Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Biomed Pharmacother ; 147: 112667, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35104695

ABSTRACT

Striatal-enriched protein tyrosine phosphatase (STEP) is a signal transduction protein involved in the pathogenesis of neuropathologies. A STEP inhibitor (TC-2153) has antipsychotic and antidepressant effects. Here, we evaluated the role of STEP in fear-induced aggression using Norway rats selectively bred for 90 generations for either high aggression toward humans (aggressive rats) or its absence (tame rats). We studied the effects of acute administration of TC-2153 on behavior and STEP expression in the brain of these animals and the influence of chronic treatment with TC-2153 on the behavior and STEP expression in aggressive rats in comparison with classic antidepressant fluoxetine, which is known to exert antiaggressive action. Acute TC-2153 administration decreased the aggressive reaction to humans in aggressive rats, while having no impact on the friendly behavior of tame rats. Moreover, in the elevated plus-maze test, the drug had an anxiolytic effect on both aggressive and tame rats. Aggressive rats demonstrated elevated levels of a STEP isoform (STEP46) as compared to tame animals, whereas acute TC-2153 administration significantly reduced STEP46 protein concentration in the brain of aggressive rats. Chronic treatment of aggressive rats with either TC-2153 or fluoxetine attenuated fear-induced aggression. Chronic administration of fluoxetine enhanced the exploratory activity in the elevated plus-maze test and decreased the STEP46 protein level in aggressive rats' hippocampus, whereas chronic TC-2153 administration did not affect these parameters. Thus, STEP46 can play an important role in the mechanisms of aggression and may mediate antiaggressive effects of TC-2153 and fluoxetine.


Subject(s)
Aggression/drug effects , Anti-Anxiety Agents/pharmacology , Benzothiepins/pharmacology , Brain/drug effects , Fear/drug effects , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Fluoxetine/pharmacology , Hippocampus/drug effects , Male , Rats
2.
Drugs ; 82(1): 71-76, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34813049

ABSTRACT

Maralixibat (Livmarli™) is an orally-administered, small-molecule ileal bile acid transporter (IBAT) inhibitor being developed by Mirum Pharmaceuticals for the treatment of rare cholestatic liver diseases including Alagille syndrome (ALGS), progressive familial intrahepatic cholestasis (PFIC) and biliary atresia. Maralixibat received its first approval on 29 September 2021, in the USA, for use in the treatment of cholestatic pruritus in patients with ALGS 1 year of age and older. Maralixibat is also under regulatory review for ALGS in Europe, and clinical development for cholestatic liver disorders including ALGS in patients under 1 year of age, PFIC and biliary atresia is continuing in several other countries. This article summarises the milestones in the development of maralixibat leading to this first approval for ALGS.


Subject(s)
Benzothiepins , Carrier Proteins , Cholestasis, Intrahepatic , Membrane Glycoproteins , Humans , Alagille Syndrome/drug therapy , Biliary Atresia/drug therapy , Carrier Proteins/antagonists & inhibitors , Cholestasis, Intrahepatic/drug therapy , Clinical Trials as Topic , Drug Approval , Membrane Glycoproteins/antagonists & inhibitors , United States , United States Food and Drug Administration , Benzothiepins/administration & dosage , Benzothiepins/pharmacology , Benzothiepins/therapeutic use
3.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707818

ABSTRACT

Tyrosine phosphatase STEP (striatal-enriched tyrosine protein phosphatase) is a brain-specific protein phosphatase and is involved in the pathogenesis of many neurodegenerative diseases. Here, we examined the impact of STEP on the development of age-related macular degeneration (AMD)-like pathology in senescence-accelerated OXYS rats. Using OXYS and Wistar rats (control), we for the first time demonstrated age-dependent changes in Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the retina. The increases in STEP protein levels and the decrease of total and STEP phosphatase activities in the retina (as compared with Wistar rats) preceded the manifestation of clinical signs of AMD in OXYS rats (age 20 days). There were no differences in these retinal parameters between 13-month-old Wistar rats and OXYS rats with pronounced signs of AMD. Inhibition of STEP with TC-2153 during progressive AMD-like retinopathy (from 9 to 13 months of age) reduced the thickness of the retinal inner nuclear layer, as evidenced by a decreased amount of parvalbumin-positive amacrine neurons. Prolonged treatment with TC-2153 had no effect on Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the OXYS retina. Thus, TC-2153 may negatively affect the retina through mechanisms unrelated to STEP.


Subject(s)
Aging/metabolism , Gene Expression Regulation/genetics , Macular Degeneration/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Retina/metabolism , Retinal Diseases/metabolism , Aging/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Benzothiepins/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cellular Senescence/genetics , Gene Expression Regulation/drug effects , Macular Degeneration/pathology , Male , Nerve Growth Factor/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Rats , Rats, Wistar , Retinal Diseases/enzymology , Retinal Diseases/genetics
4.
J Enzyme Inhib Med Chem ; 35(1): 245-254, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31790605

ABSTRACT

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.


Subject(s)
Benzothiepins/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Benzothiepins/chemical synthesis , Benzothiepins/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Structure , Structure-Activity Relationship
5.
Neurochem Res ; 44(12): 2832-2842, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31691882

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a potentially irreversible acute cognitive dysfunction with unclear mechanism. Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase which normally opposes synaptic strengthening by regulating key signaling molecules involved in synaptic plasticity and neuronal function. Thus, we hypothesized that abnormal STEP signaling pathway was involved in sepsis-induced cognitive impairment evoked by lipopolysaccharides (LPS) injection. The levels of STEP, phosphorylation of GluN2B (pGluN2B), the kinases extracellular signal-regulated kinase 1/2 (pERK), cAMP-response element binding protein (CREB), synaptophysin, brain derived neurotrophic factor (BDNF), and post-synaptic density protein 95 (PSD95) in the hippocampus, prefrontal cortex, and striatum were determined at the indicated time points. In the present study, we found that STEP levels were significantly increased in the hippocampus, prefrontal cortex, and striatum following LPS injection, which might resulted from the disruption of the ubiquitin-proteasome system. Notably, a STEP inhibitor TC-2153 treatment alleviated sepsis-induced memory impairment by increasing phosphorylation of GluN2B and ERK1/2, CREB/BDNF, and PSD95. In summary, our results support the key role of STEP in sepsis-induced memory impairment in a mouse model of SAE, whereas inhibition of STEP may provide a novel therapeutic approach for this disorder and possible other neurodegenerative diseases.


Subject(s)
Memory Disorders/physiopathology , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Sepsis-Associated Encephalopathy/physiopathology , Signal Transduction/physiology , Animals , Benzothiepins/pharmacology , Brain-Derived Neurotrophic Factor/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Cyclic AMP Response Element-Binding Protein/chemistry , Cyclic AMP Response Element-Binding Protein/metabolism , Disks Large Homolog 4 Protein/chemistry , Disks Large Homolog 4 Protein/metabolism , Hippocampus/metabolism , Lipopolysaccharides , Male , Memory/drug effects , Memory/physiology , Memory Disorders/chemically induced , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Prefrontal Cortex/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Sepsis-Associated Encephalopathy/chemically induced , Signal Transduction/drug effects
6.
PLoS One ; 14(6): e0218459, 2019.
Article in English | MEDLINE | ID: mdl-31233523

ABSTRACT

Interruption of bile acid recirculation through inhibition of the apical sodium-dependent bile acid transporter (ASBT) is a promising strategy to alleviate hepatic cholesterol accumulation in non-alcoholic steatohepatitis (NASH), and improve the metabolic aspects of the disease. Potential disease-attenuating effects of the ASBT inhibitor volixibat (5, 15, and 30 mg/kg) were investigated in high-fat diet (HFD)-fed Ldlr-/-.Leiden mice over 24 weeks. Plasma and fecal bile acid levels, plasma insulin, lipids, and liver enzymes were monitored. Final analyses included liver histology, intrahepatic lipids, mesenteric white adipose tissue mass, and liver gene profiling. Consistent with its mechanism of action, volixibat significantly increased the total amount of bile acid in feces. At the highest dose, volixibat significantly attenuated the HFD-induced increase in hepatocyte hypertrophy, hepatic triglyceride and cholesteryl ester levels, and mesenteric white adipose tissue deposition. Non-alcoholic fatty liver disease activity score (NAS) was significantly lower in volixibat-treated mice than in the HFD controls. Gene profiling showed that volixibat reversed the inhibitory effect of the HFD on metabolic master regulators, including peroxisome proliferator-activated receptor-γ coactivator-1ß, insulin receptor, and sterol regulatory element-binding transcription factor 2. Volixibat may have beneficial effects on physiological and metabolic aspects of NASH pathophysiology.


Subject(s)
Benzothiepins/pharmacology , Energy Metabolism/drug effects , Glycosides/pharmacology , Lipid Regulating Agents/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Symporters/antagonists & inhibitors , Adipose Tissue, Beige/metabolism , Animals , Bile Acids and Salts/metabolism , Biomarkers , Disease Models, Animal , Lipid Metabolism/drug effects , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Risk Factors
7.
Bull Exp Biol Med ; 164(5): 620-623, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29577201

ABSTRACT

We compared the effect of a new potential antidepressant 8-trifluoromethyl 1,2,3,4,5-benzopentathiepine-6-amine hydrochloride (TC-2153) and classical antidepressant fluoxetine in a dose of 0.25 mg/liter on the behavior of Danio rerio in the "novel tank" test and content of biogenic amines and their metabolites in the brain. Fluoxetine alone and TC-2153 alone significantly increased the time spent in the upper part of the tank and insignificantly reduced motor activity. Combined exposure of fishes in the solution containing potential and classical antidepressants potentiated their effects on both parameters. The compounds did not affect brain contents of serotonin, dopamine, and norepinephrine. At the same time, fluoxetine, but not TC-2153, reduced brain content of the main serotonin metabolite 5-hydroxyindole acetic acid.


Subject(s)
Antidepressive Agents/pharmacology , Benzothiepins/pharmacology , Biogenic Amines/metabolism , Brain/drug effects , Brain/metabolism , Fluoxetine/pharmacology , Animals , Behavior, Animal/drug effects , Dopamine/metabolism , Norepinephrine/metabolism , Serotonin/metabolism , Zebrafish
8.
Neuropharmacology ; 128: 43-53, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28943283

ABSTRACT

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability, with additional symptoms including attention deficit and hyperactivity, anxiety, impulsivity, and repetitive movements or actions. The majority of FXS cases are attributed to a CGG expansion that leads to transcriptional silencing and diminished expression of fragile X mental retardation protein (FMRP). FMRP, an RNA binding protein, regulates the synthesis of dendritically-translated mRNAs by stalling ribosomal translation. Loss of FMRP leads to increased translation of some of these mRNAs, including the CNS-specific tyrosine phosphatase STEP (STriatal-Enriched protein tyrosine Phosphatase). Genetic reduction of STEP in Fmr1 KO mice have diminished audiogenic seizures and a reversal of social and non-social anxiety-related abnormalities. This study investigates whether a newly discovered STEP inhibitor (TC-2153) could attenuate the behavioral and synaptic abnormalities in Fmr1 KO mice. TC-2153 reversed audiogenic seizure incidences, reduced hyperactivity, normalized anxiety states, and increased sociability in Fmr1 KO mice. Moreover, TC-2153 reduced dendritic spine density and improved synaptic aberrations in Fmr1 KO neuronal cultures as well as in vivo. TC-2153 also reversed the mGluR-mediated exaggerated LTD in brain slices derived from Fmr1 KO mice. These studies suggest that STEP inhibition may have therapeutic benefit in FXS.


Subject(s)
Excitatory Postsynaptic Potentials/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/complications , Fragile X Syndrome/pathology , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Synapses/pathology , Adaptation, Ocular/drug effects , Adaptation, Ocular/genetics , Animals , Animals, Newborn , Anxiety/drug therapy , Anxiety/etiology , Benzothiepins/pharmacology , Choice Behavior/drug effects , Dendritic Spines/drug effects , Dendritic Spines/genetics , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epilepsy, Reflex/drug therapy , Epilepsy, Reflex/etiology , Excitatory Postsynaptic Potentials/drug effects , Exploratory Behavior/drug effects , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hippocampus/pathology , Hippocampus/ultrastructure , Mice , Mice, Transgenic
9.
Addict Biol ; 23(1): 219-229, 2018 01.
Article in English | MEDLINE | ID: mdl-28349660

ABSTRACT

Cocaine self-administration in rats results in dysfunctional neuroadaptations in the prelimbic (PrL) cortex during early abstinence. Central to these adaptations is decreased phospho-extracellular signal-regulated kinase (p-ERK), which plays a key role in cocaine seeking. Normalizing ERK phosphorylation in the PrL cortex immediately after cocaine self-administration decreases subsequent cocaine seeking. The disturbance in ERK phosphorylation is accompanied by decreased phosphorylation of striatal-enriched protein tyrosine phosphatase (STEP), indicating increased STEP activity. STEP is a well-recognized ERK phosphatase but whether STEP activation during early abstinence mediates the decrease in p-ERK and is involved in relapse is unknown. Here, we show that a single intra-PrL cortical microinfusion of the selective STEP inhibitor, TC-2153, immediately after self-administration suppressed post-abstinence context-induced relapse under extinction conditions and cue-induced reinstatement, but not cocaine prime-induced drug seeking or sucrose seeking. Moreover, an intra-PrL cortical TC-2153 microinfusion immediately after self-administration prevented the cocaine-induced decrease in p-ERK within the PrL cortex during early abstinence. Interestingly, a systemic TC-2153 injection at the same timepoint failed to suppress post-abstinence context-induced relapse or cue-induced reinstatement, but did suppress cocaine prime-induced reinstatement. These data indicate that the STEP-induced ERK dephosphorylation in the PrL cortex during early abstinence is a critical neuroadaptation that promotes relapse to cocaine seeking and that systemic versus intra-PrL cortical inhibition of STEP during early abstinence differentially suppresses cocaine seeking.


Subject(s)
Benzothiepins/pharmacology , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Drug-Seeking Behavior/drug effects , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Animals , Extracellular Signal-Regulated MAP Kinases , Male , Phosphoproteins , Prefrontal Cortex , Rats , Rats, Sprague-Dawley , Self Administration
10.
Curr Protein Pept Sci ; 18(11): 1152-1162, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28699511

ABSTRACT

Striatal-enriched tyrosine protein phosphatase (STEP) is expressed mainly in the brain. Its dysregulation is associated with Alzheimer's and Huntington's diseases, schizophrenia, fragile X syndrome, drug abuse and stroke/ischemia. However, an association between STEP and depressive disorders is still obscure. The review discusses the theoretical foundations and experimental facts concerning possible relationship between STEP dysregulation and depression risk. STEP dephosphorylates and inactivates several key neuronal signaling proteins such as extracellular signal-regulating kinase 1 and 2 (ERK1/2), stress activated protein kinases p38, the Src family tyrosine kinases Fyn, Pyk2, NMDA and AMPA glutamate receptors. The inactivation of these proteins decreases the expression of brain derived neurotrophic factor (BDNF) necessary for neurogenesis and neuronal survival. The deficit of BDNF results in progressive degeneration of neurons in the hippocampus and cortex and increases depression risk. At the same time, a STEP inhibitor, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), increases BDNF expression in the hippocampus and attenuated the depressivelike behavior in mice. Thus, STEP is involved in the mechanism of depressive disorders and it is a promising molecular target for atypical antidepressant drugs of new generation.


Subject(s)
Brain/enzymology , Depression/genetics , Neurons/enzymology , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Animals , Benzothiepins/pharmacology , Brain/drug effects , Brain/pathology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/enzymology , Depression/physiopathology , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Neurons/drug effects , Neurons/pathology , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
11.
Psychopharmacology (Berl) ; 234(4): 631-645, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27975125

ABSTRACT

RATIONALE: It has recently been found that chronic treatment with the highly selective, brain-penetrating Y5 receptor antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro [1] benzothiepino[5,4-d] thiazol-2-yl) amino] cyclohexyl]methyl]-methanesulfonamide], produces antidepressant-like effects in the rat chronic mild stress model. OBJECTIVE: In the present study, we investigated the possible antidepressant-like activity of Lu AA33810 in rats subjected to glial ablation in the prefrontal cortex (PFC) by the gliotoxin L-AAA, which is an astroglial degeneration model of depression. RESULTS: We observed that Lu AA33810 administered intraperitoneally at a single dose of 10 mg/kg both reversed depressive-like behavioral changes in the forced swim test (FST) and prevented degeneration of astrocytes in the mPFC. The mechanism of antidepressant and glioprotective effects of Lu AA33810 has not been studied, so far. We demonstrated the contribution of the noradrenergic rather than the serotonergic pathway to the antidepressant-like action of Lu AA33810 in the FST. Moreover, we found that antidepressant-like effect of Lu AA33810 was connected with the influence on brain-derived neurotrophic factor (BDNF) protein expression. We also demonstrated the antidepressant-like effect of Lu AA33810 in the FST in rats which did not receive the gliotoxin. We found that intracerebroventricular injection of the selective MAPK/ERK inhibitor U0126 (5 µg/2 µl) and the selective PI3K inhibitor LY294002 (10 nmol/2 µl) significantly inhibited the anti-immobility effect of Lu AA33810 in the FST in rats, suggesting that MAPK/ERK and PI3K signaling pathways could be involved in the antidepressant-like effect of Lu AA33810. CONCLUSION: Our results indicate that Lu AA33810 exerts an antidepressant-like effect and suggest the Y5 receptors as a promising target for antidepressant therapy.


Subject(s)
Antidepressive Agents/pharmacology , Benzothiepins/pharmacology , Depression/drug therapy , Sulfonamides/pharmacology , Animals , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Benzothiepins/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Chromones/pharmacology , Depression/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Male , Morpholines/pharmacology , Neuropeptide Y/metabolism , Phosphoinositide-3 Kinase Inhibitors , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Signal Transduction/drug effects , Sulfonamides/therapeutic use , Swimming
12.
Cell Mol Life Sci ; 73(7): 1503-14, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26450419

ABSTRACT

Brain-derived neurotrophic factor (BDNF) and STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) have opposing functions in the brain, with BDNF supporting and STEP61 opposing synaptic strengthening. BDNF and STEP61 also exhibit an inverse pattern of expression in a number of brain disorders, including schizophrenia (SZ). NMDAR antagonists such as phencyclidine (PCP) elicit SZ-like symptoms in rodent models and unaffected individuals, and exacerbate psychotic episodes in SZ. Here we characterize the regulation of BDNF expression by STEP61, utilizing PCP-treated cortical culture and PCP-treated mice. PCP-treated cortical neurons showed both an increase in STEP61 levels and a decrease in BDNF expression. The reduction in BDNF expression was prevented by STEP61 knockdown or use of the STEP inhibitor, TC-2153. The PCP-induced increase in STEP61 expression was associated with the inhibition of CREB-dependent BDNF transcription. Similarly, both genetic and pharmacologic inhibition of STEP prevented the PCP-induced reduction in BDNF expression in vivo and normalized PCP-induced hyperlocomotion and cognitive deficits. These results suggest a mechanism by which STEP61 regulates BDNF expression, with implications for cognitive functioning in CNS disorders.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cognition Disorders/drug therapy , Phencyclidine/therapeutic use , Protein Tyrosine Phosphatases/metabolism , Animals , Benzothiepins/pharmacology , Brain-Derived Neurotrophic Factor/analysis , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cells, Cultured , Cognition Disorders/metabolism , Cognition Disorders/pathology , Down-Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Motor Activity/drug effects , Neurons/cytology , Neurons/metabolism , Phencyclidine/pharmacology , Phosphorylation/drug effects , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/genetics , RNA Interference , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Ubiquitination
13.
J Neurochem ; 136(2): 285-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26316048

ABSTRACT

Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. In contrast, activation of TrkB receptor results in the degradation of STEP61 and reverses hyperlocomotor activity in BDNF(+/-) mice. Moreover, inhibition of STEP61 by TC-2153 is sufficient to enhance the Tyr phosphorylation of STEP substrates and also reverses hyperlocomotion in BDNF(+/-) mice. These findings give us a better understanding of the regulation of STEP61 by BDNF in normal cognitive functions and in neuropsychiatric disorders.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Down-Regulation/physiology , Neurons/metabolism , Protein Tyrosine Phosphatases/metabolism , Animals , Benzothiepins/pharmacology , Brain/cytology , Brain-Derived Neurotrophic Factor/genetics , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Embryo, Mammalian , Female , Flavones/pharmacology , Leupeptins/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Neurons/drug effects , Protein Tyrosine Phosphatases/genetics , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Time Factors
14.
Pain ; 157(2): 377-386, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26270590

ABSTRACT

The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.


Subject(s)
Nociception/physiology , Pain Threshold/drug effects , Pain/pathology , Pain/physiopathology , Protein Tyrosine Phosphatases, Non-Receptor/deficiency , Animals , Benzothiepins/pharmacology , Benzothiepins/therapeutic use , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Evoked Potentials/drug effects , Evoked Potentials/genetics , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hyperalgesia/drug therapy , Hyperalgesia/genetics , Hyperalgesia/metabolism , Hyperalgesia/pathology , Inflammation/chemically induced , Inflammation/complications , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Fibers, Unmyelinated/drug effects , Nerve Fibers, Unmyelinated/physiology , Nociception/drug effects , Pain/etiology , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Rats , Rats, Sprague-Dawley , Signal Transduction
15.
Bioorg Med Chem Lett ; 25(5): 1044-6, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25666825

ABSTRACT

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain specific protein tyrosine phosphatase that has been implicated in many neurodegenerative diseases, such as Alzheimer's disease. We recently reported the benzopentathiepin TC-2153 as a potent inhibitor of STEP in vitro, cells and animals. Herein, we report the synthesis and evaluation of TC-2153 analogs in order to define what structural features are important for inhibition and to identify positions tolerant of substitution for further study. The trifluoromethyl substitution is beneficial for inhibitor potency, and the amine is tolerant of acylation, and thus provides a convenient handle for introducing additional functionality such as reporter groups.


Subject(s)
Benzothiepins/chemistry , Benzothiepins/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatases/antagonists & inhibitors , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Animals , Benzothiepins/chemical synthesis , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Enzyme Inhibitors/chemical synthesis , Halogenation , Methylation , Mice , Protein Tyrosine Phosphatases/metabolism , Rats
16.
PLoS Biol ; 12(8): e1001923, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25093460

ABSTRACT

STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD) mice, with no change in beta amyloid and phospho-tau levels.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Cognition Disorders/drug therapy , Cognition Disorders/enzymology , Enzyme Inhibitors/therapeutic use , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amino Acid Sequence , Animals , Benzothiepins/pharmacology , Benzothiepins/therapeutic use , Catalytic Domain , Cell Death/drug effects , Cerebral Cortex/pathology , Cognition Disorders/complications , Cognition Disorders/pathology , Cysteine/metabolism , Disease Models, Animal , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Neurons/drug effects , Neurons/pathology , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Substrate Specificity/drug effects
18.
Biol Pharm Bull ; 37(1): 130-6, 2014.
Article in English | MEDLINE | ID: mdl-24162843

ABSTRACT

KW-7158 is a novel therapeutic candidate for treating overactive bladder (OAB) with a unique mode of action: suppression of sensory afferent nerves. However, the molecular target of this compound remains unknown. We herein report the identification of the KW-7158 target to be equilibrative nucleoside transporter-1 (ENT1). A membrane protein expression library of ca. 7000 genes was expressed in a dorsal root ganglion cell line, which we had previously generated, and subjected to screening for binding with a fluorescent derivative that retains high binding activity to the target. The screening revealed that only cells transfected with an ENT1 expression vector exhibited significant binding. We next performed [(3)H]KW-7158 binding experiments and an adenosine influx assay and found that KW-7158 binds to and inhibits ENT1. To further demonstrate the pharmacological relevance, we evaluated other known ENT1 inhibitors (nitrobenzylthioinosine, dipyridamole, draflazine) in an in vitro bladder strip contraction assay and the rat spinal cord injury OAB model. We found that all of the inhibitors exhibited anti-OAB activities, of which the potencies were comparable to that of adenosine influx inhibition in vitro. These studies demonstrated that the pharmacological target of KW-7158 is ENT1, at least in the rat OAB model. Our results will aid understanding of the precise mechanism of action of this drug and may also shed new light on the use of the adenosine pathway for the treatment of OAB.


Subject(s)
Benzothiepins/pharmacology , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Urinary Bladder, Overactive/metabolism , Afferent Pathways , Animals , Benzothiepins/therapeutic use , Cell Line , Female , Ganglia, Spinal/metabolism , Male , Rats , Rats, Inbred Strains , Urinary Bladder, Overactive/drug therapy
19.
Psychopharmacology (Berl) ; 221(3): 469-78, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22127556

ABSTRACT

RATIONALE: The creation of effective psychotropic drugs is the key problem of psychopharmacology. Natural compounds and their synthetic analogues attract particular attention. OBJECTIVES: The effect of a new synthetic analogue of varacin, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), on the behavior and the expression of the genes coding BDNF (Brain-Derived Neurotrophic Factor, Bdnf) and CREB (cAMP response element-binding protein, Creb) implicated in the mechanism of psychotropic drug action as well as gp130 (Il6st) implicated in the mechanism of hereditary catalepsy in the brain of mice of ASC (Antidepressant Sensitive Catalepsy) strain was studied. RESULTS: Acute per os administration of 20 or 40 mg/kg, but not 10 mg/kg of TC-2153 significantly decreased catalepsy. At the same time, in the open field test, 10 or 20 mg/kg of TC-2153 did not influence the locomotor activity, grooming or time spent in the center, while the highest dose of the drug (40 mg/kg) significantly reduced time in the center without any effect on locomotion and grooming. Chronic TC-2153 treatment (10 mg/kg for 12-16 days) did not influence the behavior in the open field but significantly attenuated catalepsy, increased Bdnf mRNA and decreased Il6st mRNA levels in the hippocampus. CONCLUSIONS: The results suggest: 1) TC-2153 as a new drug with potential psychotropic and anticataleptic activities and 2) the involvement of BDNF and gp130 in the molecular mechanism of TC-2153 action.


Subject(s)
Benzothiepins/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Catalepsy/drug therapy , Gene Expression Regulation/drug effects , Animals , Behavior, Animal/drug effects , Benzothiepins/administration & dosage , Catalepsy/genetics , Cytokine Receptor gp130/genetics , Dose-Response Relationship, Drug , Grooming/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Motor Activity/drug effects , Psychotropic Drugs/administration & dosage , Psychotropic Drugs/pharmacology , RNA, Messenger/metabolism
20.
Bioorg Med Chem Lett ; 21(18): 5436-41, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21782428

ABSTRACT

The structure-activity relationship of a series of tricyclic-sulfonamide compounds 11-32 culminating in the discovery of N-[trans-4-(4,5-dihydro-3,6-dithia-1-aza-benzo[e]azulen-2-ylamino)-cyclohexylmethyl]-methanesulfonamide (15, Lu AA33810) is reported. Compound 15 was identified as a selective and high affinity NPY5 antagonist with good oral bioavailability in mice (42%) and rats (92%). Dose dependent inhibition of feeding was observed after i.c.v. injection of the selective NPY5 agonist ([cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]-hPP). In addition, ip administration of Lu AA33810 (10 mg/kg) produced antidepressant-like effects in a rat model of chronic mild stress.


Subject(s)
Benzothiepins/pharmacology , Drug Discovery , Mood Disorders/drug therapy , Receptors, Neuropeptide Y/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Benzothiepins/chemical synthesis , Benzothiepins/chemistry , Biological Availability , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Mice , Molecular Structure , Mood Disorders/metabolism , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL