1, was positively regulated by RpoE7, and overexpression of RpoE7 conferred ampicillin sensitivity to both the rpoE7::km mutant and its parent. In addition, RpoE7 negatively regulated the expression of a gene encoding a ß-lactamase (bla1). Out of the 5 paralogs of RpoH encoded in the genome of A. baldaniorum Sp245, RpoH3 played major roles in conferring ampicillin sensitivity and in the downregulation of bla1. The expression of rpoH3 was positively regulated by RpoE7. Collectively, these observations reveal a novel regulatory cascade of RpoE7-RpoH3 σ factors that negatively regulates ampicillin resistance in A. baldaniorum Sp245 by controlling the expression of a ß-lactamase and a lytic transglycosylase. In the absence of a cognate anti-sigma factor, addressing how the activity of RpoE7 is regulated by ß-lactams will unravel new mechanisms of regulation of ß-lactam resistance in bacteria. IMPORTANCE Antimicrobial resistance is a global health problem that requires a better understanding of the mechanisms that bacteria use to resist antibiotics. Bacteria inhabiting the plant rhizosphere are a potential source of antibiotic resistance, but their mechanisms controlling antibiotic resistance are poorly understood. A. baldaniorum Sp245 is a rhizobacterium that is known for its characteristic resistance to ampicillin. Here, we show that an AmpC-type ß-lactamase and a lytic transglycosylase mediate resistance to ampicillin in A. baldaniorum Sp245. While the gene encoding lytic transglycosylase is positively regulated by an ECF σ-factor (RpoE7), a cascade of RpoE7 and RpoH3 σ factors negatively regulates the expression of ß-lactamase. This is the first evidence showing involvement of a regulatory cascade of σ factors in the regulation of ampicillin resistance in a rhizobacterium.


Subject(s)
Azospirillum , Sigma Factor , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Azospirillum/metabolism , Glycosyltransferases/genetics , Sigma Factor/genetics , Sigma Factor/metabolism , beta-Lactam Resistance/genetics , beta-Lactamases/genetics
3.
PLoS One ; 16(12): e0261468, 2021.
Article in English | MEDLINE | ID: mdl-34919599

ABSTRACT

Nitrogen (N) is a macronutrient desired by crop plants in large quantities. However, hiking fertilizer prices need alternative N sources for reducing its requirements through appropriate management practices. Plant growth promoting rhizobacteria (PGPR) are well-known for their role in lowering N requirements of crop plants. This study assessed the impact of PGPR inoculation on growth, allometry and biochemical traits of chili under different N doses. Two PGPR, i.e., Azospirillum 'Er-20' (nitrogen fixing) and Agrobacterium 'Ca-18' (phosphorous solubilizing) were used for inoculation, while control treatment had no PGPR inoculation. Six N doses, i.e., 100, 80, 75, 70, 60 and 50% of the N required by chili were included in the study. Data relating to growth traits, biochemical attributes and yield related traits were recorded. Interaction among N doses and PGPR inoculation significantly altered all growth traits, biochemical attributes and yield related traits. The highest values of the recorded traits were observed for 100% N with and without PGPR inoculation and 75% N with PGPR inoculation. The lowest values of the recorded traits were noted for 50% N without PGPR inoculation. The PGPR inoculation improved the measured traits compared to the traits recorded noted in same N dose without PGPR inoculation. Results revealed that PGPR had the potential to lower 25% N requirement for chili. Therefore, it is recommended that PGPR must be used in chili cultivation to lower N requirements.


Subject(s)
Agrobacterium/metabolism , Azospirillum/metabolism , Capsicum/growth & development , Nitrogen/analysis , Seedlings/growth & development , Capsicum/microbiology , Fertilizers/analysis , Nitrogen Fixation/physiology , Pakistan , Phosphorus/analysis , Plant Development , Plant Roots/microbiology , Potassium/analysis , Soil Microbiology
4.
Microb Ecol ; 81(1): 278-281, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32696239

ABSTRACT

Azospirillum is one of the most successful plant growth-promoting bacteria (PGPB) genera and it is considered a study model for plant-bacteria interactions. Because of that, a wide broad of topics has been boarded and discussed in a significant number of publications in the last four decades. Using the Scopus® database, we conducted a bibliographic search in order to analyze the number and type of publications, the authors responsible of these contributions, and the origin of the researchers, as well as the keywords and journals selected by the authors, among other related characteristics, with the aim to understand some less addressed details about the work done with Azospirillum worldwide since its discovery in 1925. Despite that the largest numbers of publications about this bacterium were obtained between the 1970 and 1980s, there is still a linear increase tendency in the number of published works. Understanding the mechanisms involved in the ability of these bacteria to promote growth in a wide broad of plant species under both laboratory and field conditions has been a preferential target for these published articles. This tendency could be considered a cause or consequence of the current increase in the number of commercial products formulated with Azospirillum around the world and a catalyzer for the increase of published articles along time.


Subject(s)
Azospirillum/metabolism , Host Microbial Interactions/physiology , Plant Growth Regulators , Plants/microbiology , Azospirillum/classification , Plant Development , Plant Roots/microbiology
5.
Carbohydr Res ; 494: 108060, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32569849

ABSTRACT

The lipopolysaccharide was obtained from the cells of Azospirillum formosense CC-Nfb-7(T), a diazotrophic bacterium isolated from agricultural soil. The O-specific polysaccharide (OPS) was released by mild acid hydrolysis of the lipopolysaccharide and was studied by sugar analysis along with 1H and 13C NMR spectroscopy, including 1H,1H COSY, TOCSY, ROESY, 1H,13C HSQC, and HMBC experiments, and Smith degradation. The following structure of partially methylated OPS composed of trisaccharide repeating units was established.


Subject(s)
Azospirillum/chemistry , Polysaccharides/chemistry , Azospirillum/cytology , Azospirillum/metabolism , Hydrolysis , Polysaccharides/metabolism
6.
Planta ; 251(1): 19, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31781905

ABSTRACT

MAIN CONCLUSION: Arabinogalactan protein content in both root extracellular trap and root exudates varies in three Sahelian woody plant species that are differentially tolerant to drought. At the root tip, mature root cap cells, mainly border cells (BCs)/border-like cells (BLCs) and their associated mucilage, form a web-like structure known as the "Root Extracellular Trap" (RET). Although the RET along with the entire suite of root exudates are known to influence rhizosphere function, their features in woody species is poorly documented. Here, RET and root exudates were analyzed from three Sahelian woody species with contrasted sensitivity to drought stress (Balanites aegyptiaca, Acacia raddiana and Tamarindus indica) and that have been selected for reforestation along the African Great Green Wall in northern Senegal. Optical and transmission electron microscopy show that Balanites aegyptiaca, the most drought-tolerant species, produces only BC, whereas Acacia raddiana and Tamarindus indica release both BCs and BLCs. Biochemical analyses reveal that RET and root exudates of Balanites aegyptiaca and Acacia raddiana contain significantly more abundant arabinogalactan proteins (AGPs) compared to Tamarindus indica, the most drought-sensitive species. Root exudates of the three woody species also differentially impact the plant soil beneficial bacteria Azospirillum brasilense growth. These results highlight the importance of root secretions for woody species survival under dry conditions.


Subject(s)
Acacia/metabolism , Balanites/metabolism , Plant Exudates/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Tamarindus/metabolism , Wood/metabolism , Acacia/cytology , Acacia/ultrastructure , Azospirillum/metabolism , Balanites/cytology , Balanites/ultrastructure , Cell Shape , Monosaccharides/analysis , Mucoproteins/metabolism , Plant Proteins/metabolism , Plant Roots/ultrastructure , Seedlings/cytology , Tamarindus/cytology
7.
Microbes Environ ; 33(3): 301-308, 2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30158365

ABSTRACT

Azospirillum sp. B510, a free-living nitrogen-fixing bacterium isolated from the stems of rice (Oryza sativa cv. Nipponbare), was investigated to establish effective conditions for the colonization of rice plants. We analyzed the effects of the nitrogen sources KNO3, NH4Cl, urea (CO[NH2]2), and NH4NO3 at different concentrations (0.01-10 mM) on this colonization. Nitrogen promoted plant growth in a concentration-dependent manner, with minor differences being observed among the different nitrogen sources. Bacterial colonization was markedly suppressed on media containing NH4+ concentrations higher than 1 mM. Since concentrations of up to and including 10 mM NH4+ did not exhibit any antibacterial activity, we analyzed several factors affecting the NH4+-dependent inhibition of endophytic colonization, including the accumulation of the reactive oxygen species H2O2 and the secretion of the chemotactic substrate malic acid. The accumulation of H2O2 was increased in rice roots grown on 1 mM NH4Cl. The amounts of malic acid secreted from NH4-grown rice plants were lower than those secreted from plants grown without nitrogen or with KNO3. Although the bacterium exhibited chemotactic activity, moving towards root exudates from plants grown without nitrogen and KNO3-grown plants, this activity was not observed with root exudates from NH4+-grown plants. NH4+, but not NO3-, caused the acidification of growth media, which inhibited plant bacterial colonization. These NH4+-dependent phenomena were markedly suppressed by the stabilization of medium pH using a buffer. These results demonstrate that the type and concentration of nitrogen fertilizer affects the colonization of rice plants by Azospirillum sp. B510.


Subject(s)
Azospirillum/physiology , Endophytes/physiology , Nitrogen/chemistry , Nitrogen/metabolism , Oryza/microbiology , Ammonium Chloride/toxicity , Azospirillum/drug effects , Azospirillum/metabolism , Chemotaxis/drug effects , Culture Media/chemistry , Endophytes/drug effects , Endophytes/metabolism , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Malates/analysis , Nitrogen Fixation/drug effects , Plant Stems/microbiology
8.
Biosci Biotechnol Biochem ; 82(9): 1522-1526, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29847205

ABSTRACT

A bacterial endophyte Azospirillum sp. B510 induces systemic disease resistance in the host without accompanying defense-related gene expression. To elucidate molecular mechanism of this induced systemic resistance (ISR), involvement of ethylene (ET) was examined using OsEIN2-knockdown mutant rice. Rice blast inoculation assay and gene expression analysis indicated that ET signaling is required for endophyte-mediated ISR in rice. ABBREVIATIONS: ACC: 1-aminocyclopropane-1-carboxylic acid; EIN2: ethylene-insensitive protein 2; ET: ethylene; ISR: induced systemic resistance; JA: jasmonic acid; RNAi: RNA interference; SA: salicylic acid; SAR: systemic acquired resistance.


Subject(s)
Azospirillum/metabolism , Ethylenes/metabolism , Oryza/microbiology , Signal Transduction , Gene Knockdown Techniques , Oryza/genetics
9.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Article in English | MEDLINE | ID: mdl-29796593

ABSTRACT

Biofertilizers are promoted as a strategy for sustainable intensification of agriculture, but their efficacy varies widely among published studies and it is unclear whether they deliver the promised benefits. Studies are commonly conducted under controlled conditions prior to deployment in the field, yet the predictive value of such studies for field-scale productivity has not been critically examined. A meta-analysis was conducted using a novel host crop-specific approach to evaluate the agronomic potential of bacterial biofertilizers for maize. Yield increases tended to be slightly higher and more variable in greenhouse studies using field soil than in the field, and greenhouse studies poorly predicted the influence of moderating climate, soil and taxonomic variables. We found greater efficacy of Azospirillum spp. and lower efficacy of Bacillus spp. and Enterobacter spp. under field conditions. Surprisingly, biofertilizer strains with confirmed plant-growth-promoting traits such as phosphorus solubilization, nitrogen fixation and phytohormone production in vitro were associated with lower yields in the field than strains not confirmed to possess these traits; only 1-aminocyclopropane-1-carboxylate deaminase synthesis increased yields. These results indicate the need for a novel biofertilizer development framework that integrates information from native soil microbial communities and prioritizes field validation of results.


Subject(s)
Agriculture/methods , Azospirillum/metabolism , Bacillus/metabolism , Enterobacter/metabolism , Fertilizers/microbiology , Zea mays/growth & development , Carbon-Carbon Lyases/metabolism , Nitrogen Fixation/physiology , Phosphorus/metabolism , Plant Development , Rhizosphere , Soil , Soil Microbiology
10.
BMC Microbiol ; 18(1): 20, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523074

ABSTRACT

BACKGROUND: The cyclic-di-GMP (c-di-GMP) second messenger exemplifies a signaling system that regulates many bacterial behaviors of key importance; among them, c-di-GMP controls the transition between motile and sessile life-styles in bacteria. Cellular c-di-GMP levels in bacteria are regulated by the opposite enzymatic activities of diguanylate cyclases and phosphodiesterases, which are proteins that have GGDEF and EAL domains, respectively. Azospirillum is a genus of plant-growth-promoting bacteria, and members of this genus have beneficial effects in many agronomically and ecologically essential plants. These bacteria also inhabit aquatic ecosystems, and have been isolated from humus-reducing habitats. Bioinformatic and structural approaches were used to identify genes predicted to encode GG[D/E]EF, EAL and GG[D/E]EF-EAL domain proteins from nine genome sequences. RESULTS: The analyzed sequences revealed that the genomes of A. humicireducens SgZ-5T, A. lipoferum 4B, Azospirillum sp. B510, A. thiophilum BV-ST, A. halopraeferens DSM3675, A. oryzae A2P, and A. brasilense Sp7, Sp245 and Az39 encode for 29 to 41 of these predicted proteins. Notably, only 15 proteins were conserved in all nine genomes: eight GGDEF, three EAL and four GGDEF-EAL hybrid domain proteins, all of which corresponded to core genes in the genomes. The predicted proteins exhibited variable lengths, architectures and sensor domains. In addition, the predicted cellular localizations showed that some of the proteins to contain transmembrane domains, suggesting that these proteins are anchored to the membrane. Therefore, as reported in other soil bacteria, the Azospirillum genomes encode a large number of proteins that are likely involved in c-di-GMP metabolism. In addition, the data obtained here strongly suggest host specificity and environment specific adaptation. CONCLUSIONS: Bacteria of the Azospirillum genus cope with diverse environmental conditions to survive in soil and aquatic habitats and, in certain cases, to colonize and benefit their host plant. Gaining information on the structures of proteins involved in c-di-GMP metabolism in Azospirillum appears to be an important step in determining the c-di-GMP signaling pathways, involved in the transition of a motile cell towards a biofilm life-style, as an example of microbial genome plasticity under diverse in situ environments.


Subject(s)
Azospirillum/genetics , Azospirillum/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Protein Domains , Signal Transduction , Adaptation, Biological , Azospirillum/enzymology , Biofilms/growth & development , Computational Biology , Cyclic GMP/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Phosphoric Diester Hydrolases/metabolism , Phosphorus-Oxygen Lyases/metabolism , Protein Conformation , Second Messenger Systems/genetics
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 458-463, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29220816

ABSTRACT

Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250nm; their zeta potential was measured to be minus 18.5mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500cm-1 down to 150cm-1) showed a single very strong band with a maximum at 250cm-1 which, in line with its increased width (ca. 30cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.


Subject(s)
Azospirillum/metabolism , Nanoparticles/chemistry , Selenium/chemistry , Spectrum Analysis, Raman , Azospirillum/ultrastructure , Dynamic Light Scattering , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared , Vibration
12.
Sci Rep ; 7(1): 8411, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827706

ABSTRACT

Maize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms. We quantified (de)nitrifiers abundance and activity in the rhizosphere of inoculated and non-inoculated maize on 4 sites over 2 years, and ancillary soil variables. Inoculation effects on nitrification and nitrifiers (AOA, AOB) were not consistent between the three sampling dates. Inoculation influenced denitrifiers abundance (nirK, nirS) differently among sites. In sites with high C limitation for denitrifiers (i.e. limitation of denitrification by C > 66%), inoculation increased nirS-denitrifier abundance (up to 56%) and gross N2O production (up to 84%), likely due to increased root C exudation. Conversely, in sites with low C limitation (<47%), inoculation decreased nirS-denitrifier abundance (down to -23%) and gross N2O production (down to -18%) likely due to an increased roots-denitrifiers competition for nitrate.


Subject(s)
Azospirillum/growth & development , Carbon/analysis , Microbial Interactions , Nitrogen/analysis , Soil Microbiology , Soil/chemistry , Zea mays/microbiology , Azospirillum/metabolism , Denitrification , Nitrification , Nitrogen Oxides/metabolism , Plant Roots/microbiology
13.
World J Microbiol Biotechnol ; 33(2): 22, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28044270

ABSTRACT

Rice seedlings (Oryza sativa) inoculated with the plant growth-promoting rhizobacteria Azospirillum brasilense FT326 showed an enhanced development of the root system 3 days after inoculation. Later on, a remarkable enlargement of shoots was also evident. An increase in the Ca2+-dependent histone kinase activity was also detected as a result of inoculation. The biochemical characterization and Western-blot analysis of the kinase strongly supports the hypothesis that it belongs to a member of the rice CDPK family. The fact that the amount of the protein did not change upon inoculation seems to indicate that a posttranslational activation is responsible for the change in the enzymatic activity. An in-gel kinase experiment identified a 46 kDa CDPK like protein kinase as a putative component of the signal transduction pathway triggered by Azospirillum inoculation. To our knowledge, this is the first report on the possible involvement of a Ca2+-dependent protein kinase in promotion of rice plants growth by A. brasilense.


Subject(s)
Azospirillum/physiology , Oryza/growth & development , Protein Kinases/metabolism , Azospirillum/metabolism , Enzyme Activation , Molecular Weight , Oryza/enzymology , Oryza/microbiology , Phosphorylation , Plant Roots/growth & development , Plant Roots/microbiology , Protein Processing, Post-Translational , Signal Transduction
14.
FEMS Microbiol Ecol ; 92(12)2016 12.
Article in English | MEDLINE | ID: mdl-27660606

ABSTRACT

Diazotrophic Alphaproteobacteria of the genus Azospirillum are usually organotrophs, although some strains of Azospirillum lipoferum are capable of hydrogen-dependent autotrophic growth. Azospirillum thiophilum strain was isolated from a mineral sulfide spring, a biotope highly unusual for azospirilla. Here, the metabolic pathways utilized by A. thiophilum were revealed based on comprehensive analysis of its genomic organization, together with physiological and biochemical approaches. The A. thiophilum genome contained all the genes encoding the enzymes of carbon metabolism via glycolysis, tricarboxylic acid cycle and glyoxylate cycle. Genes for a complete set of enzymes responsible for autotrophic growth, with an active Calvin-Benson-Bassham cycle, were also revealed, and activity of the key enzymes was determined. Microaerobic chemolithoautotrophic growth of A. thiophilum was detected in the presence of thiosulfate and molecular hydrogen, being in line with the discovery of the genes encoding the two enzymes involved in dissimilatory thiosulfate oxidation, the Sox-complex and thiosulfate dehydrogenase and Ni-Fe hydrogenases. Azospirillum thiophilum utilizes methanol and formate, producing CO2 that can further be metabolized via the Calvin cycle. Finally, it is capable of anaerobic respiration, using tetrathionate as a terminal electron acceptor. Such metabolic versatility is of great importance for adaptation of A. thiophilum to constantly changing physicochemical environment.


Subject(s)
Azospirillum/classification , Azospirillum/metabolism , Chemoautotrophic Growth/genetics , Photosynthesis/genetics , Sulfides/metabolism , Sulfur/metabolism , Thiosulfates/metabolism , Amino Acid Sequence , Azospirillum/genetics , Azospirillum/isolation & purification , Carbon/metabolism , Chemoautotrophic Growth/physiology , Citric Acid Cycle/genetics , Ecosystem , Formates/metabolism , Genome, Bacterial/genetics , Genomics , Glycolysis/genetics , Glyoxylates/metabolism , Methanol/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Alignment
15.
Int J Phytoremediation ; 18(7): 704-9, 2016.
Article in English | MEDLINE | ID: mdl-26696008

ABSTRACT

INTRODUCTION: In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials. METHODS: A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared. RESULTS: AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg(-1)) and Cd (10 mg kg(-1)) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control). CONCLUSIONS: The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.


Subject(s)
Azospirillum/metabolism , Cadmium/metabolism , Lead/metabolism , Mycorrhizae/metabolism , Panicum/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , India
16.
Pol J Microbiol ; 64(3): 241-52, 2015.
Article in English | MEDLINE | ID: mdl-26638532

ABSTRACT

The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.


Subject(s)
Azospirillum/metabolism , Dactylis/metabolism , Dactylis/microbiology , Endophytes/metabolism , Environmental Restoration and Remediation/methods , Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas/metabolism , Soil Pollutants/metabolism , Azospirillum/genetics , Azospirillum/isolation & purification , Biodegradation, Environmental , Endophytes/genetics , Endophytes/isolation & purification , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil/chemistry
17.
BMC Genomics ; 16: 833, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26489830

ABSTRACT

BACKGROUND: Two-component systems (TCS) play critical roles in sensing and responding to environmental cues. Azospirillum is a plant growth-promoting rhizobacterium living in the rhizosphere of many important crops. Despite numerous studies about its plant beneficial properties, little is known about how the bacterium senses and responds to its rhizospheric environment. The availability of complete genome sequenced from four Azospirillum strains (A. brasilense Sp245 and CBG 497, A. lipoferum 4B and Azospirillum sp. B510) offers the opportunity to conduct a comprehensive comparative analysis of the TCS gene family. RESULTS: Azospirillum genomes harbour a very large number of genes encoding TCS, and are especially enriched in hybrid histidine kinases (HyHK) genes compared to other plant-associated bacteria of similar genome sizes. We gained further insight into HyHK structure and architecture, revealing an intriguing complexity of these systems. An unusual proportion of TCS genes were orphaned or in complex clusters, and a high proportion of predicted soluble HKs compared to other plant-associated bacteria are reported. Phylogenetic analyses of the transmitter and receiver domains of A. lipoferum 4B HyHK indicate that expansion of this family mainly arose through horizontal gene transfer but also through gene duplications all along the diversification of the Azospirillum genus. By performing a genome-wide comparison of TCS, we unraveled important 'genus-defining' and 'plant-specifying' TCS. CONCLUSIONS: This study shed light on Azospirillum TCS which may confer important regulatory flexibility. Collectively, these findings highlight that Azospirillum genomes have broad potential for adaptation to fluctuating environments.


Subject(s)
Azospirillum/genetics , Azospirillum/metabolism , Genome, Bacterial , Genome-Wide Association Study , Genomics , Signal Transduction , Biological Evolution , Databases, Genetic , Genes, Bacterial , Genomics/methods , Phylogeny
18.
Biomed Res Int ; 2015: 898592, 2015.
Article in English | MEDLINE | ID: mdl-25866821

ABSTRACT

The rhizosphere bacterium Azospirillum amazonense associates with plant roots to promote plant growth. Variation in replicon numbers and rearrangements is common among Azospirillum strains, and characterization of these naturally occurring differences can improve our understanding of genome evolution. We performed an in silico comparative genomic analysis to understand the genomic plasticity of A. amazonense. The number of A. amazonense-specific coding sequences was similar when compared with the six closely related bacteria regarding belonging or not to the Azospirillum genus. Our results suggest that the versatile gene repertoire found in A. amazonense genome could have been acquired from distantly related bacteria from horizontal transfer. Furthermore, the identification of coding sequence related to phytohormone production, such as flavin-monooxygenase and aldehyde oxidase, is likely to represent the tryptophan-dependent TAM pathway for auxin production in this bacterium. Moreover, the presence of the coding sequence for nitrilase indicates the presence of the alternative route that uses IAN as an intermediate for auxin synthesis, but it remains to be established whether the IAN pathway is the Trp-independent route. Future investigations are necessary to support the hypothesis that its genomic structure has evolved to meet the requirement for adaptation to the rhizosphere and interaction with host plants.


Subject(s)
Azospirillum , Gene Transfer, Horizontal , Genetic Variation , Indoleacetic Acids/metabolism , Plant Growth Regulators , Rhizome , Azospirillum/genetics , Azospirillum/metabolism , Plant Growth Regulators/biosynthesis , Plant Growth Regulators/genetics , Rhizome/genetics , Rhizome/metabolism
19.
Mikrobiologiia ; 83(4): 416-25, 2014.
Article in Russian | MEDLINE | ID: mdl-25844452

ABSTRACT

Lipopolysaccharides of six Azospirillum strains (A. brasilense SR50, SR80, SR88, SR109, SR111, SR115, and A. lipoferum SR 42) isolated from the rhizosphere of cereal plants of Saratov oblast, Russia and assigned to serogroup II by serological analysis were studied. In the lipid A fatty acid composition, the lipopolysaccharides under study were similar to those of other Azospirillum strains and were characterized by predominance of 3-hydroxytetradecanoic, 3-hydroxyhexadecanoic, and octadecenoic acids. Monosaccharide analysis of the O-specific polysaccharides (including determination of the absolute configurations, methylation analysis, and one- and two-dimensional NMR spectroscopy) revealed the presence of two types of repeating units in varying ratios. High degree of serological similarity between the strains under study was shown to result from the presence of repeating units with identical structure in their O antigens.


Subject(s)
Azospirillum/chemistry , Fatty Acids/chemistry , O Antigens/chemistry , Rhizosphere , Soil Microbiology , Azospirillum/metabolism , Fatty Acids/metabolism , O Antigens/metabolism
20.
J Environ Sci (China) ; 25(1): 44-52, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23586298

ABSTRACT

Lake littoral zones are characterized by heterogeneity in the biogeochemistry of nutrient elements. This study aimed to explore the relationship between the nitrous oxide reductase gene (nosZ)-encoding denitrifier community composition/abundance and N2O reduction. Five samples (deep sediment, near-transition sediment, transition site, near-transition land and land soil) were collected along a littoral gradient of eutrophic Baiyangdian Lake, North China. To investigate the relationship between the nosZ-encoding denitrifier community structure and N2O reduction, the nosZ-encoding denitrifier community composition/abundance, potential denitrification rate (DNR) and potential N2O production rate (pN2O) were investigated using molecular biological technologies and laboratory incubation experiments. The results showed that the average DNR of sediments was about 25 times higher than that of land soils, reaching 282.5 nmol N/(g dry weight (dw) x hr) and that the average pN2O of sediments was about 3.5 times higher than that of land soils, reaching 15.7 nmol N/(g dw x hr). In the land area, the nosZ gene abundance showed a negative correlation with the N2O/(N2O + N2) ratio, indicating that nosZ gene abundance dominated N2O reduction both in the surface soils of the land area and in the soil core of the transition site. Phylogenetic analysis showed that all the nosZ sequences recovered from sediment clustered closely with the isolates Azospirillum largimobile and Azospirillum irakense affiliated to Rhodospirillaceae in alpha-Proteobacteria, while about 92.3% (12/13) of the nosZ sequences recovered from land soil affiliated to Rhizobiaceae and Bradyrhizobiaceae in alpha-Proteobacteria. The community composition of nosZ gene-encoding denitrifiers appeared to be coupled with N2O reduction along the littoral gradient.


Subject(s)
Nitrous Oxide/metabolism , Oxidoreductases/metabolism , Alphaproteobacteria/isolation & purification , Alphaproteobacteria/metabolism , Azospirillum/metabolism , China , Fresh Water , Geologic Sediments/analysis , Lakes , Rhizobiaceae/isolation & purification , Rhizobiaceae/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...