Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.747
Filter
1.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(7): 990-996, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-39004972

ABSTRACT

Objective: To analyze the multiple locus variable number tandem repeat analysis (MLVA) genotype polymorphism of Bacillus (B.) anthracis and establish a MLVA genotype database of B. anthracis in China. Methods: B. anthracis strains isolated from different sources in China since 1947 were collected. Genotype identification was carried out using the MLVA15 genotyping protocol based on 15 variable number tandem repeat loci. The genotypes were uniformly numbered and named. The distribution characteristics of the MLVA genotypes of strains were analyzed. Software Bionumerics was used to construct clustering diagrams to analyze the genetic relationships. Results: The MLVA15 clustering analysis subdivided the isolates into 4 major groups and 91 genotypes, 54 of which were unique to China. The genotypes from MLVA15-CHN1 to MLVA15-CHN6 were widely distributed throughout China and in all eras, while other genotypes were restricted to certain regions or eras. Conclusions: This study established a MLVA genotype database of B. anthracis, which provides basis for the understanding of MLVA genetic polymorphisms and the control and molecular source tracing of the anthrax outbreaks in China.


Subject(s)
Bacillus anthracis , Genotype , Minisatellite Repeats , Polymorphism, Genetic , Bacillus anthracis/genetics , China/epidemiology , Phylogeny , Anthrax/microbiology , Anthrax/epidemiology , Multilocus Sequence Typing , Cluster Analysis
2.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930821

ABSTRACT

2,6-pyridine dicarboxylic acid (DPA) is an exceptional biomarker of notorious anthrax spores. Therefore, the rapid, sensitive, and selective quantitative detection of DPA is extremely significant and urgent. This paper reports a Zn(II) metal-organic framework with the formula of {[Zn6(NDA)6(DPBT)3] 2H2O·3DMF}n (MOF-1), which consists of 2,6-naphthalenedicarboxylic acid (2,6-NDA), 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole (DPBT), and Zn(II) ions. Structural analysis indicated that MOF-1 is a three-dimensional (3D) network which crystallized in the monoclinic system with the C2/c space group, revealing high pH, solvent, and thermal stability. Luminescence sensing studies demonstrated that MOF-1 had the potential to be a highly selective, sensitive, and recyclable fluorescence sensor for the identification of DPA. Furthermore, fluorescent test paper was made to detect DPA promptly with color changes. The enhancement mechanism was established by the hydrogen-bonding interaction and photoinduced electron transfer transition between MOF-1 and DPA molecules.


Subject(s)
Biomarkers , Metal-Organic Frameworks , Thiadiazoles , Zinc , Metal-Organic Frameworks/chemistry , Zinc/chemistry , Zinc/analysis , Thiadiazoles/chemistry , Anthrax/diagnosis , Picolinic Acids/chemistry , Picolinic Acids/analysis , Bacillus anthracis , Models, Molecular
3.
Appl Microbiol Biotechnol ; 108(1): 366, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850320

ABSTRACT

This review gathers all, to the best of our current knowledge, known lysins, mainly bacteriophage-derived, that have demonstrated activity against Bacillus anthracis strains. B. anthracis is a spore-forming, toxin-producing bacteria, naturally dwelling in soil. It is best known as a potential biowarfare threat, an etiological agent of anthrax, and a severe zoonotic disease. Anthrax can be treated with antibiotics (ciprofloxacin, penicillin, doxycycline); however, their administration may take up even to 60 days, and different factors can compromise their effectiveness. Bacterial viruses, bacteriophages (phages), are natural enemies of bacteria and use their lytic enzymes, endolysins (lysins), to specifically kill bacterial cells. Harnessing the potential of lysins to combat bacterial infections holds promise for diminishing antibiotic usage and, consequently, addressing the escalating antibiotic resistance in bacteria. In this context, we list the lysins with the activity against B. anthracis, providing a summary of their lytic properties in vitro and the outcomes observed in animal models. Bacillus cereus strain ATCC 4342/RSVF1, a surrogate for B. anthracis, was also included as a target bacteria. KEY POINTS: • More than a dozen different B. anthracis lysins have been identified and studied. • They fall into three blocks regarding their amino acid sequence similarity and most of them are amidases. • Lysins could be used in treating B. anthracis infections.


Subject(s)
Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Endopeptidases , Bacillus anthracis/drug effects , Bacillus anthracis/virology , Anthrax/drug therapy , Anthrax/microbiology , Animals , Endopeptidases/pharmacology , Endopeptidases/metabolism , Endopeptidases/genetics , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Bacillus cereus/drug effects , Bacillus cereus/virology , Humans , Bacillus Phages/genetics
4.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833982

ABSTRACT

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Subject(s)
Biodegradation, Environmental , Burkholderiales , Escherichia coli , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Burkholderiales/enzymology , Escherichia coli/genetics , Bacillus anthracis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Engineering
5.
Arch Virol ; 169(7): 134, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834736

ABSTRACT

Anthrax is an acute infectious zoonotic disease caused by Bacillus anthracis, a bacterium that is considered a potential biological warfare agent. Bacillus bacteriophages shape the composition and evolution of bacterial communities in nature and therefore have important roles in the ecosystem community. B. anthracis phages are not only used in etiological diagnostics but also have promising prospects in clinical therapeutics or for disinfection in anthrax outbreaks. In this study, two temperate B. anthracis phages, vB_BanS_A16R1 (A16R1) and vB_BanS_A16R4 (A16R4), were isolated and showed siphovirus-like morphological characteristics. Genome sequencing showed that the genomes of phages A16R1 and A16R4 are 36,569 bp and 40,059 bp in length, respectively. A16R1 belongs to the genus Wbetavirus, while A16R4 belongs to the genus Hubeivirus and is the first phage of that genus found to lyse B. anthracis. Because these two phages can comparatively specifically lyse B. anthracis, they could be used as alternative diagnostic tools for identification of B. anthracis infections.


Subject(s)
Bacillus Phages , Bacillus anthracis , Genome, Viral , Bacillus anthracis/virology , Genome, Viral/genetics , Bacillus Phages/isolation & purification , Bacillus Phages/genetics , Bacillus Phages/classification , Siphoviridae/genetics , Siphoviridae/isolation & purification , Siphoviridae/classification , Phylogeny
6.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38888319

ABSTRACT

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Subject(s)
Aminoglycosides , Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Lipoglycopeptides , Microbial Sensitivity Tests , Respiratory Tract Infections , Animals , Lipoglycopeptides/pharmacology , Rabbits , Anthrax/drug therapy , Anthrax/microbiology , Anthrax/mortality , Bacillus anthracis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aminoglycosides/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Disease Models, Animal , Levofloxacin/pharmacology , Female
7.
Spat Spatiotemporal Epidemiol ; 49: 100657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876568

ABSTRACT

Anthrax is a zoonotic disease caused by a spore-forming gram-positive bacterium, Bacillus anthracis. Increased anthropogenic factors inside wildlife-protected areas may worsen the spillover of the disease at the interface. Consequently, environmental suitability prediction for B. anthracis spore survival to locate a high-risk area is urgent. Here, we identified a potentially suitable habitat and a high-risk area for appropriate control measures. Our result revealed that a relatively largest segment of Omo National Park, about 23.7% (1,218 square kilometers) of the total area; 36.6% (711 square kilometers) of Mago National Park, and 29.4% (489 square kilometers) of Tama wildlife Reserve predicted as a high-risk area for the anthrax occurrence in the current situation. Therefore, the findings of this study provide the priority area to focus on and allocate resources for effective surveillance, prevention, and control of anthrax before it causes devastating effects on wildlife.


Subject(s)
Animals, Wild , Anthrax , Bacillus anthracis , Animals , Anthrax/epidemiology , Anthrax/veterinary , Anthrax/prevention & control , Bacillus anthracis/isolation & purification , Animals, Wild/microbiology , Ethiopia/epidemiology , Conservation of Natural Resources , Ecosystem
8.
Discov Med ; 36(184): 1030-1040, 2024 May.
Article in English | MEDLINE | ID: mdl-38798262

ABSTRACT

BACKGROUND: Since 2019, the incidence of anthrax in the Ningxia Hui Autonomous Region has increased significantly compared with previous years, so in this situation the anthrax in the Ningxia region not only had a detrimental impact on public health, but also inflicted significant economic repercussions. Therefore, we conducted a molecular epidemiological study of 20 strains from 2019-2023 isolates. This study investigated the origin of Bacillus anthracis and its genetic diversity. METHODS: We conducted canonical single-nucleotide polymorphisms (CanSNPs) typing and whole genome sequencing based on the extracted nucleic acid of Bacillus anthracis. Based on the whole genome drafts, we studied the genomic characteristics of 20 isolates. Meanwhile, we performed phylogenetic studies based on genome-wide core single-nucleotide polymorphisms (SNPs) using MEGA's Maximum Likelihood (ML) method and core-genome-based multilocus sequence typing (cgMLST) of the core genomes of these strains using BioNumerics' minimum spanning tree (MST) model. RESULTS: The 20 isolates were categorized into sub-lineages A.Br.001/002, and comparative genomic analyses of these strains with other isolates from other parts of the world showed that the strains from Ningxia were correlated with isolates from Europe, Indonesia, Georgia (USA), and Beijing (China). For the 20 isolates in Ningxia, the genetic relationship of the isolates isolated from the same year or region was relatively close. CONCLUSION: The A.Br.001/002 subgroup was the dominant endemic strain in Ningxia. The genetic relationship and phylogenesis between isolates from Ningxia and strains from Europe and Indonesia suggest that anthrax spread around the globe through ancient trade routes.


Subject(s)
Anthrax , Bacillus anthracis , Genome, Bacterial , Phylogeny , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/isolation & purification , Whole Genome Sequencing/methods , China/epidemiology , Anthrax/microbiology , Anthrax/epidemiology , Genome, Bacterial/genetics , Humans , Multilocus Sequence Typing/methods
9.
N Biotechnol ; 82: 54-64, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38750815

ABSTRACT

Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.


Subject(s)
Bacillus anthracis , Cell Wall , Staphylococcus aureus , Staphylococcus aureus/metabolism , Staphylococcus aureus/isolation & purification , Bacillus anthracis/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Luminescent Proteins/metabolism , Luminescent Proteins/chemistry , Protein Multimerization , Protein Domains , Surface Plasmon Resonance , Biosensing Techniques , Peptidoglycan/metabolism , Peptidoglycan/chemistry
10.
J Air Waste Manag Assoc ; 74(7): 464-477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38775962

ABSTRACT

The Wide Area Demonstration (WAD) was a field exercise conducted under the U.S. EPA's Analysis of Coastal Operational Resiliency program, in conjunction with the U.S. Department of Homeland Security and the U.S. Coast Guard. The purpose of the WAD was to operationalize at field scale aspects of remediation activities that would occur following an outdoor release of Bacillus anthracis spores, including sampling and analysis, decontamination, data management, and waste management. The WAD was conducted in May 2022 at Fort Walker (formerly known as Fort A.P. Hill) and utilized Bacillus atrophaeus as a benign simulant for B. anthracis. B. atrophaeus spores were inoculated onto the study area at the beginning of the study, and air samples were collected daily during each of the different phases of the WAD using Dry Filter Units (DFUs). Ten DFU air samplers were placed at the perimeter of the study area to collect bioaerosols onto two parallel 47-mm diameter polyester felt filters, which were then subsequently analyzed in a microbiological laboratory for the quantification of B. atrophaeus. The study demonstrated the use of DFUs as a rugged and robust bioaerosol collection device. The results indicated that the highest B. atrophaeus spore air concentrations (up to ~ 5 colony forming units/m3) occurred at the beginning of the demonstration (e.g. during inoculation and characterization sampling phases) and generally downwind from the test site, suggesting transport of the spores was occurring from the study area. Very few B. atrophaeus spores were detected in the air after several weeks and following decontamination of exterior surfaces, thus providing an indication of the site decontamination procedures' effectiveness. No B. atrophaeus spores were detected in any of the blank or background samples.Implications: Following an incident involving a release of Bacillus anthracis spores or other biological threat agent into the outdoor environment, understanding the factors that may affect the bioagent's fate and transport can help predict viable contaminant spread via the ambient air. This paper provides scientific data for the first time on ambient air concentrations of bacterial spores over time and location during different phases of a field test in which Bacillus atrophaeus (surrogate for B. anthracis) spores were released outdoors as part of a full-scale study on sampling and decontamination in an urban environment. This study advances the knowledge related to the fate and transport of bacterial spores (such as those causing anthrax disease) as an aerosol in the outdoor environment over the course of three weeks in a mock urban environment and has exposure and health risk implications. The highest spore air concentrations occurred at the beginning of the study (e.g. during inoculation of surfaces and characterization sampling), and in the downwind direction, but diminished over time; few B. atrophaeus spores were detected in the air after several weeks and following decontamination. Therefore, in an actual incident, potential reaerosolization of the microorganism and subsequent transport in the air during surface sampling and remediation efforts should be considered for determining exclusion zone locations and estimating potential risk to neighboring communities. The data also provide evidence suggesting that the large-scale decontamination of outdoor surfaces may reduce air concentrations of the bioagent, which is important since exposure of B. anthracis via inhalation is a primary concern.


Subject(s)
Air Microbiology , Bacillus anthracis , Bacillus , Decontamination , Spores, Bacterial , Bacillus anthracis/isolation & purification , Decontamination/methods , Environmental Monitoring/methods
11.
Anal Chem ; 96(15): 6012-6020, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564412

ABSTRACT

Bacterial vegetative cells turn into metabolically dormant spores in certain environmental situations. Once suitable conditions trigger the germination of spores belonging to the pathogenic bacterial category, public safety and environmental hygiene will be threatened, and lives will even be endangered when encountering fatal ones. Instant identification of pathogenic bacterial spores remains a challenging task, since most current approaches belonging to complicated biological methods unsuitable for onsite sensing or emerging alternative chemical techniques are still inseparable from professional instruments. Here we developed a polychromatic fluorescent nanoprobe for ratiometric detection and visual inspection of the pathogenic bacterial spore biomarker, dipicolinic acid (DPA), realizing rapidly accurate screening of pathogenic bacterial spores such as Bacillus anthracis spores. The nanoprobe is made of aminoclay-coated silicon nanoparticles and functionalized with europium ions, exhibiting selective and sensitive response toward DPA and Bacillus subtilis spores (simulants for Bacillus anthracis spores) with excellent linearity. The proposed sensing strategy allowing spore determination of as few as 0.3 × 105 CFU/mL within 10 s was further applied to real environmental sample detection with good accuracy and reliability. Visual quantitative determination can be achieved by analyzing the RGB values of the corresponding test solution color via a color recognition APP on a smartphone. Different test samples can be photographed at the same time, hence the efficient accomplishment of examining bulk samples within minutes. Potentially employed in various on-site sensing occasions, this strategy may develop into a powerful means for distinguishing hazardous pathogens to facilitate timely and proper actions of dealing with multifarious security issues.


Subject(s)
Bacillus anthracis , Spores, Bacterial , Reproducibility of Results , Europium , Picolinic Acids , Bacillus subtilis , Fluorescent Dyes
12.
Food Chem ; 451: 139410, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670024

ABSTRACT

Dipicolinic acid (DPA), as a biomarker for Bacillus anthracis, is highly toxic at trace levels. Rapid and on-site quantitative detection of DPA is essential for maintaining food safety and public health. This work develops a dual-channel self-calibrated fluorescence sensor constructed by the YVO4:Eu and Tb-ß-diketone complex for rapid visual detection of DPA. This sensor exhibits high selectivity, fast response time, excellent detection sensitivity, and the detection limit is as low as 4.5 nM in the linear range of 0-16 µM. A smartphone APP and portable ultraviolet lamp can assemble a mobile fluorescence sensor for on-site analysis. Interestingly, adding Cu2+ ions can quench the fluorescence intensity of Tb3+. In contrast, the addition of cysteine can restore the fluorescence, allowing the accurate detection of Cu2+ ions and cysteine in environmental water and food samples. This work provides a portable sensor that facilitates real-time analysis of multiple targets in food and the environment.


Subject(s)
Anthrax , Bacillus anthracis , Biomarkers , Copper , Cysteine , Food Analysis , Food Contamination , Picolinic Acids , Smartphone , Copper/analysis , Cysteine/analysis , Bacillus anthracis/isolation & purification , Bacillus anthracis/chemistry , Biomarkers/analysis , Food Contamination/analysis , Anthrax/diagnosis , Food Analysis/instrumentation , Food Analysis/methods , Picolinic Acids/analysis , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Limit of Detection , Fluorescence , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
13.
Genes (Basel) ; 15(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38674361

ABSTRACT

Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin Receptor-2 (ANTXR2) gene acts as membrane receptor and facilitates the entry of the anthrax toxin into host cells. Additionally, mutations in the ANTXR2 gene have been linked to various autoimmune diseases, including Hyaline Fibromatosis Syndrome (HFS), Ankylosing Spondylitis (AS), Juvenile Hyaline Fibromatosis (JHF), and Infantile Systemic Hyalinosis (ISH). This study delves into the genetic landscape of ANTXR2, aiming to comprehend its associations with diverse disorders, elucidate the impacts of its mutations, and pinpoint minimal non-pathogenic mutations capable of reducing the binding affinity of the ANTXR2 gene with the protective antigen. Recognizing the pivotal role of single-nucleotide polymorphisms (SNPs) in shaping genetic diversity, we conducted computational analyses to discern highly deleterious and tolerated non-synonymous SNPs (nsSNPs) in the ANTXR2 gene. The Mutpred2 server determined that the Arg465Trp alteration in the ANTXR2 gene leads to altered DNA binding (p = 0.22) with a probability of a deleterious mutation of 0.808; notably, among the identified deleterious SNPs, rs368288611 (Arg465Trp) stands out due to its significant impact on altering the DNA-binding ability of ANTXR2. We propose these SNPs as potential candidates for hypertension linked to the ANTXR2 gene, which is implicated in blood pressure regulation. Noteworthy among the tolerated substitutions is rs200536829 (Ala33Ser), recognized as less pathogenic; this highlights its potential as a valuable biomarker, potentially reducing side effects on the host while also reducing binding with the protective antigen protein. Investigating these SNPs holds the potential to correlate with several autoimmune disorders and mitigate the impact of anthrax disease in humans.


Subject(s)
Anthrax , Antigens, Bacterial , Mutation , Polymorphism, Single Nucleotide , Receptors, Peptide , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Humans , Anthrax/microbiology , Anthrax/genetics , Anthrax/immunology , Receptors, Peptide/genetics , Bacterial Toxins/genetics , Bacillus anthracis/genetics , Bacillus anthracis/pathogenicity , Hyaline Fibromatosis Syndrome/genetics , Hyaline Fibromatosis Syndrome/microbiology , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/microbiology , Disease Resistance/genetics , Receptors, Cell Surface/genetics , Protein Binding
14.
Microbiol Spectr ; 12(6): e0418023, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38666793

ABSTRACT

The high-consequence pathogen Bacillus anthracis causes human anthrax and often results in lethal infections without the rapid administration of effective antimicrobial treatment. Antimicrobial resistance profiling is therefore critical to inform post-exposure prophylaxis and treatment decisions, especially during emergencies such as outbreaks or where intentional release is suspected. Whole-genome sequencing using a rapid long-read sequencer can uncover antimicrobial resistance patterns if genetic markers of resistance are known. To identify genomic markers associated with antimicrobial resistance, we isolated B. anthracis derived from the avirulent Sterne strain with elevated minimal inhibitory concentrations to clarithromycin. Mutants were characterized both phenotypically through broth microdilution susceptibility testing and observations during culturing, as well as genotypically with whole-genome sequencing. We identified two different in-frame insertions in the L22 ribosomal protein-encoding gene rplV, which were subsequently confirmed to be involved in clarithromycin resistance through the reversion of the mutant gene to the parent (drug-susceptible) sequence. Detection of the rplV insertions was possible with rapid long-read sequencing, with a time-to-answer within 3 h. The mutations associated with clarithromycin resistance described here will be used in conjunction with known genetic markers of resistance for other antimicrobials to strengthen the prediction of antimicrobial resistance in B. anthracis.IMPORTANCEThe disease anthrax, caused by the pathogen Bacillus anthracis, is extremely deadly if not treated quickly and appropriately. Clarithromycin is an antibiotic recommended for the treatment and post-exposure prophylaxis of anthrax by the Centers for Disease Control and Prevention; however, little is known about the ability of B. anthracis to develop resistance to clarithromycin or the mechanism of that resistance. The characterization of clarithromycin-resistant isolates presented here provides valuable information for researchers and clinicians in the event of a release of the resistant strain. Additionally, knowledge of the genetic basis of resistance provides a foundation for susceptibility prediction through rapid genome sequencing to inform timely treatment decisions.


Subject(s)
Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Clarithromycin , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/drug effects , Clarithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Anthrax/microbiology , Humans , Mutation , Bacterial Proteins/genetics , Ribosomal Proteins/genetics , Genome, Bacterial/genetics
15.
Microbiol Res ; 283: 127697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522411

ABSTRACT

The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.


Subject(s)
Bacillus anthracis , Bacillus cereus , Animals , Humans , Anti-Bacterial Agents/pharmacology , Phylogeny
16.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542074

ABSTRACT

Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.


Subject(s)
Anthrax , Bacillus anthracis , Leukemia, Erythroblastic, Acute , Thrombocytopenia , Animals , Humans , Mice , Antigens, Bacterial/metabolism , Bacillus anthracis/metabolism , Butyrate Response Factor 1/metabolism , Cell Differentiation , Thrombocytopenia/chemically induced , Thrombocytopenia/genetics
17.
J Zoo Wildl Med ; 55(1): 212-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453505

ABSTRACT

Improved methods are needed to prevent wildlife deaths from anthrax. Caused by Bacillus anthracis, naturally occurring outbreaks of anthrax are frequent but unpredictable. The commercially available veterinary vaccine is labeled for subcutaneous injection and is impractical for large-scale wildlife vaccination programs; therefore, oral vaccination is the most realistic method to control and prevent these outbreaks. We reported the induction of an anthrax-specific lethal toxin (LeTx) neutralizing antibody response in mice following oral vaccination with alginate microcapsules containing B. anthracis Sterne strain 34F2 spores, coated with poly-L-lysine (PLL) and vitelline protein B (VpB). We continued evaluating our novel vaccine formulation through this proof-of-concept study in white-tailed deer (WTD; Odocoileus virginianus; n = 9). We orally vaccinated WTD via needle-free syringe with three formulations of the encapsulated vaccine: 1) PLL-VpB-coated microcapsules with 107-8 spores/ml (n = 5), 2) PLL-VpB-coated microcapsules with 109-10 spores/ml (n = 2), and 3) PLL-coated microcapsules with 109-10 spores/ml (n = 2). Although the limited sample sizes require continued experimentation, we observed an anthrax-specific antibody response in WTD serum following oral vaccination with PLL-coated microcapsules containing 109 spores/ ml. Furthermore, this antibody response neutralized anthrax LeTx in vitro, suggesting that continued development of this vaccine may allow for realistic wildlife anthrax vaccination programs.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Deer , Rodent Diseases , Animals , Mice , Anthrax/prevention & control , Anthrax/veterinary , Antibodies, Neutralizing , Capsules , Electron Spin Resonance Spectroscopy/veterinary , Vaccination/veterinary , Animals, Wild , Antibodies, Bacterial
18.
J Mol Biol ; 436(8): 168521, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458604

ABSTRACT

Dedicated translocase channels are nanomachines that often, but not always, unfold and translocate proteins through narrow pores across the membrane. Generally, these molecular machines utilize external sources of free energy to drive these reactions, since folded proteins are thermodynamically stable, and once unfolded they contain immense diffusive configurational entropy. To catalyze unfolding and translocate the unfolded state at appreciable timescales, translocase channels often utilize analogous peptide-clamp active sites. Here we describe how anthrax toxin has been used as a biophysical model system to study protein translocation. The tripartite bacterial toxin is composed of an oligomeric translocase channel, protective antigen (PA), and two enzymes, edema factor (EF) and lethal factor (LF), which are translocated by PA into mammalian host cells. Unfolding and translocation are powered by the endosomal proton gradient and are catalyzed by three peptide-clamp sites in the PA channel: the α clamp, the ϕ clamp, and the charge clamp. These clamp sites interact nonspecifically with the chemically complex translocating chain, serve to minimize unfolded state configurational entropy, and work cooperatively to promote translocation. Two models of proton gradient driven translocation have been proposed: (i) an extended-chain Brownian ratchet mechanism and (ii) a proton-driven helix-compression mechanism. These models are not mutually exclusive; instead the extended-chain Brownian ratchet likely operates on ß-sheet sequences and the helix-compression mechanism likely operates on α-helical sequences. Finally, we compare and contrast anthrax toxin with other related and unrelated translocase channels.


Subject(s)
Bacillus anthracis , Bacterial Toxins , Animals , Protons , Antigens, Bacterial/chemistry , Bacterial Toxins/metabolism , Protein Transport , Peptides/metabolism , Bacillus anthracis/chemistry , Mammals/metabolism
19.
NPJ Syst Biol Appl ; 10(1): 33, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553532

ABSTRACT

Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Humans , Bayes Theorem , Anthrax/microbiology , Anthrax/prevention & control
20.
Immunohorizons ; 8(3): 269-280, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38517345

ABSTRACT

Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVß5, CD36, and TIM-3, whereas TIM-1, αVß3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.


Subject(s)
Anthrax , Bacillus anthracis , Humans , c-Mer Tyrosine Kinase/metabolism , Peptidoglycan/pharmacology , Peptidoglycan/metabolism , Anthrax/metabolism , Anthrax/pathology , Efferocytosis , Hepatitis A Virus Cellular Receptor 2/metabolism , Macrophages/metabolism , Cell Wall/metabolism , Cell Wall/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...