Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24.471
1.
Int J Biol Sci ; 20(7): 2339-2355, 2024.
Article En | MEDLINE | ID: mdl-38725853

Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-ß regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.


Bile Acids and Salts , ErbB Receptors , Inflammation , Mice, Inbred C57BL , Signal Transduction , Animals , Bile Acids and Salts/metabolism , ErbB Receptors/metabolism , Mice , Inflammation/metabolism , Stem Cells/metabolism , Liver/metabolism , Liver/pathology , Male , Proteomics , Macrophages/metabolism , Hepatic Stellate Cells/metabolism
2.
Food Res Int ; 186: 114312, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729688

Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.


Food Microbiology , Gastrointestinal Tract , Listeria monocytogenes , Meat Products , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Meat Products/microbiology , Virulence , Gastrointestinal Tract/microbiology , Bile Acids and Salts/metabolism , Digestion , Food Contamination , Microbial Viability , Cell Membrane Permeability
3.
Curr Rev Clin Exp Pharmacol ; 19(3): 225-233, 2024.
Article En | MEDLINE | ID: mdl-38708917

Farnesoid X receptor (FXR) was identified as an orphan nuclear receptor resembling the steroid receptor in the late '90s. Activation of FXR is a crucial step in many physiological functions of the liver. A vital role of FXR is impacting the amount of bile acids in the hepatocytes, which it performs by reducing bile acid synthesis, stimulating the bile salt export pump, and inhibiting its enterohepatic circulation, thus protecting the hepatocytes against the toxic accumulation of bile acids. Furthermore, FXR mediates bile acid biotransformation in the intestine, liver regeneration, glucose hemostasis, and lipid metabolism. In this review, we first discuss the mechanisms of the disparate pleiotropic actions of FXR agonists. We then delve into the pharmacokinetics of Obeticholic acid (OCA), the first-in-class selective, potent FXR agonist. We additionally discuss the clinical journey of OCA in humans, its current evidence in various human diseases, and its plausible roles in the future.


Chenodeoxycholic Acid , Chenodeoxycholic Acid/analogs & derivatives , Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/drug effects , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/therapeutic use , Animals , Bile Acids and Salts/metabolism , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects
4.
Nat Commun ; 15(1): 3796, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714706

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Alzheimer Disease , Ammonia , Metabolomics , Phenotype , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Ammonia/metabolism , Aged , Female , Male , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Bile Acids and Salts/metabolism , Aged, 80 and over , Cohort Studies
5.
Sci Rep ; 14(1): 10127, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698075

Analyzing blood lipid and bile acid profile changes in colorectal cancer (CRC) patients. Evaluating the integrated model's diagnostic significance for CRC. Ninety-one individuals with colorectal cancer (CRC group) and 120 healthy volunteers (HC group) were selected for comparison. Serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoproteins (Apo) A1, ApoA2, ApoB, ApoC2, and ApoC3 were measured using immunoturbidimetric and colorimetric methods. Additionally, LC-MS/MS was employed to detect fifteen bile acids in the serum, along with six tumor markers: carcinoembryonic antigen (CEA), carbohydrate antigens (CA) 125, CA19-9, CA242, CA50, and CA72-4. Group comparisons utilized independent sample t-tests and Mann-Whitney U tests. A binary logistic regression algorithm was applied to fit the indicators and establish a screening model; the diagnostic accuracy of individual Indicators and the model was analyzed using receiver operating characteristic (ROC) curves. The CRC group showed significantly lower levels in eight serum lipid indicators and eleven bile acids compared to the HC group (P < 0.05). Conversely, serum levels of TG, CA19-9, and CEA were elevated (P < 0.05). Among the measured parameters, ApoA2 stands out for its strong correlation with the presence of CRC, showcasing exceptional screening efficacy with an area under the curve (AUC) of 0.957, a sensitivity of 85.71%, and a specificity of 93.33%. The screening model, integrating ApoA1, ApoA2, lithocholic acid (LCA), and CEA, attained an impressive AUC of 0.995, surpassing the diagnostic accuracy of individual lipids, bile acids, and tumor markers. CRC patients manifest noteworthy alterations in both blood lipids and bile acid profiles. A screening model incorporating ApoA1, ApoA2, LCA, and CEA provides valuable insights for detecting CRC.


Bile Acids and Salts , Biomarkers, Tumor , Colorectal Neoplasms , Early Detection of Cancer , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Male , Female , Middle Aged , Biomarkers, Tumor/blood , Early Detection of Cancer/methods , Bile Acids and Salts/blood , Aged , ROC Curve , Case-Control Studies , Apolipoproteins/blood , Carcinoembryonic Antigen/blood , Adult , Lipids/blood
6.
Sci Rep ; 14(1): 12185, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806569

Intrahepatic cholestasis of pregnancy (ICP) can lead to many adverse pregnancy outcomes, and the influencing factors remain unclear at present. This study retrospectively analyzed clinical data from 1815 pregnant women with ICP and evaluated the relationship between ICP subtypes, gestational age at onset, and pregnancy outcomes. The results of this study show that during pregnancy, the levels of biochemical indicators (TBA, DBIL and ALT) in the serum of pregnant women initially diagnosed with subtypes of ICP were noted to constantly change, and the subtype of ICP and its severity also changed. The incidence of adverse pregnancy outcomes [meconium-stained amniotic fluid (MSAF), NICU transfer, Apgar score ≤ 7 at 1 min, and preterm birth] in patients with ICP1 (icteric type) was significantly higher than for patients with ICP2, ICP3 or ICP4. The preterm birth rate of early-onset ICP was higher than that of late-onset ICP in ICP1 and ICP3 subtypes. In conclusion, the outcome of pregnancy in women with ICP is closely related to the serum TBA level and ICP subtype, which should be recognized in the clinic.


Bile Acids and Salts , Cholestasis, Intrahepatic , Pregnancy Complications , Pregnancy Outcome , Humans , Female , Pregnancy , Cholestasis, Intrahepatic/blood , Pregnancy Complications/blood , Bile Acids and Salts/blood , Adult , Retrospective Studies , Premature Birth/blood , Gestational Age , Infant, Newborn
7.
Food Res Int ; 187: 114421, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763671

This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.


Bile Acids and Salts , Digestion , Emulsions , Lipolysis , Phospholipids , Triglycerides , Emulsions/chemistry , Triglycerides/metabolism , Triglycerides/chemistry , Bile Acids and Salts/metabolism , Humans , Phospholipids/chemistry , Phospholipids/metabolism , Digestion/physiology , Lipase/metabolism , Intestine, Small/metabolism , Surface-Active Agents/chemistry
8.
Gut Microbes ; 16(1): 2356284, 2024.
Article En | MEDLINE | ID: mdl-38769683

Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.


Bacteria , Bile Acids and Salts , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Humans , Bile Acids and Salts/metabolism , Animals , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Dysbiosis/microbiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
9.
J Nat Med ; 78(3): 633-643, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704807

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.


Bile Acids and Salts , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Tumor Microenvironment , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Mice , Bile Acids and Salts/metabolism , Tumor Microenvironment/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Inflammation/drug therapy , Inflammation/metabolism
11.
Cell Mol Life Sci ; 81(1): 217, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748186

The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.


Bile Acids and Salts , Peptides , Receptors, G-Protein-Coupled , Taste , Bile Acids and Salts/metabolism , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Taste/physiology , Peptides/metabolism , Phylogeny , HEK293 Cells , Amino Acids/metabolism , Cell Membrane/metabolism
12.
J Chromatogr A ; 1725: 464962, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38704923

Because of the "enterohepatic circulation" of bile acid, liver damage can be reflected by monitoring the content of bile acid in the serum of the organism. To monitor the concentration of 15 bile acids in plasma samples, a new technique of PRiME (process, ruggedness, improvement, matrix effect, ease of use) pass-through cleanup procedure combined with high performance liquid chromatography-tandem quadrupole mass spectrometry (HPLC-MS/MS) was developed. The sorbent used in the PRiME pass-through cleanup procedure is a new type of magnetic organic resin composite nano-material modified by C18 (C18-PS-DVB-GMA-Fe3O4), which has high cleanup efficiency of plasma samples. It also shows good performance in the separation and analysis of 15 kinds of bile acids. Under the optimal conditions, the results show higher cleanup efficiency of C18-PS-DVB-GMA-Fe3O4 with recoveries in the range of 82.1-115 %. The limit of quantitative (LOQs) of 15 bile acids were in the range of 0.033 µg/L-0.19 µg/L, and the RSD values of 15 bile acids were in the range of 3.00-11.9 %. Validation results on linearity, specificity, accuracy and precision, as well as on the application to analysis of 15 bile acids in 100 human plasma samples demonstrate the applicability to clinical studies.


Bile Acids and Salts , Limit of Detection , Nanocomposites , Tandem Mass Spectrometry , Humans , Bile Acids and Salts/blood , Bile Acids and Salts/chemistry , Tandem Mass Spectrometry/methods , Nanocomposites/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Polymers/chemistry , Magnetite Nanoparticles/chemistry
13.
Molecules ; 29(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731514

While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.


Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Ligands , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects
14.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731931

The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.


Hepatomegaly , Hypercholesterolemia , Immunoglobulin J Recombination Signal Sequence-Binding Protein , Kelch-Like ECH-Associated Protein 1 , Liver , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Hypercholesterolemia/pathology , Liver/metabolism , Liver/pathology , Hepatomegaly/genetics , Hepatomegaly/metabolism , Hepatomegaly/pathology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Lipid Metabolism/genetics , Gene Deletion , Signal Transduction , Cholesterol/metabolism , Mice, Knockout , Male , Bile Acids and Salts/metabolism
15.
Fish Shellfish Immunol ; 149: 109593, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697374

A type of fermented bile acids (FBAs) has been produced through a biological method, and its effects on growth performance, metabolism, and intestinal microbiota in largemouth bass were investigated. The results demonstrated that incorporating 0.03 %-0.05 % FBAs diet could improve the final weight, weight gain and specific growth rate, and decrease the feed conversion ratio. Dietary FBAs did not significantly affect the levels of high-density lipoprotein, low-density lipoprotein, and triglycerides, but decreased the activities of α-amylase in most groups. Adding FBAs to the diet significantly increased the integrity of the microscopic structure of the intestine, thickened the muscular layer of the intestine, and notably enhanced its intestinal barrier function. The addition of FBAs to the diet increased the diversity of the gut microbiota in largemouth bass. At the phylum level, there was an increase in the abundance of Proteobacteria, Firmicutes, Tenericutes and Cyanobacteria and a significant decrease in Actinobacteria and Bacteroidetes. At the genus level, the relative abundance of beneficial bacteria Mycoplasma in the GN6 group and Coprococcus in the GN4 group significantly increased, while the pathogenic Enhydrobacter was inhibited. Meanwhile, the highest levels of AKP and ACP were observed in the groups treated with 0.03 % FBAs, while the highest levels of TNF-α and IL-10 were detected in the group treated with 0.04 % FBAs. Additionally, the highest levels of IL-1ß, IL-8T, GF-ß, IGF-1, and IFN-γ were noted in the group treated with 0.06 % FBAs. These results suggested that dietary FBAs improved growth performance and intestinal wall health by altering lipid metabolic profiles and intestinal microbiota in largemouth bass.


Animal Feed , Bass , Bile Acids and Salts , Diet , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Bile Acids and Salts/metabolism , Animal Feed/analysis , Bass/growth & development , Bass/immunology , Diet/veterinary , Intestines/microbiology , Fermentation , Metabolome , Dietary Supplements/analysis , Random Allocation
16.
Cell Rep Med ; 5(5): 101543, 2024 May 21.
Article En | MEDLINE | ID: mdl-38697101

Cognitive impairment in the elderly is associated with alterations in bile acid (BA) metabolism. In this study, we observe elevated levels of serum conjugated primary bile acids (CPBAs) and ammonia in elderly individuals, mild cognitive impairment, Alzheimer's disease, and aging rodents, with a more pronounced change in females. These changes are correlated with increased expression of the ileal apical sodium-bile acid transporter (ASBT), hippocampal synapse loss, and elevated brain CPBA and ammonia levels in rodents. In vitro experiments confirm that a CPBA, taurocholic acid, and ammonia induced synaptic loss. Manipulating intestinal BA transport using ASBT activators or inhibitors demonstrates the impact on brain CPBA and ammonia levels as well as cognitive decline in rodents. Additionally, administration of an intestinal BA sequestrant, cholestyramine, alleviates cognitive impairment, normalizing CPBAs and ammonia in aging mice. These findings highlight the potential of targeting intestinal BA absorption as a therapeutic strategy for age-related cognitive impairment.


Aging , Ammonia , Bile Acids and Salts , Cognitive Dysfunction , Intestinal Absorption , Animals , Bile Acids and Salts/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Intestinal Absorption/drug effects , Male , Female , Humans , Mice , Aging/metabolism , Ammonia/metabolism , Aged , Mice, Inbred C57BL , Cholestyramine Resin/pharmacology , Symporters/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Hippocampus/metabolism , Hippocampus/pathology , Rats , Aged, 80 and over
17.
Cell ; 187(11): 2687-2689, 2024 May 23.
Article En | MEDLINE | ID: mdl-38788691

In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.


Akkermansia , Bile Acids and Salts , Bile Acids and Salts/metabolism , Animals , Humans , Akkermansia/metabolism , Liver/metabolism , Verrucomicrobia/metabolism , Gastrointestinal Microbiome , Liver Diseases/metabolism , Liver Diseases/microbiology , Mice , Cholic Acid/metabolism
18.
Toxins (Basel) ; 16(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38787064

Microcystins (MCs), toxins generated by cyanobacteria, feature microcystin-LR (MC-LR) as one of the most prevalent and toxic variants in aquatic environments. MC-LR not only causes environmental problems but also presents a substantial risk to human health. This study aimed to investigate the impact of MC-LR on APCmin/+ mice, considered as an ideal animal model for intestinal tumors. We administered 40 µg/kg MC-LR to mice by gavage for 8 weeks, followed by histopathological examination, microbial diversity and metabolomics analysis. The mice exposed to MC-LR exhibited a significant promotion in colorectal cancer progression and impaired intestinal barrier function in the APCmin/+ mice compared with the control. Gut microbial dysbiosis was observed in the MC-LR-exposed mice, manifesting a notable alteration in the structure of the gut microbiota. This included the enrichment of Marvinbryantia, Gordonibacter and Family_XIII_AD3011_group and reductions in Faecalibaculum and Lachnoclostridium. Metabolomics analysis revealed increased bile acid (BA) metabolites in the intestinal contents of the mice exposed to MC-LR, particularly taurocholic acid (TCA), alpha-muricholic acid (α-MCA), 3-dehydrocholic acid (3-DHCA), 7-ketodeoxycholic acid (7-KDCA) and 12-ketodeoxycholic acid (12-KDCA). Moreover, we found that Marvinbryantia and Family_XIII_AD3011_group showed the strongest positive correlation with taurocholic acid (TCA) in the mice exposed to MC-LR. These findings provide new insights into the roles and mechanisms of MC-LR in susceptible populations, providing a basis for guiding values of MC-LR in drinking water.


Colorectal Neoplasms , Gastrointestinal Microbiome , Marine Toxins , Microcystins , Animals , Microcystins/toxicity , Gastrointestinal Microbiome/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Male , Disease Progression , Dysbiosis/chemically induced , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Bile Acids and Salts/metabolism
19.
Hepatol Commun ; 8(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38780302

BACKGROUND: The relationship between primary sclerosing cholangitis (PSC) and biliary bile acids (BAs) remains unclear. Although a few studies have compared PSC biliary BAs with other diseases, they did not exclude the influence of cholestasis, which affects the composition of BAs. We compared biliary BAs and microbiota among patients with PSC, controls without cholestasis, and controls with cholestasis, based on the hypothesis that alterations in BAs underlie the pathophysiology of PSC. METHODS: Bile samples were obtained using endoscopic retrograde cholangiopancreatography from patients with PSC (n = 14), non-hepato-pancreato-biliary patients without cholestasis (n = 15), and patients with cholestasis (n = 13). RESULTS: The BA profiles showed that patients with PSC and cholestasis controls had significantly lower secondary BAs than non-cholestasis controls, as expected, whereas the ratio of cholic acid/chenodeoxycholic acid in patients with PSC was significantly lower despite cholestasis, and the ratio of (cholic acid + deoxycholic acid)/(chenodeoxycholic acid + lithocholic acid) in patients with PSC was significantly lower than that in the controls with or without cholestasis. The BA ratio in the bile of patients with PSC showed a similar trend in the serum. Moreover, there were correlations between the alteration of BAs and clinical data that differed from those of the cholestasis controls. Biliary microbiota did not differ among the groups. CONCLUSIONS: Patients with PSC showed characteristic biliary and serum BA compositions that were different from those in other groups. These findings suggest that the BA synthesis system in patients with PSC differs from that in controls and patients with other cholestatic diseases. Our approach to assessing BAs provides insights into the pathophysiology of PSC.


Bile Acids and Salts , Cholangitis, Sclerosing , Cholestasis , Cholangitis, Sclerosing/blood , Cholangitis, Sclerosing/microbiology , Humans , Male , Bile Acids and Salts/blood , Bile Acids and Salts/analysis , Bile Acids and Salts/metabolism , Female , Middle Aged , Adult , Cholestasis/blood , Cholestasis/microbiology , Cholangiopancreatography, Endoscopic Retrograde , Case-Control Studies , Aged , Bile Ducts/microbiology , Bile/metabolism , Bile/microbiology , Chenodeoxycholic Acid/analysis , Cholic Acid/analysis , Cholic Acid/blood
20.
Hepatol Commun ; 8(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38780301

BACKGROUND: Vertical sleeve gastrectomy (SGx) is a type of bariatric surgery to treat morbid obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms of SGx to improve MASLD are unclear, but increased bile acids (BAs) and FGF19 (mouse FGF15) were observed. FGF15/19 is expressed in the ileum in response to BAs and is critical in not only suppressing BA synthesis in the liver but also promoting energy expenditure. We hypothesized the reduction of obesity and resolution of MASLD by SGx may be mediated by FGF15/19. METHODS: First, we conducted hepatic gene expression analysis in obese patients undergoing SGx, with the results showing increased expression of FGF19 in obese patients' livers. Next, we used wild-type and intestine-specific Fgf15 knockout mice (Fgf15ile-/-) to determine the effects of FGF15 deficiency on improving the metabolic effects. RESULTS: SGx improved metabolic endpoints in both genotypes, evidenced by decreased obesity, improved glucose tolerance, and reduced MASLD progression. However, Fgf15ile-/- mice showed better improvement compared to wild-type mice after SGx, suggesting that other mediators than FGF15 are also responsible for the beneficial effects of FGF15 deficiency. Further gene expression analysis in brown adipose tissue suggests increased thermogenesis. CONCLUSIONS: FGF15 deficiency, the larger BA pool and higher levels of secondary BAs may increase energy expenditure in extrahepatic tissues, which may be responsible for improved metabolic functions following SGx.


Fatty Liver , Fibroblast Growth Factors , Gastrectomy , Mice, Knockout , Obesity, Morbid , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Animals , Gastrectomy/methods , Mice , Obesity, Morbid/surgery , Obesity, Morbid/genetics , Obesity, Morbid/metabolism , Humans , Male , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Bile Acids and Salts/metabolism , Liver/metabolism , Adult , Middle Aged , Bariatric Surgery , Mice, Inbred C57BL
...