Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.831
Filter
1.
Sci Rep ; 14(1): 18139, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103398

ABSTRACT

In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.


Subject(s)
Genome, Fungal , Manihot , Plant Diseases , Manihot/microbiology , Plant Diseases/microbiology , Asia, Southeastern , Phylogeny , Basidiomycota/genetics , Basidiomycota/isolation & purification
2.
Sci Rep ; 14(1): 15779, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982270

ABSTRACT

Ascomycetes, basidiomycetes and deuteromycetes can degrade wood, but less attention has been paid to basidiomycetes involved in Esca, a major Grapevine Trunk Disease. Using a wood sawdust microcosm system, we compared the wood degradation of three grapevine cultivars inoculated with Fomitiporia mediterranea M. Fisch, a basidiomycete responsible for white-rot development and involved in Esca disease. The grapevine cultivar Ugni blanc was more susceptible to wood degradation caused by F. mediterranea than the cultivars Cabernet Sauvignon and Merlot. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy showed that F. mediterranea preferentially degrades lignin and hemicellulose over cellulose (preferential, successive or sequential white-rot). In addition, co-inoculation of sawdust with two cellulolytic and xylanolytic bacterial strains of Paenibacillus (Nakamura) Ash (Paenibacillus sp. (S231-2) and P. amylolyticus (S293)), enhanced F. mediterranea ability to degrade Ugni blanc. The NMR data further showed that the increase in Ugni blanc sawdust degradation products was greater when bacteria and fungi were inoculated together. We also demonstrated that these two bacterial strains could degrade the wood components of Ugni blanc sawdust. Genome analysis of these bacterial strains revealed numerous genes predicted to be involved in cellulose, hemicellulose, and lignin degradation, as well as several other genes related to bacteria-fungi interactions and endophytism inside the plant. The occurrence of this type of bacteria-fungus interaction could explain, at least in part, why necrosis develops extensively in certain grapevine varieties such as Ugni blanc.


Subject(s)
Lignin , Paenibacillus , Vitis , Wood , Wood/microbiology , Vitis/microbiology , Lignin/metabolism , Paenibacillus/genetics , Paenibacillus/metabolism , Plant Diseases/microbiology , Basidiomycota/genetics , Basidiomycota/metabolism , Polysaccharides/metabolism , Cellulose/metabolism , Genome, Bacterial
3.
Appl Microbiol Biotechnol ; 108(1): 423, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037499

ABSTRACT

The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.


Subject(s)
Phylogeny , Genome, Mitochondrial , Basidiomycota/genetics , Basidiomycota/classification , DNA, Fungal/genetics , Medicine, Chinese Traditional , Sequence Analysis, DNA
4.
Biomolecules ; 14(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39062491

ABSTRACT

The sterol regulatory element-binding protein (SREBP) pathway is an integral cellular mechanism that regulates lipid homeostasis, in which transcriptional activator SREBPs regulate the expression of various genes. In the carotenogenic yeast Xanthophyllomyces dendrorhous, Sre1 (the yeast SREBP homolog) regulates lipid biosynthesis and carotenogenesis, among other processes. Despite the characterization of several components of the SREBP pathway across various eukaryotes, the specific elements of this pathway in X. dendrorhous remain largely unknown. This study aimed to explore the potential regulatory mechanisms of the SREBP pathway in X. dendrorhous using the strain CBS.cyp61- as a model, which is known to have Sre1 in its active state under standard culture conditions, resulting in a carotenoid-overproducing phenotype. This strain was subjected to random mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (NTG), followed by a screening methodology that focused on identifying mutants with altered Sre1 activation phenotypes. Single-nucleotide polymorphism (SNP) analysis of 20 selected mutants detected 5439 single-nucleotide variants (SNVs), narrowing them down to 1327 SNPs of interest after a series of filters. Classification based on SNP impact identified 116 candidate genes, including 49 genes with high impact and 68 genes with deleterious moderate-impact mutations. BLAST, InterProScan, and gene ontology enrichment analyses highlighted 25 genes as potential participants in regulating Sre1 in X. dendrorhous. The key findings of this study include the identification of genes potentially encoding proteins involved in protein import/export to the nucleus, sterol biosynthesis, the ubiquitin-proteasome system, protein regulatory activities such as deacetylases, a subset of kinases and proteases, as well as transcription factors that could be influential in SREBP regulation. These findings are expected to significantly contribute to the current understanding of the intricate regulation of the transcription factor Sre1 in X. dendrorhous, providing valuable groundwork for future research and potential biotechnological applications.


Subject(s)
Basidiomycota , Sterol Regulatory Element Binding Proteins , Basidiomycota/genetics , Basidiomycota/metabolism , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Polymorphism, Single Nucleotide , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Carotenoids/metabolism , Mutation
5.
Mol Plant Pathol ; 25(7): e13490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952297

ABSTRACT

Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.


Subject(s)
Disease Resistance , Plant Diseases , Puccinia , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Puccinia/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Plant , Virulence/genetics , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Basidiomycota/pathogenicity , Basidiomycota/genetics , Plant Leaves/microbiology , Plant Leaves/immunology , Cell Death , Sequence Deletion/genetics
6.
Plant Dis ; 108(7): 2197-2205, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956749

ABSTRACT

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.


Subject(s)
Dactylis , Disease Resistance , Genome-Wide Association Study , Plant Diseases , Puccinia , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Puccinia/genetics , Puccinia/physiology , Dactylis/genetics , Dactylis/microbiology , Gene Expression Profiling , Polymorphism, Single Nucleotide/genetics , Glutathione Transferase/genetics , Genes, Plant/genetics , Transcriptome , Basidiomycota/physiology , Basidiomycota/genetics
7.
Mol Biol Rep ; 51(1): 801, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001882

ABSTRACT

BACKGROUND: JUB1, a NAC domain containing hydrogen peroxide-induced transcription factor, plays a critical role in plant immunity. Little is known about how JUB1 responds to leaf rust disease in wheat. Recent discoveries in genomics have also unveiled a multitude of sORFs often assumed to be non-functional, to argue for the necessity of including them as potential regulatory players of translation. However, whether methylation on sORFs spanning the 3'UTR of regulatory genes like JUB1 modulate gene expression, remains unclear. METHODS AND RESULTS: In this study, we identified the methylation states of two sORFs in 3'UTR of a homologous gene of JUB1 in wheat, TaJUB1-L, at cytosine residues in CpG, CHH and CHG sites at different time points of disease progression in two near-isogenic lines of wheat (HD2329), with and without Lr24 gene during leaf rust pathogenesis. Here, we report a significant demethylation of the CpG dinucleotides occurring in the sORFs of the 3'UTR in the resistant isolines after 24 h post-infection. Also, the up-regulated gene expression observed through RT-qPCR was directly proportional to the demethylation of the CpG sites in the sORFs. CONCLUSIONS: Our findings indicate that TaJUB1-L might be a positive regulator in providing tolerance during leaf rust pathogenesis and cytosine methylation at 3'UTR might act as a switch for its expression control. These results enrich the potential benefit of conventional methylation assay techniques for unraveling the unexplored enigma in epigenetics during plant-pathogen interaction in a cost-effective and confidentially conclusive manner.


Subject(s)
3' Untranslated Regions , DNA Methylation , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Transcription Factors , Triticum , Triticum/microbiology , Triticum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , 3' Untranslated Regions/genetics , DNA Methylation/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Basidiomycota/pathogenicity , Basidiomycota/genetics , Plant Leaves/microbiology , Plant Leaves/genetics , Disease Resistance/genetics , 5-Methylcytosine/metabolism
8.
mBio ; 15(8): e0142324, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39012152

ABSTRACT

In terrestrial forested ecosystems, fungi may interact with trees in at least three distinct ways: (i) associated with roots as symbionts; (ii) as pathogens in roots, trunks, leaves, flowers, and fruits; or (iii) decomposing dead tree tissues on soil or even on dead tissues in living trees. Distinguishing the latter two nutrition modes is rather difficult in Hymenochaetaceae (Basidiomycota) species. Herein, we have used an integrative approach of comparative genomics, stable isotopes, host tree association, and bioclimatic data to investigate the lifestyle ecology of the scarcely known neotropical genus Phellinotus, focusing on the unique species Phellinotus piptadeniae. This species is strongly associated with living Piptadenia gonoacantha (Fabaceae) trees in the Atlantic Forest domain on a relatively high precipitation gradient. Phylogenomics resolved P. piptadeniae in a clade that also includes both plant pathogens and typical wood saprotrophs. Furthermore, both genome-predicted Carbohydrate-Active Enzymes (CAZy) and stable isotopes (δ13C and δ15N) revealed a rather flexible lifestyle for the species. Altogether, our findings suggest that P. piptadeniae has been undergoing a pathotrophic specialization in a particular tree species while maintaining all the metabolic repertoire of a wood saprothroph. IMPORTANCE: This is the first genomic description for Phellinotus piptadeniae. This basidiomycete is found across a broad range of climates and ecosystems in South America, including regions threatened by extensive agriculture. This fungus is also relevant considering its pathotrophic-saprotrophic association with Piptadenia goanocantha, which we began to understand with these new results that locate this species among biotrophic and necrotrophic fungi.


Subject(s)
Genomics , Phylogeny , Basidiomycota/genetics , Basidiomycota/classification , Fabaceae/microbiology , Trees/microbiology , Plant Diseases/microbiology , Carbon Isotopes/analysis , Genome, Fungal , Nitrogen Isotopes/analysis , Forests
9.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960372

ABSTRACT

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Subject(s)
Basidiomycota , Fruiting Bodies, Fungal , Fungal Proteins , Phylogeny , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/enzymology , Basidiomycota/genetics , Basidiomycota/enzymology , Basidiomycota/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Agaricales/genetics , Agaricales/enzymology , Agaricales/growth & development , Agaricales/metabolism , Gene Expression Regulation, Fungal , Spores, Fungal/growth & development , Spores, Fungal/genetics , Spores, Fungal/enzymology
10.
Mol Ecol Resour ; 24(6): e13983, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38840549

ABSTRACT

In the face of evolving agricultural practices and climate change, tools towards an integrated biovigilance platform to combat crop diseases, spore sampling, DNA diagnostics and predictive trajectory modelling were optimized. These tools revealed microbial dynamics and were validated by monitoring cereal rust fungal pathogens affecting wheat, oats, barley and rye across four growing seasons (2015-2018) in British Columbia and during the 2018 season in southern Alberta. ITS2 metabarcoding revealed disparity in aeromycobiota diversity and compositional structure across the Canadian Rocky Mountains, suggesting a barrier effect on air flow and pathogen dispersal. A novel bioinformatics classifier and curated cereal rust fungal ITS2 database, corroborated by real-time PCR, enhanced the precision of cereal rust fungal species identification. Random Forest modelling identified crop and land-use diversification as well as atmospheric pressure and moisture as key factors in rust distribution. As a valuable addition to explain observed differences and patterns in rust fungus distribution, trajectory HYSPLIT modelling tracked rust fungal urediniospores' northeastward dispersal from the Pacific Northwest towards southern British Columbia and Alberta, indicating multiple potential origins. Our Canadian case study exemplifies the power of an advanced biovigilance toolbox towards developing an early-warning system for farmers to detect and mitigate impending disease outbreaks.


Subject(s)
Air Microbiology , Basidiomycota , Plant Diseases , Plant Diseases/microbiology , Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/isolation & purification , British Columbia , Alberta , Edible Grain/microbiology , Mycobiome/genetics , Computational Biology/methods , DNA Barcoding, Taxonomic/methods , Canada
11.
World J Microbiol Biotechnol ; 40(8): 251, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910228

ABSTRACT

Genetic diversity in Sclerotium rolfsii is useful for understanding its population structure, identifying different mycelial compatibility groups (MCGs), and developing targeted strategies for disease management in affected crops. In our study, a comprehensive genetic analysis was conducted on 50 isolates of S. rolfsii, collected from various geographic regions and host plants. Two specific genes, TEF1α and RPB2, were utilized to assess the genetic diversity and relationships among these isolates. Notably, out of 1225 pairings examined, only 154 exhibited a compatible reaction, while the majority displayed antagonistic reactions, resulting in the formation of a barrier zone. The isolates were grouped into 10 distinct MCGs. These MCGs were further characterized using genetic sequencing. TEF1α sequences distinguished the isolates into 17 distinct clusters, and RPB2 sequences classified them into 20 clusters. Some MCGs shared identical gene sequences within each gene, while others exhibited unique sequences. Intriguingly, when both TEF1α and RPB2 sequences were combined, all 10 MCGs were effectively differentiated, even those that appeared identical with single-gene analysis. This combined approach provided a comprehensive understanding of the genetic diversity and relationships among the S. rolfsii isolates, allowing for precise discrimination between different MCGs. The results shed light on the population structure and genetic variability within this plant pathogenic fungus, providing valuable insights for disease management and control strategies. This study highlights the significance of comprehending the varied virulence characteristics within S. rolfsii isolates, categorizing them into specific virulence groups based on disease severity index (DSI) values. The association with MCGs provides additional insights into the genetic underpinnings of virulence in this pathogen. Furthermore, the identification of geographical patterns in virulence implies the influence of region-specific factors, with potential implications for disease control and crop protection strategies.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [G. M. Sandeep] Last name [Kumar]. Author 2 Given name: [Praveen Kumar] Last name [Singh]. Also, kindly confirm the details in the metadata are correct.I confirm that the given names are accurate and presented in the correct sequence.


Subject(s)
Basidiomycota , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Plant Diseases , Plant Diseases/microbiology , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , Mycelium/genetics , Fungal Proteins/genetics , DNA, Fungal/genetics , Crops, Agricultural/microbiology
12.
J Microbiol Biotechnol ; 34(6): 1249-1259, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938004

ABSTRACT

It remains to be determined whether there is a geographical distribution pattern and phylogenetic signals for the Mycena strains with seed germination of the orchid plant Gastrodia elata. This study analyzed the community composition and phylogenetics of 72 Mycena strains associated with G. elata varieties (G. elata. f. glauca and G. elata. f. viridis) using multiple gene fragments (ITS+nLSU+SSU). We found that (1) these diverse Mycena phylogenetically belong to the Basidiospore amyloid group. (2) There is a phylogenetic signal of Mycena for germination of G. elata. Those strains phylogenetically close to M. abramsii, M. polygramma, and an unclassified Mycena had significantly higher germination rates than those to M. citrinomarginata. (3) The Mycena distribution depends on geographic site and G. elata variety. Both unclassified Mycena group 1 and the M. abramsii group were dominant for the two varieties of G. elata; in contrast, the M. citrinomarginata group was dominant in G. elata f. glauca but absent in G. elata f. viridis. Our results indicate that the community composition of numerous Mycena resources in the Zhaotong area varies by geographical location and G. elata variety. Importantly, our results also indicate that Mycena's phylogenetic status is correlated with its germination rate.


Subject(s)
Gastrodia , Germination , Phylogeny , Gastrodia/microbiology , Gastrodia/genetics , DNA, Fungal/genetics , Seeds/microbiology , Seeds/growth & development , Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/physiology
13.
Fungal Biol ; 128(4): 1815-1826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876534

ABSTRACT

Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.


Subject(s)
Endophytes , Plant Stems , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Plant Stems/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , High-Throughput Nucleotide Sequencing , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/isolation & purification , Biodiversity
14.
Sci Rep ; 14(1): 14112, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898132

ABSTRACT

Hybrid development is one of the most promising strategies for boosting crop yields. Parental lines used to create hybrids must have good per se performance and disease resistance for developing superior hybrids. Indian wheat line HD3209 was developed by introducing the rust resistance genes Lr19/Sr25 into the background of popular wheat variety HD2932. The wheat line HD3209 carrying Lr19/Sr25 has been successfully and rapidly converted to the CMS line A-HD3209, with 96.01% background genome recovery, based on selection for agro-morphological traits, rust resistance, pollen sterility, and foreground and background analyses utilizing SSR markers. The converted CMS line A-HD3209 was completely sterile and nearly identical to the recurrent parent HD3209. Based on high per se performance and rust resistance, the study concludes that the derived CMS line A-HD3209 is promising and can be employed successfully in hybrid development.


Subject(s)
Disease Resistance , Genotype , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Basidiomycota/genetics , Plant Breeding/methods , Genes, Plant , Hybridization, Genetic , Bread/microbiology
15.
Mol Biol Rep ; 51(1): 726, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856802

ABSTRACT

BACKGROUND: Karnal bunt of wheat is an important quarantine disease, incited by Tilletia indica. It limits India's trade in wheat export. The teliospores are major source of inoculum to initiate and spread the Karnal bunt disease. The study aimed to identify the germination-related genes in the teliospores of T. indica. METHODS AND RESULTS: The candidate genes in the teliospores germination were identified through the differential gene expression analysis with suitable bioinformatics analysis. Keeping in soil-borne nature of fungi, the teliospores of T. indica (2015 and 2018) were subjected to the qPCR analysis. 20 candidate genes were identified having role in germination of teliospores of T. indica. Twenty genes, viz. Ti9297 (9.31, 7.87-fold), Ti8696 (5.13, 6.54-fold), Ti7699 (8.9, 7.7-fold), Ti7858 (10.33, 6.21-fold), Ti7954 (7.46, 5.54-fold), Ti7739 (5.46, 6.46-fold), Ti9665 (10.74, 7.64-fold), Ti9335 (6.75, 4.36-fold), Ti8396 (9.35, 7.72-fold), Ti8126 (8.87, 11.31-fold), Ti7326 (6.04, 7.7-fold), Ti10208 (13.83, 5.81-fold), Ti12356 (7.83, 8.02-fold), Ti14271 (9.98, 6.32-fold), Ti9234 (11.2, 8.72-fold), Ti 8876 (6.47, 3.55-fold), Ti 10,606 (4.97, 2.35-fold), Ti7758 (10.33, 8.78-fold), Ti4692 (6.89, 9.88-fold), and Ti3932 (5.77, 4.5-fold) were found highly expressed in the germinating teliospores of 2015 and 2018, respectively. Eight genes (Ti508, Ti4152, Ti5346, Ti2375, Ti3739, Ti1134, Ti4399, and Ti4422) were downregulated in the germinating teliospores but these eight genes were showed higher expression in the dormant teliospores. CONCLUSIONS: Twenty candidate genes were upregulated in the germinating teliospores are supposed to be involved in the process of germination. Eight genes were downregulated which were related to the process of the dormancy of teliospores. The study will be helpful to devise the newer management strategies for Karnal bunt disease of wheat.


Subject(s)
Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/growth & development , Plant Diseases/microbiology , Plant Diseases/genetics , Spores, Fungal/genetics , Germination/genetics , Gene Expression Profiling/methods , Basidiomycota/genetics , Polyporaceae/genetics , Computational Biology/methods
16.
Curr Microbiol ; 81(7): 210, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837067

ABSTRACT

The extensive use of high-throughput sequencing (HTS) has significantly advanced and transformed our comprehension of virus diversity, especially in intricate settings like soil and biological specimens. In this study, we delved into mycovirus sequence surveys within mycorrhizal fungus species Terfezia claveryi, through employing HTS with total double-stranded RNA (dsRNA) extracts. Our findings revealed the presence of four distinct members from the Alsuviricetes class, one flexivirus designated as Terfezia claveryi flexivirus 1 (TcFV1) and three endornaviruses (TcEV1, TcEV2, and TcEV3) in two different T. claveryi isolates. TcFV1, a member of the order Tymovirales, exhibits a unique genome structure and sequence features. Through in-depth analyses, we found that it shares sequence similarities with other deltaflexiviruses and challenges existing Deltaflexiviridae classification. The discovery of TcFV1 adds to the genomic plasticity of mycoviruses within the Tymovirales order, shedding light on their evolutionary adaptations. Additionally, the three newly discovered endornaviruses (TcEV1, TcEV2, and TcEV3) in T. claveryi exhibited limited sequence similarities with other endornaviruses and distinctive features, including conserved domains like DEAD-like helicase, ATPases Associated with Diverse Cellular Activities (AAA ATPase), and RNA dependent RNA polymerase (RdRp), indicating their classification as members of new species within the Alphaendornavirus genus. In conclusion, this research emphasizes the importance of exploring viral diversity in uncultivated fungi, bridging knowledge gaps in mycovirus ecology. The discoveries of a novel flexivirus with unique genome organization and endornaviruses in T. claveryi broaden our comprehension of mycovirus diversity and evolution, highlighting the need for continued investigations into viral populations in wild fungi.


Subject(s)
Fungal Viruses , Genome, Viral , Mycorrhizae , Phylogeny , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Mycorrhizae/genetics , Mycorrhizae/virology , Mycorrhizae/classification , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing , Basidiomycota/virology , Basidiomycota/genetics
17.
Yeast ; 41(8): 477-485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877753

ABSTRACT

Cellobiose lipids are surface-active compounds or biological detergents produced by distinct Basidiomycetes yeasts, of which the most and best-described ones belong to the Ustilaginomycetes class. The molecules display slight variation in congener type, which is linked to the hydroxylation position of the long fatty acid, acetylation profile of the cellobiose unit, and presence or absence of the short fatty acid. In general, this variation is strain specific. Although cellobiose lipid biosynthesis has been described for about 11 yeast species, hitherto only two types of biosynthetic gene clusters are identified, and this for only three species. This work adds six more biosynthetic gene clusters and describes for the first time a novel type of cellobiose lipid biosynthetic cluster with a simplified architecture related to specific cellobiose lipids synthesized by Trichosporonaceae family members.


Subject(s)
Basidiomycota , Cellobiose , Lipids , Multigene Family , Cellobiose/metabolism , Basidiomycota/genetics , Basidiomycota/metabolism , Lipids/biosynthesis , Biosynthetic Pathways/genetics
18.
Microbiol Spectr ; 12(8): e0377423, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916358

ABSTRACT

Stripe rust of wheat is caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Breeding durably resistant wheat varieties by disrupting the susceptibility (S) gene has an important impact on the control of wheat stripe rust. Mingxian169 (MX169) showed strong stripe rust susceptibility to all the races of Pst. However, molecular mechanisms and responsive genes underlying susceptibility of the wheat variety MX169 to Pst have not been elucidated. Here, we utilized next-generation sequencing technology to analyze transcriptomics data of "MX169" and high-resistance wheat "Zhong4" at 24, 48, and 120 h post-inoculation (hpi) with Pst. Comparative transcriptome analysis revealed 3,494, 2,831, and 2,700 differentially expressed genes (DEGs) at different time points. We observed an upregulation of DEGs involved in photosynthesis, flavonoid biosynthesis, pyruvate metabolism, thiamine metabolism, and other biological processes, suggesting their involvement in MX169's response to Pst. DEGs encoding transcription factors were also identified. Our study suggested the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst. IMPORTANCE: Our study suggests the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst.


Subject(s)
Disease Resistance , Plant Diseases , Puccinia , Transcriptome , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Basidiomycota/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Mycologia ; 116(4): 601-620, 2024.
Article in English | MEDLINE | ID: mdl-38847769

ABSTRACT

Three novel species of the genus Leucocoprinus, named Lc. cinnamomeodiscus, Lc. dahranwalanus, and Lc. iqbalii, are described from unexplored regions of southern Punjab, Pakistan, based on comprehensive analyses of morphoanatomical characteristics and molecular phylogenetic data. We provide illustrations of freshly collected basidiomata and detailed line drawings highlighting key anatomical features. The molecular phylogenetic analyses, which are based on the internal transcribed spacer (ITS) region and combined ITS-28S sequences, consistently position these newly described species within the genus Leucocoprinus. Additionally, this study also introduces new taxonomic combinations for previously reported Leucoagaricus species.


Subject(s)
DNA, Fungal , DNA, Ribosomal Spacer , Phylogeny , Pakistan , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Spores, Fungal/cytology , Basidiomycota/genetics , Basidiomycota/classification , RNA, Ribosomal, 28S/genetics , Biodiversity
20.
Sci Rep ; 14(1): 10601, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719921

ABSTRACT

A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe. Several hints point to the hypothesis that G. minor is transported to the deep ocean attached to particles, and the absence of G. minor in bathypelagic Atlantic waters could then be explained by the absence of this organism in surface waters of the equatorial Atlantic. The good correlation of G. minor biomass with Apparent Oxygen Utilization, recalcitrant carbon and free-living prokaryotic biomass in South Pacific waters, together with the identification of the observed cells as yeasts and not as resting spores (teliospores), point to the possibility that once arrived at deep layers this species keeps on growing and thriving.


Subject(s)
Basidiomycota , Pacific Ocean , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , RNA, Ribosomal, 18S/genetics , Seawater/microbiology , Phylogeny , Atlantic Ocean , DNA, Ribosomal/genetics , DNA, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL