Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.133
Filter
1.
Microbiome ; 12(1): 143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090708

ABSTRACT

BACKGROUND: Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS: We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS: Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.


Subject(s)
Bacteriophages , Sargassum , Seawater , Symbiosis , Sargassum/microbiology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Seawater/microbiology , Seawater/virology , Genome, Viral , Metagenome , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Genomics , Microbiota , Phylogeny , Genome, Bacterial , Synechococcus/virology , Synechococcus/genetics
2.
Virus Res ; 347: 199426, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960003

ABSTRACT

Enterococci are robust Gram-positive bacteria that pose a significant threat in healthcare settings due to antibiotic resistance, with vancomycin-resistant enterococci (VRE) most prominent. To tackle this issue, bacteriophages (bacterial viruses) can be exploited as they specifically and efficiently target bacteria. Here, we successfully isolated and characterised a set of novel phages: SHEF10, SHEF11, SHEF13, SHEF14, and SHEF16 which target E. faecalis (SHEF10,11,13), or E. faecium (SHEF13, SHEF14 & SHEF16) strains including a range of clinical and VRE isolates. Genomic analysis shows that all phages are strictly lytic and diverse in terms of genome size and content, quickly and effectively lysing strains at different multiplicity of infections. Detailed analysis of the broad host-range SHEF13 phage revealed the crucial role of the enterococcal polysaccharide antigen (EPA) variable region in its infection of E. faecalis V583. In parallel, the discovery of a carbohydrate-targeting domain (CBM22) found conserved within the three phage genomes indicates a role in cell surface interactions that may be important in phage-bacterial interactons. These findings advance our comprehension of phage-host interactions and pave the way for targeted therapeutic strategies against antibiotic-resistant enterococcal infections.


Subject(s)
Bacteriophages , Enterococcus faecalis , Genome, Viral , Host Specificity , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Enterococcus faecalis/virology , Enterococcus faecalis/genetics , Enterococcus faecium/virology , Enterococcus faecium/genetics , Enterococcus/virology , Enterococcus/genetics , Vancomycin-Resistant Enterococci/virology , Vancomycin-Resistant Enterococci/genetics , Gram-Positive Bacterial Infections/microbiology , Humans
3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000497

ABSTRACT

This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Sinorhizobium , Soil Microbiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Bacteriophages/physiology , Sinorhizobium/genetics , Sinorhizobium/virology , Sinorhizobium/physiology , Open Reading Frames
4.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39007232

ABSTRACT

Clavibacter michiganensis subsp. michiganensis (Cmm) is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods. In this study, Phage33 infecting Cmm was characterized based on morphological and genomic properties. Morphological characteristics such as shape and size were investigated using electron microscopy. The whole genome was sequenced using the Illumina Novaseq 6000 platform and the sequence was assembled and annotated. VICTOR and VIRIDIC were used for determining the phylogeny and comparing viral genomes, respectively. Electron microscopy showed that Phage33 has an icosahedral head with a diameter of ~55 nm and a long, thin, non-contractile tail ~169 nm in length. The genome of Phage33 is 56 324 bp in size, has a GC content of 62.49 % and encodes 67 open reading frames. Thirty-seven ORFs showed high homology to functionally annotated bacteriophage proteins in the NCBI database. The remaining 30 ORFs were identified as hypothetical with unknown functions. The genome contains no antimicrobial resistance, no lysogenicity and no virulence signatures, suggesting that it is a suitable candidate for biocontrol agents. The results of a blastn search showed similarity to the previously reported Xylella phage Sano, with an average nucleotide sequence identity of 92.37 % and query coverage of 91 %. This result was verified using VICTOR and VIRIDIC analysis, and suggests that Phage33 is a new member of the genus Sanovirus under the class Caudoviricetes.


Subject(s)
Bacteriophages , Clavibacter , Genome, Viral , Open Reading Frames , Phylogeny , Whole Genome Sequencing , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Turkey , Base Composition , DNA, Viral/genetics , Plant Diseases/microbiology , Sequence Analysis, DNA
5.
BMC Microbiol ; 24(1): 234, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951769

ABSTRACT

BACKGROUND: Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS: A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS: fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.


Subject(s)
Bacteriophages , Enterobacter aerogenes , Flagella , Genome, Viral , Host Specificity , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/physiology , Flagella/virology , Flagella/genetics , Enterobacter aerogenes/virology , Enterobacter aerogenes/genetics , Whole Genome Sequencing , Myoviridae/genetics , Myoviridae/isolation & purification , Myoviridae/classification , Myoviridae/physiology
6.
Arch Virol ; 169(8): 156, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967872

ABSTRACT

Infections caused by multidrug-resistant (MDR) bacteria are a growing global concern. Enterobacter cloacae complex (ECC) species are particularly adept at developing antibiotic resistance. Phage therapy is proposed as an alternative treatment for pathogens that no longer respond to antibiotics. Unfortunately, ECC phages are understudied when compared to phages of many other bacterial species. In this Ghanaian-Finnish study, we isolated two ECC strains from ready-to-eat food samples and three novel phages from natural waters against these strains. We sequenced the genomic DNA of the novel Enterobacter phages, fGh-Ecl01, fGh-Ecl02, and fGh-Ecl04, and assessed their therapeutic potential. All of the phages were found to be lytic, easy to propagate, and lacking any toxic, integrase, or antibiotic resistance genes and were thus considered suitable for therapy purposes. They all were found to be related to T4-type viruses: fGh-Ecl01 and fGh-Ecl04 to karamviruses and fGh-Ecl02 to agtreviruses. Testing of Finnish clinical ECC strains showed promising susceptibility to these novel phages. As many as 61.1% of the strains were susceptible to fGh-Ecl01 and fGh-Ecl04, and 7.4% were susceptible to fGh-Ecl02. Finally, we investigated the susceptibility of the newly isolated ECC strains to three antibiotics - meropenem, ciprofloxacin, and cefepime - in combination with the novel phages. The use of phages and antibiotics together had synergistic effects. When using an antibiotic-phage combination, even low concentrations of antibiotics fully inhibited the growth of bacteria.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Enterobacter cloacae , Enterobacter cloacae/virology , Enterobacter cloacae/drug effects , Ghana , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Anti-Bacterial Agents/pharmacology , Phage Therapy/methods , Genome, Viral , Enterobacteriaceae Infections/therapy , Enterobacteriaceae Infections/microbiology , Drug Resistance, Multiple, Bacterial , Finland , Humans , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Meropenem/pharmacology
7.
Microbiome ; 12(1): 134, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039555

ABSTRACT

BACKGROUND: Understanding the interactions and dynamics of microbiotas within biological wastewater treatment systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communities within a hybrid biofilm and activated sludge system. RESULTS: We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabolism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes. CONCLUSIONS: The insights gained from this research contribute to the growing body of knowledge surrounding interactions and dynamics of host-phage and pave the way for further exploration and potential applications in the field of microbial ecology. Video Abstract.


Subject(s)
Bacteria , Bacteriophages , Sewage , Wastewater , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/physiology , Bacteriophages/isolation & purification , Sewage/virology , Sewage/microbiology , Wastewater/virology , Wastewater/microbiology , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Biofilms , Metagenomics , Water Purification/methods , Microbiota
8.
Appl Environ Microbiol ; 90(7): e0036724, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38953371

ABSTRACT

Flavobacteriia are the dominant and active bacteria during algal blooms and play an important role in polysaccharide degradation. However, little is known about phages infecting Flavobacteriia, especially during green tide. In this study, a novel virus, vB_TgeS_JQ, infecting Flavobacteriia was isolated from the surface water of the Golden Beach of Qingdao, China. Transmission electron microscopy demonstrated that vB_TgeS_JQ had the morphology of siphovirus. The experiments showed that it was stable from -20°C to 45°C and pH 5 to pH 8, with latent and burst periods both lasting for 20 min. Genomic analysis showed that the phage vB_TgeS_JQ contained a 40,712-bp dsDNA genome with a GC content of 30.70%, encoding 74 open-reading frames. Four putative auxiliary metabolic genes were identified, encoding electron transfer-flavoprotein dehydrogenase, calcineurin-like phosphoesterase, phosphoribosyl-ATP pyrophosphohydrolase, and TOPRIM nucleotidyl hydrolase. The abundance of phage vB_TgeS_JQ was higher during Ulva prolifera (U. prolifera) blooms compared with other marine environments. The phylogenetic and comparative genomic analyses revealed that vB_TgeS_JQ exhibited significant differences from all other phage isolates in the databases and therefore was classified as an undiscovered viral family, named Zblingviridae. In summary, this study expands the knowledge about the genomic, phylogenetic diversity and distribution of flavobacterial phages (flavophages), especially their roles during U. prolifera blooms. IMPORTANCE: The phage vB_TgeS_JQ was the first flavobacterial phage isolated during green tide, representing a new family in Caudoviricetes and named Zblingviridae. The abundance of phage vB_TgeS_JQ was higher during the Ulva prolifera blooms. This study provides insights into the genomic, phylogenetic diversity, and distribution of flavophages, especially their roles during U. prolifera blooms.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , China , Flavobacteriaceae/virology , Flavobacteriaceae/genetics , Eutrophication , Seawater/virology , Seawater/microbiology , DNA, Viral/genetics , Ulva/virology , Siphoviridae/genetics , Siphoviridae/classification , Siphoviridae/isolation & purification , Siphoviridae/ultrastructure
9.
Viruses ; 16(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39066202

ABSTRACT

Commercially produced cyanobacteria preparations sold under the name spirulina are widely consumed, due to their traditional use as a nutrient-rich foodstuff and subsequent marketing as a superfood. Despite their popularity, the microbial composition of ponds used to cultivate these bacteria is understudied. A total of 19 pond samples were obtained from small-scale spirulina farms and subjected to metagenome and/or virome sequencing, and the results were analysed. A remarkable level of prokaryotic and viral diversity was found to be present in the ponds, with Limnospira sp. and Arthrospira sp. sometimes being notably scarce. A detailed breakdown of prokaryotic and viral components of 15 samples is presented. Twenty putative Limnospira sp.-infecting bacteriophage contigs were identified, though no correlation between the performance of these cultures and the presence of phages was found. The high diversity of these samples prevented the identification of clear trends in sample performance over time, between ponds or when comparing successful and failed fermentations.


Subject(s)
Bacteriophages , Biodiversity , Fermentation , Metagenomics , Spirulina , Metagenomics/methods , Spirulina/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Metagenome , Virome , Phylogeny , Ponds/microbiology , Ponds/virology , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
10.
Viruses ; 16(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39066266

ABSTRACT

Spiroplasma virus 4 (SpV4) is a bacteriophage of the Microviridae, which packages circular ssDNA within non-enveloped T = 1 icosahedral capsids. It infects spiroplasmas, which are known pathogens of honeybees. Here, the structure of the SpV4 virion is determined using cryo-electron microscopy to a resolution of 2.5 Å. A striking feature of the SpV4 capsid is the mushroom-like protrusions at the 3-fold axes, which is common among all members of the subfamily Gokushovirinae. While the function of the protrusion is currently unknown, this feature varies widely in this subfamily and is therefore possibly an adaptation for host recognition. Furthermore, on the interior of the SpV4 capsid, the location of DNA-binding protein VP8 was identified and shown to have low structural conservation to the capsids of other viruses in the family. The structural characterization of SpV4 will aid future studies analyzing the virus-host interaction, to understand disease mechanisms at a molecular level. Furthermore, the structural comparisons in this study, including a low-resolution structure of the chlamydia phage 2, provide an overview of the structural repertoire of the viruses in this family that infect various bacterial hosts, which in turn infect a wide range of animals and plants.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Microviridae , Spiroplasma , Virion , Capsid/ultrastructure , Capsid/metabolism , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Spiroplasma/ultrastructure , Microviridae/genetics , Microviridae/ultrastructure , Microviridae/chemistry , Virion/ultrastructure , Bacteriophages/ultrastructure , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/chemistry , Bacteriophages/physiology , Models, Molecular
11.
Microbiome ; 12(1): 122, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970126

ABSTRACT

BACKGROUND: Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients' phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients' phageome composition. RESULTS: Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients' phageome toward the donors' composition and increased phageome alpha diversity and variability over time. CONCLUSIONS: FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient's microbiome. TRIAL REGISTRATION: The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.


Subject(s)
Bacteriophages , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Obesity , Humans , Fecal Microbiota Transplantation/methods , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/genetics , Feces/microbiology , Feces/virology , Obesity/therapy , Obesity/microbiology , Double-Blind Method , Female , Adolescent , Male , Bacteria/classification , Bacteria/virology , Bacteria/genetics , Metagenomics/methods , Treatment Outcome
12.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38976038

ABSTRACT

Environmental viruses (primarily bacteriophages) are widely recognized as playing an important role in ecosystem homeostasis through the infection of host cells. However, the majority of environmental viruses are still unknown as their mosaic structure and frequent mutations in their sequences hinder genome construction in current metagenomics. To enable the large-scale acquisition of environmental viral genomes, we developed a new single-viral genome sequencing platform with microfluidic-generated gel beads. Amplification of individual DNA viral genomes in mass-produced gel beads allows high-throughput genome sequencing compared to conventional single-virus genomics. The sequencing analysis of river water samples yielded 1431 diverse viral single-amplified genomes, whereas viral metagenomics recovered 100 viral metagenome-assembled genomes at the comparable sequence depth. The 99.5% of viral single-amplified genomes were determined novel at the species level, most of which could not be recovered by a metagenomic assembly. The large-scale acquisition of diverse viral genomes identified protein clusters commonly detected in different viral strains, allowing the gene transfer to be tracked. Moreover, comparative genomics within the same viral species revealed that the profiles of various methyltransferase subtypes were diverse, suggesting an enhanced escape from host bacterial internal defense mechanisms. Our use of gel bead-based single-virus genomics will contribute to exploring the nature of viruses by accelerating the accumulation of draft genomes of environmental DNA viruses.


Subject(s)
Genome, Viral , Metagenomics , Rivers , Rivers/virology , Metagenome , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Genomics , High-Throughput Nucleotide Sequencing , Genetic Variation , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Sequence Analysis, DNA
13.
Nat Commun ; 15(1): 6346, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068184

ABSTRACT

Viruses are core components of the human microbiome, impacting health through interactions with gut bacteria and the immune system. Most human microbiome viruses are bacteriophages, which exclusively infect bacteria. Until recently, most gut virome studies focused on low taxonomic resolution (e.g., viral operational taxonomic units), hampering population-level analyses. We previously identified an expansive and widespread bacteriophage lineage in inhabitants of Amsterdam, the Netherlands. Here, we study their biodiversity and evolution in various human populations. Based on a phylogeny using sequences from six viral genome databases, we propose the Candidatus order Heliusvirales. We identify heliusviruses in 82% of 5441 individuals across 39 studies, and in nine metagenomes from humans that lived in Europe and North America between 1000 and 5000 years ago. We show that a large lineage started to diversify when Homo sapiens first appeared some 300,000 years ago. Ancient peoples and modern hunter-gatherers have distinct Ca. Heliusvirales populations with lower richness than modern urbanized people. Urbanized people suffering from type 1 and type 2 diabetes, as well as inflammatory bowel disease, have higher Ca. Heliusvirales richness than healthy controls. We thus conclude that these ancient core members of the human gut virome have thrived with increasingly westernized lifestyles.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Phylogeny , Humans , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Gastrointestinal Microbiome/genetics , Genome, Viral/genetics , Metagenome/genetics , Virome/genetics , Inflammatory Bowel Diseases/virology , Biodiversity , Diabetes Mellitus, Type 2/virology , Female , Male , Europe , Netherlands , Adult
14.
Virus Res ; 347: 199435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986742

ABSTRACT

The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.


Subject(s)
Bacteriophages , Host Specificity , Pectobacterium , Plant Diseases , Solanum tuberosum , Pectobacterium/virology , Pectobacterium/genetics , Pectobacterium/pathogenicity , Solanum tuberosum/microbiology , Solanum tuberosum/virology , Plant Diseases/microbiology , Plant Diseases/virology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Denmark , Genome, Viral , Phylogeny
15.
Curr Microbiol ; 81(9): 285, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073500

ABSTRACT

Vibrio phages have emerged as a potential alternative to antibiotic therapy for treating Vibrio infections. In this study, a lytic Vibrio phage, vB_ValA_R15Z against Vibrio alginolyticus ATCC 17749T, was isolated from an aquatic water sample collected in Xiamen, China. The phage had an icosahedral head (diameter 69 ± 2 nm) and a short, non-contractile tail measuring 16 ± 2 nm. The genome of vB_ValA_R15Z was found to be a double-stranded DNA consisting of 43, 552 bp, containing 54 coding sequences (CDSs) associated with phage packaging, structure, DNA metabolism, lysis and additional functions. The BLASTN results indicated that vB_ValA_R15Z shared less than 90.18% similarity with known phages recorded in the NCBI GenBank database, suggesting that vB_ValA_R15Z was a novel Vibrio phage. Furthermore, phylogenetic analysis revealed that vB_ValA_R15Z belongs to the genus Kaohsiungvirus. In addition, a typical lytic mechanism (holin-endolysim) was found in the genome of vB_ValA_R15Z, while no antibiotic resistance- or virulence factor-related gene was detected. Overall, the study provides valuable insights into the isolation and characterization of vB_ValA_R15Z, highlighting its potential as an effective phage therapy option for combating Vibrio alginolyticus infections.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , China , DNA, Viral/genetics , Vibrio alginolyticus/virology , Vibrio alginolyticus/genetics , Vibrio/virology , Vibrio/genetics , Sequence Analysis, DNA
16.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892136

ABSTRACT

Due to the high microbiological contamination of raw food materials and the increase in the incidence of multidrug-resistant bacteria, new methods of ensuring microbiological food safety are being sought. One solution may be to use bacteriophages (so-called phages) as natural bacterial enemies. Therefore, the aim of this study was the biological and genomic characterization of three newly isolated Serratia- and Enterobacter-specific virulent bacteriophages as potential candidates for food biocontrol. Serratia phage KKP_3708 (vB_Sli-IAFB_3708), Serratia phage KKP_3709 (vB_Sma-IAFB_3709), and Enterobacter phage KKP_3711 (vB_Ecl-IAFB_3711) were isolated from municipal sewage against Serratia liquefaciens strain KKP 3654, Serratia marcescens strain KKP 3687, and Enterobacter cloacae strain KKP 3684, respectively. The effect of phage addition at different multiplicity of infection (MOI) rates on the growth kinetics of the bacterial hosts was determined using a Bioscreen C Pro growth analyzer. The phages retained high activity in a wide temperature range (from -20 °C to 60 °C) and active acidity values (pH from 3 to 12). Based on transmission electron microscopy (TEM) imaging and whole-genome sequencing (WGS), the isolated bacteriophages belong to the tailed bacteriophages from the Caudoviricetes class. Genomic analysis revealed that the phages have linear double-stranded DNA of size 40,461 bp (Serratia phage KKP_3708), 67,890 bp (Serratia phage KKP_3709), and 113,711 bp (Enterobacter phage KKP_3711). No virulence, toxins, or antibiotic resistance genes were detected in the phage genomes. The lack of lysogenic markers indicates that all three bacteriophages may be potential candidates for food biocontrol.


Subject(s)
Bacteriophages , Enterobacter , Genome, Viral , Genomics , Serratia , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Serratia/virology , Serratia/genetics , Enterobacter/virology , Enterobacter/genetics , Genomics/methods , Phylogeny , Sewage/virology , Sewage/microbiology , Virulence/genetics
17.
BMC Genomics ; 25(1): 549, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824509

ABSTRACT

BACKGROUND: Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage. RESULTS: We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes. CONCLUSIONS: In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.


Subject(s)
Genome, Bacterial , Genomics , Phylogeny , Prophages , Treponema , Prophages/genetics , Treponema/genetics , Treponema/virology , Genomics/methods , Computational Biology/methods , Genome, Viral , Bacteriophages/genetics , Bacteriophages/classification
18.
Curr Microbiol ; 81(7): 204, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831133

ABSTRACT

Erwinia amylovora, the primary causative agent of blight disease in rosaceous plants, poses a significant threat to agricultural yield worldwide, with limited effective countermeasures. The emergence of sustainable alternative agents such as bacteriophages is a promising solution for fire blight that specifically targets Erwinia. In this study, we isolated pEp_SNUABM_01 and pEa_SNUABM_55 from a South Korean apple orchard soil, analyzed their genomic DNA sequences, and performed a comprehensive comparative analysis of Hena1 in four distinct sections. This study aimed to unveil distinctive features of these phages, with a focus on host recognition, which will provide valuable insights into the evolution and characteristics of Henunavirus bacteriophages that infect plant pathogenic Erwinia spp. By elucidating the distinct genomic features of these phages, particularly in terms of host recognition, this study lays a foundation for their potential application in mitigating the risks associated with fire blight in Rosaceae plants on a global scale.


Subject(s)
Bacteriophages , Erwinia amylovora , Genome, Viral , Plant Diseases , Erwinia amylovora/virology , Erwinia amylovora/genetics , Plant Diseases/virology , Plant Diseases/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Phylogeny , Host Specificity , Genomics , Malus/microbiology , Malus/virology , Soil Microbiology
19.
BMC Microbiol ; 24(1): 211, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877452

ABSTRACT

BACKGROUND: This study investigates the effectiveness of the bacteriophage KZag1 against drug-resistant Klebsiella pneumoniae, aiming to assess its potential as a therapeutic agent. The novelty lies in the characterization of KZag1, a Myovirus with specific efficacy against multidrug-resistant K. pneumoniae strains. This highlights the significance of exploring alternative strategies, particularly phage therapy, in addressing biofilm-associated infections. METHODS: KZag1, characterized by a typical Myovirus structure with a 75 ± 5 nm diameter icosahedral head and a 15 ± 5 nm short tail, was evaluated in experimental trials against 15 strains of K. pneumoniae. The infection cycle duration was determined to be 50 min, resulting in an estimated burst size of approximately 83 plaque-forming units per colony-forming unit (PFU/CFU). Stability assessments were conducted within a pH range of 4 to 12 and temperatures ranging from 45°C to 60°C. Biofilm biomass reduction was observed, particularly at a multiplicity of infection (MOI) of 10. RESULTS: KZag1 demonstrated infection efficacy against 12 out of 15 tested K. pneumoniae strains. The phage exhibited stability across a broad pH range and at elevated temperatures. Notably, treatment with KZag1 significantly reduced K. pneumoniae biofilm biomass, emphasizing its potential in combating biofilm formation. Genomic analysis revealed a complete genome of 157,089 base pairs with a GC content of 46.38%, encompassing 203 open reading frames (ORFs) and a cysteine-specific tRNA sequence. Comparison with phage GP4 highlighted similarities, with KZag1 having a longer genome by approximately 4829 base pairs and a higher GC content by approximately 0.93%. Phylogenetic analysis classified KZag1 within the Myoviridae family. CONCLUSION: The efficacy of KZag1 against K. pneumoniae biofilm suggests its potential as a therapeutic candidate, especially for drug-resistant infections. Further clinical research is warranted to explore its synergy with other treatments, elucidate genomic traits, compare with Myoviridae phages, and understand its host interactions. These findings underscore the promising role of KZag1 in addressing drug-resistant bacterial infections.


Subject(s)
Bacteriophages , Biofilms , Genome, Viral , Klebsiella pneumoniae , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/genetics , Biofilms/growth & development , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Myoviridae/genetics , Myoviridae/physiology , Myoviridae/classification , Drug Resistance, Multiple, Bacterial/genetics , Phylogeny , DNA, Viral/genetics , Base Composition , Phage Therapy
20.
Arch Virol ; 169(7): 142, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851653

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections, and strains that are resistant to antibiotics are a major problem in treating these infections. Phage therapy is a promising alternative approach that can be used to treat infections caused by polyresistant bacterial strains. In the present study, 16 bacteriophages isolated from sewage and surface water were investigated. Phage host specificity was tested on a collection of 77 UPEC strains. The phages infected 2-44 strains, and 80% of the strains were infected by at least one phage. The susceptible E. coli strains belonged predominantly to the B2 phylogenetic group, including strains of two clones, CC131 and CC73, that have a worldwide distribution. All of the phages belonged to class Caudoviricetes and were identified as members of the families Straboviridae, Autographiviridae, and Drexlerviridae and the genera Kagunavirus, Justusliebigvirus, and Murrayvirus. A phage cocktail composed of six phages - four members of the family Straboviridae and two members of the family Autographiviridae - was prepared, and its antibacterial activity was tested in liquid medium. Complete suppression of bacterial growth was observed after 5-22 hours of cultivation, followed by partial regrowth. At 24 hours postinfection, the cocktail suppressed bacterial growth to 43-92% of control values. Similar results were obtained when testing the activity of the phage cocktail in LB and in artificial urine medium. The results indicate that our phage cocktail has potential to inhibit bacterial growth during infection, and they will therefore be preserved in the national phage bank, serving as valuable resources for therapeutic applications.


Subject(s)
Drug Resistance, Multiple, Bacterial , Host Specificity , Phylogeny , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/virology , Uropathogenic Escherichia coli/drug effects , Bacteriophages/classification , Bacteriophages/physiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Sewage/virology , Phage Therapy/methods , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy
SELECTION OF CITATIONS
SEARCH DETAIL