Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.944
1.
Nat Metab ; 6(5): 947-962, 2024 May.
Article En | MEDLINE | ID: mdl-38769396

Polycystic ovary syndrome (PCOS), an endocrine disorder afflicting 6-20% of women of reproductive age globally, has been linked to alterations in the gut microbiome. We previously showed that in PCOS, elevation of Bacteroides vulgatus in the gut microbiome was associated with altered bile acid metabolism. Here we show that B. vulgatus also induces a PCOS-like phenotype in female mice via an alternate mechanism independent of bile acids. We find that B. vulgatus contributes to PCOS-like symptoms through its metabolite agmatine, which is derived from arginine by arginine decarboxylase. Mechanistically, agmatine activates the farnesoid X receptor (FXR) pathway to subsequently inhibit glucagon-like peptide-1 (GLP-1) secretion by L cells, which leads to insulin resistance and ovarian dysfunction. Critically, the GLP-1 receptor agonist liraglutide and the arginine decarboxylase inhibitor difluoromethylarginine ameliorate ovarian dysfunction in a PCOS-like mouse model. These findings reveal that agmatine-FXR-GLP-1 signalling contributes to ovarian dysfunction, presenting a potential therapeutic target for PCOS management.


Agmatine , Gastrointestinal Microbiome , Polycystic Ovary Syndrome , Receptors, Cytoplasmic and Nuclear , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Animals , Female , Mice , Agmatine/pharmacology , Agmatine/metabolism , Agmatine/therapeutic use , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Gastrointestinal Microbiome/drug effects , Glucagon-Like Peptide 1/metabolism , Signal Transduction/drug effects , Disease Models, Animal , Insulin Resistance , Bacteroides/drug effects , Humans , Carboxy-Lyases/metabolism
2.
PLoS One ; 19(5): e0302726, 2024.
Article En | MEDLINE | ID: mdl-38743706

BACKGROUND: Dysbiosis during childhood impacts the configuration and maturation of the microbiota. The immaturity of the infant microbiota is linked with the development of inflammatory, allergic, and dysmetabolic diseases. AIMS: To identify taxonomic changes associated with age and GDM and classify the maturity of the intestinal microbiota of children of mothers with GDM and children without GDM (n-GDM). METHODS: Next-generation sequencing was used to analyze the V3-V4 region of 16S rRNA gene. QIIME2 and Picrust2 were used to determine the difference in the relative abundance of bacterial genera between the study groups and to predict the functional profile of the intestinal microbiota. RESULTS: According to age, the older GDM groups showed a lower alpha diversity and different abundance of Enterobacteriaceae, Veillonella, Clostridiales, and Bacteroides. Regarding the functional profile, PWY-7377 and K05895 associated with Vitamin B12 metabolism were reduced in GDM groups. Compared to n-GDM group, GDM offspring had microbiota immaturity as age-discriminatory taxa in random forest failed to classify GDM offspring according to developmental age (OOB error 81%). Conclusion. Offspring from mothers with GDM have a distinctive taxonomic profile related to taxa associated with gut microbiota immaturity.


Bacteroides , Diabetes, Gestational , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Veillonella , Humans , Diabetes, Gestational/microbiology , Female , Pregnancy , Bacteroides/genetics , RNA, Ribosomal, 16S/genetics , Veillonella/genetics , Infant , Adult , Male , Dysbiosis/microbiology , Feces/microbiology , Child, Preschool , High-Throughput Nucleotide Sequencing
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731876

This study explores the impact of defecation frequency on the gut microbiome structure by analyzing fecal samples from individuals categorized by defecation frequency: infrequent (1-3 times/week, n = 4), mid-frequent (4-6 times/week, n = 7), and frequent (daily, n = 9). Utilizing 16S rRNA gene-based sequencing and LC-MS/MS metabolome profiling, significant differences in microbial diversity and community structures among the groups were observed. The infrequent group showed higher microbial diversity, with community structures significantly varying with defecation frequency, a pattern consistent across all sampling time points. The Ruminococcus genus was predominant in the infrequent group, but decreased with more frequent defecation, while the Bacteroides genus was more common in the frequent group, decreasing as defecation frequency lessened. The infrequent group demonstrated enriched biosynthesis genes for aromatic amino acids and branched-chain amino acids (BCAAs), in contrast to the frequent group, which had a higher prevalence of genes for BCAA catabolism. Metabolome analysis revealed higher levels of metabolites derived from aromatic amino acids and BCAA metabolism in the infrequent group, and lower levels of BCAA-derived metabolites in the frequent group, consistent with their predicted metagenomic functions. These findings underscore the importance of considering stool consistency/frequency in understanding the factors influencing the gut microbiome.


Defecation , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Male , Adult , Female , Metabolome , Biodiversity , Amino Acids, Branched-Chain/metabolism , Metabolomics/methods , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteroides/genetics , Metagenome
4.
Gut Microbes ; 16(1): 2353396, 2024.
Article En | MEDLINE | ID: mdl-38778483

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to respiratory failure, and eventually death. However, there is a lack of effective treatments for ALS. Here we report the results of fecal microbiota transplantation (FMT) in two patients with late-onset classic ALS with a Japan ALS severity classification of grade 5 who required tracheostomy and mechanical ventilation. In both patients, significant improvements in respiratory function were observed following two rounds of FMT, leading to weaning off mechanical ventilation. Their muscle strength improved, allowing for assisted standing and mobility. Other notable treatment responses included improved swallowing function and reduced muscle fasciculations. Metagenomic and metabolomic analysis revealed an increase in beneficial Bacteroides species (Bacteroides stercoris, Bacteroides uniformis, Bacteroides vulgatus), and Faecalibacterium prausnitzii after FMT, as well as elevated levels of metabolites involved in arginine biosynthesis and decreased levels of metabolites involved in branched-chain amino acid biosynthesis. These findings offer a potential rescue therapy for ALS with respiratory failure and provide new insights into ALS in general.


Amyotrophic Lateral Sclerosis , Fecal Microbiota Transplantation , Respiratory Insufficiency , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/microbiology , Humans , Respiratory Insufficiency/therapy , Respiratory Insufficiency/microbiology , Male , Middle Aged , Aged , Female , Bacteroides , Gastrointestinal Microbiome , Faecalibacterium prausnitzii , Treatment Outcome , Respiration, Artificial , Feces/microbiology
5.
Front Cell Infect Microbiol ; 14: 1327083, 2024.
Article En | MEDLINE | ID: mdl-38562964

Background: Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods: Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results: The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion: This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.


Acne Vulgaris , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Bacteroides/genetics
6.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673841

Imbalances in gut microbiota reportedly contribute to the development of autoimmune diseases, but the association between the etiopathogenesis of alopecia areata (AA) and gut microbial dysbiosis remains unclear. This cross-sectional study was conducted to identify and compare the composition of the gut microbiome in patients affected by AA and those in a healthy control (HC) group, and to investigate possible bacterial biomarkers for the disease. Fecal samples were collected from 19 AA patients and 20 HCs to analyze the relationship with fecal bacteria. The three major genera constituting the gut microbiome of AA patients were Bacteroides, Blautia, and Faecalibacterium. The alpha diversity of the AA group was not statistically significant different from that of the HC group. However, bacterial community composition in the AA group was significantly different from that of HC group according to Jensen-Shannon dissimilarities. In patients with AA, we found an enriched presence of the genera Blautia and Eubacterium_g5 compared to the HC group (p < 0.05), whereas Bacteroides were less prevalent (p < 0.05). The gut microbiota of AA patients was distinct from those of the HC group. Our findings suggest a possible involvement of gut microbiota in in the as-yet-undefined pathogenesis of AA.


Alopecia Areata , Feces , Gastrointestinal Microbiome , Humans , Alopecia Areata/microbiology , Female , Male , Adult , Feces/microbiology , Cross-Sectional Studies , Dysbiosis/microbiology , Middle Aged , Young Adult , Case-Control Studies , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Bacteroides/isolation & purification
7.
Nutrients ; 16(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612976

The gut microbiota is a dynamic ecosystem that plays a pivotal role in maintaining host health. The perturbation of these microbes has been linked to several health conditions. Hence, they have emerged as promising targets for understanding and promoting good health. Despite the growing body of research on the role of sodium in health, its effects on the human gut microbiome remain under-explored. Here, using nutrition and metagenomics methods, we investigate the influence of dietary sodium intake and alterations of the human gut microbiota. We found that a high-sodium diet (HSD) altered the gut microbiota composition with a significant reduction in Bacteroides and inverse increase in Prevotella compared to a low-sodium diet (LSD). However, there is no clear distinction in the Firmicutes/Bacteroidetes (F/B) ratio between the two diet types. Metabolic pathway reconstruction revealed the presence of sodium reabsorption genes in the HSD, but not LSD. Since it is currently difficult in microbiome studies to confidently associate the F/B ratio with what is considered healthy (e.g., low sodium) or unhealthy (e.g., high sodium), we suggest that the use of a genus-based ratio such as the Bacteroides/Prevotella (B/P) ratio may be more beneficial for the application of microbiome studies in health.


Microbiota , Sodium Chloride, Dietary , Humans , Bacteroides , Bacteroidetes , Firmicutes , Prevotella , Sodium
8.
Sci Total Environ ; 927: 172251, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604355

Animal hosts harbor diverse assemblages of microbial symbionts that play crucial roles in the host's lifestyle. The link between microbial symbiosis and host development remains poorly understood. In particular, little is known about the adaptive evolution of gut bacteria in host-microbe symbioses. Recently, symbiotic relationships have been categorized as open, closed, or mixed, reflecting their modes of inter-host transmission and resulting in distinct genomic features. Members of the genus Bacteroides are the most abundant human gut microbiota and possess both probiotic and pathogenic potential, providing an excellent model for studying pan-genome evolution in symbiotic systems. Here, we determined the complete genome of an novel clinical strain PL2022, which was isolated from a blood sample and performed pan-genome analyses on a representative set of Bacteroides cellulosilyticus strains to quantify the influence of the symbiotic relationship on the evolutionary dynamics. B. cellulosilyticus exhibited correlated genomic features with both open and closed symbioses, suggesting a mixed symbiosis. An open pan-genome is characterized by abundant accessory gene families, potential horizontal gene transfer (HGT), and diverse mobile genetic elements (MGEs), indicating an innovative gene pool, mainly associated with genomic islands and plasmids. However, massive parallel gene loss, weak purifying selection, and accumulation of positively selected mutations were the main drivers of genome reduction in B. cellulosilyticus. Metagenomic read recruitment analyses showed that B. cellulosilyticus members are globally distributed and active in human gut habitats, in line with predominant vertical transmission in the human gut. However, existence and/or high abundance were also detected in non-intestinal tissues, other animal hosts, and non-host environments, indicating occasional horizontal transmission to new niches, thereby creating arenas for the acquisition of novel genes. This case study of adaptive evolution under a mixed host-microbe symbiosis advances our understanding of symbiotic pan-genome evolution. Our results highlight the complexity of genetic evolution in this unusual intestinal symbiont.


Bacteroides , Gastrointestinal Microbiome , Genome, Bacterial , Symbiosis , Gastrointestinal Microbiome/genetics , Bacteroides/genetics , Bacteroides/physiology , Humans , Evolution, Molecular , Gene Transfer, Horizontal
9.
Cell Host Microbe ; 32(5): 739-754.e4, 2024 May 08.
Article En | MEDLINE | ID: mdl-38565143

Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.


DNA Transposable Elements , Metagenomics , Humans , Metagenomics/methods , DNA Transposable Elements/genetics , Bacteroides/genetics , Evolution, Molecular , Genome, Bacterial , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteria/classification
10.
EBioMedicine ; 103: 105101, 2024 May.
Article En | MEDLINE | ID: mdl-38583259

BACKGROUND: Gut dysbiosis is present in chronic hepatitis B virus (HBV) infection. In this study, we integrated microbiome and metabolome analysis to investigate the role of gut microbiome in virological response to nucleos(t)ide analogues (NAs) treatment. METHODS: Chronic HBV patients were prospectively recruited for steatosis and fibrosis assessments via liver elastography, with full-length 16S sequencing performed to identify the compositional gut microbiota differences. Fasting plasma bile acids were quantified by liquid chromatography-tandem mass spectrometry. FINDINGS: All patients (n = 110) were characterized into three distinct microbial clusters by their dominant genus: c-Bacteroides, c-Blautia, and c-Prevotella. Patients with c-Bacteroides had a higher plasma ursodeoxycholic acids (UDCA) level and an increase in 7-alpha-hydroxysteroid dehydrogenase (secondary bile acid biotransformation) than other clusters. In NAs-treated patients (n = 84), c-Bacteroides was associated with higher odds of plasma HBV-DNA undetectability when compared with non-c-Bacteroides clusters (OR 3.49, 95% CI 1.43-8.96, p = 0.01). c-Blautia was positively associated with advanced fibrosis (OR 2.74, 95% CI 1.09-7.31, p = 0.04). No such associations were found in treatment-naïve patients. Increased Escherichia coli relative abundance (0.21% vs. 0.03%, p = 0.035) was found in on-treatment patients (median treatment duration 98.1 months) with advanced fibrosis despite HBV DNA undetectability. An enrichment in l-tryptophan biosynthesis was observed in patients with advanced fibrosis, which exhibited a positive correlation with Escherichia coli. INTERPRETATION: Collectively, unique bacterial signatures, including c-Bacteroides and c-Blautia, were associated with virological undetectability and fibrosis evolution during NAs therapy in chronic HBV, setting up intriguing possibilities in optimizing HBV treatment. FUNDING: This study was supported by the Guangdong Natural Science Fund (2019A1515012003).


Gastrointestinal Microbiome , Hepatitis B virus , Hepatitis B, Chronic , Humans , Gastrointestinal Microbiome/drug effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/microbiology , Male , Female , Middle Aged , Adult , Hepatitis B virus/genetics , Bacteroides , Antiviral Agents/therapeutic use , Metabolome , Treatment Outcome , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Liver Cirrhosis/microbiology , Liver Cirrhosis/virology , Viral Load , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Metagenomics/methods , Nucleosides/therapeutic use , Nucleosides/analogs & derivatives
11.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Article En | MEDLINE | ID: mdl-38653239

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Akkermansia , Bacteroides , Bile Acids and Salts , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Humans , Male , Mice , Akkermansia/metabolism , Bacteroides/metabolism , beta-Lactamases/metabolism , Bile Acids and Salts/metabolism , Biosynthetic Pathways/genetics , Fatty Liver/metabolism , Liver/metabolism , Mice, Inbred C57BL , Verrucomicrobia/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology
12.
Int J Biol Macromol ; 267(Pt 1): 131469, 2024 May.
Article En | MEDLINE | ID: mdl-38604432

Pectic polysaccharide is a bioactive ingredient in Chrysanthemum morifolium Ramat. 'Hangbaiju' (CMH), but the high proportion of HG domain limited its use as a prebiotic. In this study, hot water, cellulase-assisted, medium-temperature alkali, and deep eutectic solvent extraction strategies were firstly used to extract pectin from CMH (CMHP). CMHP obtained by cellulase-assisted extraction had high purity and strong ability to promote the proliferation of Bacteroides and mixed probiotics. However, 4 extraction strategies led to general high proportion of HG domain in CMHPs. To further enhance the dissolution and prebiotic potential of CMHP, pectinase was used alone and combined with cellulase. The key factor for the optimal extraction was enzymolysis by cellulase and pectinase in a mass ratio of 3:1 at 1 % (w/w) dosage. The optimal CMHP had high yield (15.15 %), high content of total sugar, and Bacteroides proliferative activity superior to inulin, which was probably due to the cooperation of complex enzyme on the destruction of cell wall and pectin structural modification for raised RG-I domain (80.30 %) with relatively high degree of branching and moderate HG domain. This study provided a green strategy for extraction of RG-I enriched prebiotic pectin from plants.


Bacteroides , Chrysanthemum , Pectins , Pectins/chemistry , Chrysanthemum/chemistry , Cell Proliferation/drug effects , Cellulase/chemistry , Cellulase/metabolism , Solubility , Polygalacturonase/chemistry , Polygalacturonase/metabolism
13.
Food Chem ; 450: 139309, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38631200

Flammulina velutipes, a widely cultivated species of edible fungus, exhibits diverse functional activities attributed to its polysaccharides. In this study, we employed an in vitro model to investigate the impact of F. velutipes polysaccharides (FVP) fermentation on gut microbiota, with a particular focus on Bacteroides. FVP fermentation resulted in the proliferation of microbiota associated with short-chain fatty acid (SCFA) metabolism and suppression of Escherichia-Shigella. Bacteroides emerged as potential primary degraders of FVP, with species-level analysis identifying the preference of B. thetaiotaomicron and B. intestinalis in FVP degradation. Metabolomics analysis revealed significant increases in hypoxanthine and 7-methyladenine contents, with histidine metabolism emerging as the most enriched pathway. B. nordii and B. xylanisolvens exhibited the most influence on amino acid and SCFA metabolism. Understanding the mechanisms by which gut microbiota metabolize FVP can provide valuable insights into the potential of FVP to promote intestinal health and disease prevention.


Bacteroides , Feces , Fermentation , Flammulina , Gastrointestinal Microbiome , Humans , Flammulina/metabolism , Flammulina/chemistry , Feces/microbiology , Bacteroides/metabolism , Polysaccharides/metabolism , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Male , Adult
14.
Int J Biol Macromol ; 267(Pt 1): 131316, 2024 May.
Article En | MEDLINE | ID: mdl-38574908

Lycium barbarum polysaccharide (LBP) is beneficial for elderly people, but its use is limited in geriatric foods due to the lack of comprehensive information on its preparation strategy and physical property. In this study, the low-ester rhamnogalacturonan-I (RG-I) type pectic polysaccharide-protein complexes with varying physicochemical properties, structural characteristics, proliferative activities on Bacteroides, and immune-enhancing activities on RAW 264.7 cells, were obtained by moderate-temperature acid extraction within adjustment of enzymatic and physical pretreatments. LBP prepared by moderate-temperature acid extraction, namely S1-A, showed the strongest immune-enhancing activity via increasing the phagocytosis capacity and NO release of RAW 264.7 cells by 23 % and 76 %, respectively. S1-A exhibited relatively high viscosity and calcium ion response characteristic with the application potential for thickened liquid foods for the elderly with dysphagia. LBP prepared by composite cellulase and pectinase pretreatment combined with moderate-temperature acid extraction, namely S1-M1, showed the strongest Bacteroides proliferative activity that was equivalent to 0.60-0.97 times of that of inulin. S1-M1 exhibited extremely low viscosity and strong tolerance to food nutrients with high processing applicability for fluid foods. This study provided crucial data for the preparation and application of LBP targeting gut microbiota disorders and immunosenescence for the development of geriatric foods.


Bacteroides , Cell Proliferation , Mice , Animals , RAW 264.7 Cells , Bacteroides/drug effects , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Phagocytosis/drug effects , Viscosity , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Lycium/chemistry , Humans
15.
Food Funct ; 15(7): 3327-3339, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38465411

Bacteroides is a common intestinal bacterium closely associated with host colitis. However, relevant studies have been focused on the genus level, which could not identify the major Bacteroides species associated with intestinal disease. Thus, we have evaluated the Bacteroides species structure in healthy people and mouse intestinal tracts and explored the change in major Bacteroides species during colitis development. The results demonstrated that B. uniformis with a high abundance in the intestinal tract of healthy people and mice may be a core species that contributes to colitis remission. The results of animal experiments reported that B. uniformis FNMHLBE1K1 (1K1) could alleviate the severity of colitis and enhance the expression of the tight junction protein occludin by regulating gut microbiota. Notably, the protective roles of 1K1 may be attributed to some specific genes. This study revealed that B. uniformis is a key microbe influencing the occurrence and development of colitis and it provides a scientific basis for screening the next generation of probiotics.


Colitis, Ulcerative , Colitis , Humans , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Bacteroides/genetics , Intestines , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Colon
16.
Carbohydr Polym ; 334: 122074, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38553207

Bacteroides spp. are prominent members of the human gut microbiota that play critical roles in the metabolism of complex carbohydrates from the daily diet. Hyaluronic acid (HA) is a multifunctional polysaccharide which has been extensively used in the food and biomedical industry. However, how HA is degraded and fermented by Bacteroides spp. has not been fully characterized. Here, we comprehensively investigated the detailed degradation profiles and fermentation characteristics of four different HAs with discrete molecular weight (Mw) by fourteen distinctive Bacteroides spp. from the human gut microbiota. Our results indicated that high-Mw HAs were more degradable and fermentable than low-Mw HAs. Interestingly, B. salyersiae showed the best degrading capability for both high-Mw and low-Mw HAs, making it a keystone species for HA degradation among Bacteroides spp.. Specifically, HA degradation by B. salyersiae produced significant amounts of unsaturated tetrasaccharide (udp4). Co-culture experiments indicated that the produced udp4 could be further fermented and utilized by non-proficient HA-degraders, suggesting a possible cross-feeding interaction in the utilization of HA within the Bacteroides spp.. Altogether, our study provides novel insights into the metabolism of HA by the human gut microbiota, which has considerable implications for the development of new HA-based nutraceuticals and medicines.


Gastrointestinal Microbiome , Humans , Fermentation , Hyaluronic Acid/metabolism , Polysaccharides/metabolism , Bacteroides/metabolism
17.
Niger J Clin Pract ; 27(3): 361-367, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38528357

BACKGROUND: The study analyzed the dynamics of the clinical periodontal status during the treatment of adolescents with generalized plaque-induced gingivitis. AIM: Assessment of the predominant subgingival microflora in the case of a diagnosed inflammatory process in the gingiva in childhood. METHODS: Full-mouth periodontal assessment of plaque accumulation and bleeding on probing with an electronic periodontal probe was performed during the treatment of 34 adolescents with generalized plaque-induced gingivitis. The treatment protocol includes five visits (1, 3, 7, 14, and 30 days). Subgingival biofilm sampling was performed by real-time PCR testing to identify, follow-up in dynamics, and determine the quantities of main subgingival periodontopathogens during treatment. Three samples per child were taken from five teeth with the most severe inflammation. RESULTS: For children aged 10-14 years with generalized plaque-induced gingivitis, two weeks after the start of treatment, the index values for bleeding on probing decreased twice from 53 to 27%. C. gingivalis was isolated before the start of treatment in all children, followed by P. intermedia, P. micros (70,4%) and T. denticola, T. forsythia (52,9%). Representatives of the red complex according to Socransky showing greater resistance to the therapy performed in terms of frequency and amount. CONCLUSION: The predominant subgingival microflora in adolescents with generalized plaque-induced gingivitis is representative of the orange and red Socransky complex, with index values decreasing smoothly at each subsequent visit during treatment.


Bacteroides , Gingivitis , Adolescent , Child , Humans , Gingiva , Gingivitis/microbiology , Periodontal Index , Porphyromonas gingivalis
18.
mSystems ; 9(4): e0015324, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38517169

The gut microbiota plays a crucial role in health and is significantly modulated by human diets. In addition to Western diets which are rich in proteins, high-protein diets are used for specific populations or indications, mainly weight loss. In this study, we investigated the effect of protein supplementation on Bacteroides caccae, a Gram-negative gut symbiont. The supplementation with whey proteins led to a significant increase in growth rate, final biomass, and short-chain fatty acids production. A comprehensive genomic analysis revealed that B. caccae possesses a set of 156 proteases with putative intracellular and extracellular localization and allowed to identify amino acid transporters and metabolic pathways. We developed a fully curated genome-scale metabolic model of B. caccae that incorporated its proteolytic activity and simulated its growth and production of fermentation-related metabolites in response to the different growth media. We validated the model by comparing the predicted phenotype to experimental data. The model accurately predicted B. caccae's growth and metabolite production (R2 = 0.92 for the training set and R2 = 0.89 for the validation set). We found that accounting for both ATP consumption related to proteolysis, and whey protein accessibility is necessary for accurate predictions of metabolites production. These results provide insights into B. caccae's adaptation to a high-protein diet and its ability to utilize proteins as a source of nutrition. The proposed model provides a useful tool for understanding the feeding mechanism of B. caccae in the gut microbiome.IMPORTANCEMicrobial proteolysis is understudied despite the availability of dietary proteins for the gut microbiota. Here, the proteolytic potential of the gut symbiont Bacteroides caccae was analyzed for the first time using pan-genomics. This sketches a well-equipped bacteria for protein breakdown, capable of producing 156 different proteases with a broad spectrum of cleavage targets. This functional potential was confirmed by the enhancement of growth and metabolic activities at high protein levels. Proteolysis was included in a B. caccae metabolic model which was fitted with the experiments and validated on external data. This model pinpoints the links between protein availability and short-chain fatty acids production, and the importance for B. caccae to gain access to glutamate and asparagine to promote growth. This integrated approach can be generalized to other symbionts and upscaled to complex microbiota to get insights into the ecological impact of proteins on the gut microbiota.


Bacteria , Bacteroides , Fatty Acids, Volatile , Humans , Proteolysis , Bacteria/genetics , Fatty Acids, Volatile/metabolism , Peptide Hydrolases/metabolism
19.
Gut Microbes ; 16(1): 2323220, 2024.
Article En | MEDLINE | ID: mdl-38439579

The mechanisms of how host-microbe mutualistic relationships are established at weaning contingently upon B-cell surveillance remain inadequately elucidated. We found that CD138+ plasmacyte (PC)-mediated promotion of IgA response regulates the symbiosis between Bacteroides uniformis (B. uniformis) and the host during the weaning period. The IgA-skewed response of CD138+ PCs is essential for B. uniformis to occupy a defined gut luminal niche, thereby fostering stable colonization. Furthermore, B. uniformis within the natural gut niche was perturbed in the absence of IgA, resulting in exacerbated gut inflammation in IgA-deficient mice and weaned piglets. Thus, we propose that the priming and maintenance of intestinal IgA response from CD138+ PCs are required for host-microbial symbiosis, whereas the perturbation of which would enhance inflammation in weaning process.


Bacteroides , Gastrointestinal Microbiome , Host Microbial Interactions , Swine , Animals , Mice , Weaning , Inflammation , Immunoglobulin A
20.
J Clin Invest ; 134(10)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38530358

Gender-affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the effect of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMTs) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified 2 species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal Tregs and stimulated their migration to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect, while in female mice, GAHT neither improved nor impaired trabecular structure.


Gastrointestinal Microbiome , T-Lymphocytes, Regulatory , Animals , Gastrointestinal Microbiome/drug effects , Mice , Female , Male , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Bone Development/drug effects , Osteogenesis/drug effects , Bacteroides , Fecal Microbiota Transplantation , Humans
...