Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48.129
Filter
1.
J Environ Sci (China) ; 147: 230-243, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003043

ABSTRACT

Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.


Subject(s)
Biomass , Mining , Soil Pollutants , Soil , Soil/chemistry , Pyrolysis , Plants , Biodegradation, Environmental
2.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181682

ABSTRACT

With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.


Subject(s)
Biomass , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Plant Viruses/physiology , Water Purification/methods , Tobamovirus , Peroxides
3.
Braz J Biol ; 84: e284877, 2024.
Article in English | MEDLINE | ID: mdl-39319930

ABSTRACT

The soil is a dynamic environment, influenced by abiotic and biotic factors, which can result in changes in plant development. This study aimed to assess the impact on vegetative growth of chia (Salvia hispanica L) inoculated with Trichoderma harzianum and on the rhizosphere microbiome. The experimentation was conducted in a greenhouse under controlled conditions growing chia plants in pots containing soil with a clayey texture. Different concentrations of T. harzianum (0; 2.5; 5.0; 10.0; 20.0 µL. g-1 of seed) were applied to the chia seeds before planting. Morphological parameters, including plant height (cm), number of branches, stem diameter (mm), number of days to flowering and shoot and root dry masses (g) were quantitatively assessed. After the cultivation period, soil samples from the rhizosphere region were collected for subsequent chemical and metagenomic analyses. These samples were also compared with the control soil, collected before installing the experiment. The results showed that increasing doses of T. harzianum promoted a significant increase in the diameter of the stem, number of branches, dry biomass of the root system and the number of days to flowering, without modifying the overall height of the plants. Soil metagenomics indicated that T. harzianum inoculation modified the microbial diversity of the rhizosphere environment, with more pronounced effects observed in samples treated with higher concentrations of the inoculant. Furthermore, there were changes in the chemical composition and enzymes related to soil quality in correlation with the concentrations of the applied inoculant. This study demonstrated that inoculating chia seeds with T. harzianum not only promotes specific morphogenetic characteristics of the plant, but it also has a significant impact on the microbial diversity and biochemical functionality of the soil, including an observed increase in the populations of T. harzianum and T. asperellum.


Subject(s)
Metagenomics , Salvia , Soil Microbiology , Salvia/microbiology , Rhizosphere , Biomass , Hypocreales/physiology , Plant Roots/microbiology
4.
Biomolecules ; 14(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39334898

ABSTRACT

Sundews (Drosera sp.) are the source of biologically active secondary metabolites: phenolic acids, flavonoids, and 1,4-naphtoquinones. Because obtaining them from the natural environment is impossible (rare and endangered species), in this study modifications of traditional tissue cultures grown in solid medium (SM), such as agitated cultures (ACs) (cultures in liquid medium with rotary shaking) and temporary immersion bioreactors PlantformTM (TIB), were used for multiplication of four sundew species: Drosera peltata, Drosera indica, Drosera regia, and Drosera binata, with simultaneously effective synthesis of biologically active phenolic compounds. Each species cultivated on SM, AC, and TIB was tested for biomass accumulation, the content of total phenols and selected phenolic derivative concentrations (DAD-HPLC), the productivity on of phenolic compounds, as well as its antibacterial activity against two human pathogens: Staphylococcus aureus and Escherichia coli. The results showed that the type of culture should be selected for each species separately. Phytochemical analyses showed that the synthesis of secondary metabolites from the groups of phenolic acids, flavonoids, and 1,4-naphthoquinones can be increased by modifying the cultivation conditions. D. regia turned out to be the richest in phenolic compounds, including 1,4-naphtoquinones: plumbagin and ramentaceone. Extracts from D. indica and D. regia tissue showed strong antibacterial activity against both pathogens. It has also been shown that the growth conditions of sundews can modify the level of secondary metabolites, and thus, their biological activity.


Subject(s)
Anti-Bacterial Agents , Drosera , Phenols , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Phenols/pharmacology , Phenols/chemistry , Drosera/chemistry , Drosera/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Flavonoids/pharmacology , Flavonoids/chemistry , Biomass , Microbial Sensitivity Tests , Bioreactors
5.
Biomolecules ; 14(9)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39334910

ABSTRACT

Light quality has significant effects on the growth and metabolite accumulation of algal cells. However, the related mechanism has not been fully elucidated. This study reveals that both red and blue light can promote the growth and biomass accumulation of Chlorella pyrenoidosa, with the enhancing effect of blue light being more pronounced. Cultivation under blue light reduced the content of total carbohydrate in Chlorella pyrenoidosa, while increasing the content of protein and lipid. Conversely, red light decreased the content of protein and increased the content of carbohydrate and lipid. Blue light induces a shift in carbon flux from carbohydrate to protein, while red light transfers carbon flux from protein to lipid. Transcriptomic and metabolomic analysis indicated that both red and blue light positively regulate lipid synthesis in Chlorella pyrenoidosa, but they exhibited distinct impacts on the fatty acid compositions. These findings suggest that manipulating light qualities can modulate carbon metabolic pathways, potentially converting protein into lipid in Chlorella pyrenoidosa.


Subject(s)
Chlorella , Light , Lipids , Metabolomics , Chlorella/metabolism , Chlorella/radiation effects , Chlorella/growth & development , Chlorella/genetics , Lipids/biosynthesis , Transcriptome/radiation effects , Lipid Metabolism/radiation effects , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Biomass
6.
NPJ Biofilms Microbiomes ; 10(1): 91, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39341797

ABSTRACT

Biofilms in nature often exist as communities. In this study, an experimental mixed-species community consisting of Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was used to investigate how AI-2 transporters affect interspecies interactions and composition. The K. pneumoniae lsrB/lsrD deletion mutants had a 10-25-fold higher concentration of extracellular AI-2 compared to the wild-type. Although these deletion mutants produced monospecies biofilms of similar biomass, the substitution of these mutants for the parental strain significantly altered composition. Dual-species biofilm assays demonstrated that the changes in composition were due to the cumulative effect of pairwise interactions. It was further revealed that K. pneumoniae being present physically in the consortium was important in AI-2 mediating composition in the consortium, and that AI-2 transporters were crucial in achieving maximum biomass in the community. In conclusion, these findings demonstrate that AI-2 transporters mediate interspecies interactions and is important in maintaining the compositional equilibrium of the community.


Subject(s)
Bacterial Proteins , Biofilms , Klebsiella pneumoniae , Pseudomonas aeruginosa , Biofilms/growth & development , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Interactions , Homoserine/analogs & derivatives , Homoserine/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Gene Deletion , Biomass , Lactones
7.
Microb Cell Fact ; 23(1): 260, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343903

ABSTRACT

BACKGROUND: The production of surfactin, an extracellular accumulating lipopeptide produced by various Bacillus species, is a well-known representative of microbial biosurfactant. However, only limited information is available on the correlation between the growth rate of the production strain, such as B. subtilis BMV9, and surfactin production. To understand the correlation between biomass formation over time and surfactin production, the availability of glucose as carbon source was considered as main point. In fed-batch bioreactor processes, the B. subtilis BMV9 was used, a strain well-suited for high cell density fermentation. By adjusting the exponential feeding rates, the growth rate of the surfactin-producing strain, was controlled. RESULTS: Using different growth rates in the range of 0.075 and 0.4 h-1, highest surfactin titres of 36 g/L were reached at 0.25 h-1 with production yields YP/S of 0.21 g/g and YP/X of 0.7 g/g, while growth rates lower than 0.2 h-1 resulted in insufficient and slowed biomass formation as well as surfactin production (YP/S of 0.11 g/g and YP/X of 0.47 g/g for 0.075 h-1). In contrast, feeding rates higher than 0.25 h-1 led to a stimulation of overflow metabolism, resulting in increased acetate formation of up to 3 g/L and an accumulation of glucose due to insufficient conversion, leading to production yields YP/S of 0.15 g/g and YP/X of 0.46 g/g for 0.4 h-1. CONCLUSIONS: Overall, the parameter of adjusting exponential feeding rates have an important impact on the B. subtilis productivity in terms of surfactin production in fed-batch bioreactor processes. A growth rate of 0.25 h-1 allowed the highest surfactin production yield, while the total conversion of substrate to biomass remained constant at the different growth rates.


Subject(s)
Bacillus subtilis , Biomass , Bioreactors , Fermentation , Glucose , Lipopeptides , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Lipopeptides/biosynthesis , Lipopeptides/metabolism , Glucose/metabolism , Batch Cell Culture Techniques/methods , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/metabolism , Surface-Active Agents/metabolism
8.
Molecules ; 29(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39339383

ABSTRACT

Ceiba aesculifolia is an important species in Mexico that generates significant amounts of biomass waste during its exploitation, which can be utilized to produce energy. This study presents the characterization of this waste based on chemical (proximal and elemental) and thermal analyses (TGA-DTG) at different heating rates (ß = 10-30 °C/min (283-303 K/min)) in the presence of nitrogen and in a temperature range of 25-900 °C. Kinetic parameters were calculated and analyzed as well. Activation energy (Ea) and the pre-exponential factor (A) were determined using the Friedman (132.03 kJ/mol, 8.11E + 10 s -1), FWO (121.65 kJ/mol, 4.30E + 09), KAS (118.14 kJ/mol, 2.41E + 09), and Kissinger (155.85 kJ/mol, 3.47E + 11) kinetic methods. Variation in the reaction order, n (0.3937-0.6141), was obtained by Avrami's theory. We also calculated the thermodynamic parameters (ΔH, ΔG, ΔS) for each kinetic method applied. The results for Ea, A, n, ΔH, ΔG, and ΔS show that this biomass waste is apt for use in pyrolysis. Moreover, the moisture (<10%), ash (<2%), volatile material (>80%), and HHV (>19%) contents of C. aesculifolia allowed us to predict acceptable performance in generating energy and fuels. Finally, infrared spectroscopy analysis (FT-IR) allowed us to identify important functional groups, including one that belongs to the family of the aliphatic hydrocarbons.


Subject(s)
Pyrolysis , Thermodynamics , Kinetics , Biomass , Biofuels/analysis , Temperature
9.
Molecules ; 29(18)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39339392

ABSTRACT

The utilization of biomass ash in sustainable agriculture and increasing its fertilizing efficiency by biological agents, potentially sequestering CO2, have become important issues for the global economy. The aim of this paper was to investigate the effects of ash from sorghum (Sorghum bicolor L. Moench) and Jerusalem artichoke (Helianthus tuberosus L.) biomass, a biogas plant digestate, and a Spirodela polyrhiza extract, acting alone or synergistically, on soil fertility and the development, health and physiological properties of sorghum plants. The results show novel information concerning differences in the composition and impact of ash, depending on its origin, soil properties and sorghum plant development. Sorghum ash was more effective than that from Jerusalem artichoke. Ash used alone and preferably acting synergistically with the digestate and Spirodela polyrhiza extract greatly increased soil fertility and the growth, biomass yield and health of sorghum plants. These improvements were associated with an increased chlorophyll content in leaves, better gas exchange (photosynthesis, transpiration, stomatal conductance), greater enzyme activity (acid and alkaline phosphatase, RNase, and total dehydrogenase), and a higher biomass energy value. The developed treatments improved environmental conditions by replacing synthetic fertilizers, increasing the sequestration of CO2, solving the ash storage problem, reducing the need for pesticides, and enabling a closed circulation of nutrients between plant and soil, maintaining high soil fertility.


Subject(s)
Biomass , Carbon Dioxide , Fertilizers , Plant Extracts , Sorghum , Sorghum/growth & development , Sorghum/metabolism , Carbon Dioxide/metabolism , Plant Extracts/chemistry , Soil/chemistry , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Photosynthesis , Helianthus/growth & development , Helianthus/metabolism , Chlorophyll/metabolism , Biofuels , Plant Leaves/metabolism , Plant Leaves/chemistry
10.
Molecules ; 29(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39339423

ABSTRACT

The development of epoxy resins is mainly dependent on non-renewable petroleum resources, commonly diglycidyl ether bisphenol A (DGEBA)-type epoxy monomers. Most raw materials of these thermoset resins are toxic to the health of human beings. To alleviate concerns about the environment and health, the design and synthesis of bio-based epoxy resins using biomass as raw materials have been widely studied in recent decades to replace petroleum-based epoxy resins. With the improvement in the requirements for the performance of bio-based epoxy resins, the design of bio-based epoxy resins with unique functions has attracted a lot of attention, and bio-based epoxy resins with flame-retardant, recyclable/degradable/reprocessable, antibacterial, and other functional bio-based epoxy resins have been developed to expand the applications of epoxy resins and improve their competitiveness. This review summarizes the research progress of functional bio-based epoxy resins in recent years. First, bio-based epoxy resins were classified according to their unique function, and synthesis strategies of functional bio-based epoxy resins were discussed, then the relationship between structure and performance was revealed to guide the synthesis of functional bio-based epoxy resins and stimulate the development of more types of functional bio-based epoxy resins. Finally, the challenges and opportunities in the development of functional bio-based epoxy resins are presented.


Subject(s)
Epoxy Resins , Epoxy Resins/chemistry , Epoxy Resins/chemical synthesis , Epoxy Compounds/chemistry , Humans , Biomass , Benzhydryl Compounds/chemistry , Flame Retardants/chemical synthesis
11.
Molecules ; 29(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39339484

ABSTRACT

Drug overuse harms the biosphere, leading to disturbances in ecosystems' functioning. Consequently, more and more actions are being taken to minimise the harmful impact of xenopharmaceuticals on the environment. One of the innovative solutions is using biosorbents-natural materials such as cells or biopolymers-to remove environmental pollutants; however, this focuses mainly on the removal of metal ions and colourants. Therefore, this study investigated the biosorption ability of selected pharmaceuticals-paracetamol, diclofenac, and ibuprofen-by the biomass of the cyanobacteria Anabaena sp. and Chroococcidiopsis thermalis, using the LC-MS/MS technique. The viability of the cyanobacteria was assessed by determining photosynthetic pigments in cells using a UV-VIS spectrophotometer. The results indicate that both tested species can be effective biosorbents for paracetamol and diclofenac. At the same time, the tested compounds did not have a toxic effect on the tested cyanobacterial species and, in some cases, stimulated their cell growth. Furthermore, the Anabaena sp. can effectively biotransform DCF into its dimer.


Subject(s)
Anabaena , Anabaena/metabolism , Diclofenac/chemistry , Diclofenac/metabolism , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Biodegradation, Environmental , Tandem Mass Spectrometry , Adsorption , Biomass , Acetaminophen/chemistry , Acetaminophen/metabolism , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry
12.
Sci Data ; 11(1): 1052, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333118

ABSTRACT

Wildfires result in forest loss or degradation and release substantial emissions into the atmosphere. Forest regrowth following these fires allows for ecosystem repair and carbon replenishment. However, there is a lack of datasets explicitly characterizing the forest regrowth after fires. Here we employed multiple remotely sensed datasets to generate the first global maps of forest structure regrowth including forest height, aboveground biomass (AGB), leaf area index (LAI), and fraction of photosynthetically active radiation (FPAR) following wildfires at a 30 m spatial resolution. The regrowth index for each structural parameter includes regrowth ratio and rate at 5-year intervals, primarily from 2000 to 2020. The dataset developed in this study provides detailed insights into the characteristics of global forest regrowth following forest fires in both spatial and temporal dimensions, contributing to the assessment of forest ecology equilibrium and the quantification of forest carbon dynamics.


Subject(s)
Biomass , Forests , Wildfires , Ecosystem , Trees/growth & development
13.
Nat Commun ; 15(1): 8398, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333536

ABSTRACT

China's large-scale tree planting programs are critical for achieving its carbon neutrality by 2060, but determining where and how to plant trees for maximum carbon sequestration has not been rigorously assessed. Here, we developed a comprehensive machine learning framework that integrates diverse environmental variables to quantify tree growth suitability and its relationship with tree numbers. Then, their correlations with biomass carbon stocks were robustly established. Carbon sink potentials were mapped in distinct tree-planting scenarios. Under one of them aligned with China's ecosystem management policy, 44.7 billion trees could be planted, increasing forest stock by 9.6 ± 0.8 billion m³ and sequestering 5.9 ± 0.5 PgC equivalent to double China's 2020 industrial CO2 emissions. We found that tree densification within existing forests is an economically viable and effective strategy and so it should be a priority in future large-scale planting programs.


Subject(s)
Biomass , Carbon Sequestration , Forests , Trees , China , Trees/growth & development , Trees/metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Ecosystem , Machine Learning , Forestry/methods , Conservation of Natural Resources
14.
Sci Data ; 11(1): 1037, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333553

ABSTRACT

The sustainable management of Earth's complex ecosystems requires an abundance of field data to support long term stewardship. Remotely sensed satellite data provide crucial supplements to field measurements and are essential for deriving key operational products for monitoring Earth systems. However, to accurately calibrate and validate the models used to develop monitoring datasets, coincident field measurements are required. In 2018 and 2019, data related to cotton (Gossypium hirsutum L.) crops were collected from five fields in two farms located in Georgia, USA. Collections were timed to coincide with satellite overpasses to support the development of remote sensing-based crop and soil data products. Data collected include soil moisture, plant water content, above ground biomass, crop height, plant phenology, and field management practices (row direction, row spacing, and plant density). The datasets include 512 records collected in 2018 and 303 records collected in 2019. The data are archived in the National Agricultural Library Ag Data Commons repository and are available for use by researchers seeking crop and soil validation data.


Subject(s)
Crops, Agricultural , Gossypium , Georgia , Soil , Remote Sensing Technology , Agriculture , Biomass
15.
Sci Rep ; 14(1): 22060, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333629

ABSTRACT

Artificial reefs (AR), which are integral tools for fish management, ecological reconciliation and restoration efforts, require non-polluting materials and intricate designs that mimic natural habitats. Despite their three-dimensional complexity, current designs nowadays rely on empirical methods that lack standardised pre-immersion assessment. To improve ecosystem integration, we propose to evaluate 3-dimensional Computer-aided Design (3D CAD) models using a method inspired by functional ecology principles. Based on existing metrics, we assess geometric (C-convexity, P-packing, D-fractal dimension) and informational complexity (R-specific richness, H- diversity, J-evenness). Applying these metrics to different reefs constructed for habitat protection, biomass production and bio-mimicry purposes, we identify potential complexity target points (CTPs). This method provides a framework for improving the effectiveness of artificial reef design by allowing for the adjustment of structural properties. These CTPs represent the first step in enhancing AR designs. We can refine them by evaluating complexity metrics derived from 3D reconstructions of natural habitats to advance bio-mimicry efforts. In situ, post-immersion studies can help make the CTPs more specific for certain species of interest by exploring complexity-diversity or complexity-species distribution relationships at the artificial reef scale.


Subject(s)
Coral Reefs , Ecosystem , Conservation of Natural Resources/methods , Animals , Computer-Aided Design , Biomass , Biodiversity , Fishes
16.
Ecotoxicol Environ Saf ; 283: 116958, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39217896

ABSTRACT

Apple replant disease (ARD) negatively affects plant growth and reduces yields in replanted orchards. In this study, biochar and humic acid were applied to apple replant soil. We aimed to investigate whether biochar and humic acid could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms, changing soil microbial community structure, and improving the soil environment. This experiment included five treatments: apple replant soil (CK), apple replant soil with methyl bromide fumigation (FM), replant soil with biochar addition (2 %), replant soil with humic acid addition (1.5 ‰), and replant soil with biochar combined with humic acid. Seedling biomass, the activity of antioxidant enzymes in the leaves and roots, and soil environmental variables were measured. Microbial community composition and structure were analyzed using ITS gene sequencing. Biochar and humic acid significantly reduced the abundance of Fusarium and promoted the recovery of replant soil microbial communities. Biochar and humic acid also increased the soil enzymes activity (urease, invertase, neutral phosphatase, and catalase), the plant height, fresh weight, dry weight, the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), and root indexes of apple seedlings increased in replant soil. In sum, We can use biochar combined with humic acid to alleviate apple replant disease.


Subject(s)
Charcoal , Humic Substances , Malus , Microbiota , Soil Microbiology , Soil , Malus/drug effects , Charcoal/chemistry , Soil/chemistry , Microbiota/drug effects , Seedlings/drug effects , Seedlings/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Biomass
17.
Sci Rep ; 14(1): 20703, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237637

ABSTRACT

This work uses response surface methodology (RSM) to study the co-cultivation of symbiotic indigenous wastewater microalgae and bacteria under different conditions (inoculum ratio of bacteria to microalgae, CO2, light intensity, and harvest time) for optimal bioenergy feedstock production. The findings of this study demonstrate that the symbiotic microalgae-bacteria culture not only increases total microalgal biomass and lipid productivity, but also enlarges microalgal cell size and stimulates lipid accumulation. Meanwhile, inoculum ratio of bacteria to microalgae, light intensity, CO2, and harvest time significantly affect biomass and lipid productivity. CO2 concentration and harvest time have significant interactive effect on lipid productivity. The response of microalgal biomass and lipid productivity varies significantly from 2.1 × 105 to 1.9 × 107 cells/mL and 2.8 × 102 to 3.7 × 1012 Total Fluorescent Units/mL respectively. Conditions for optimum biomass and oil accumulation are 100% of inoculation ratio (bacteria/microalgae), 3.6% of CO2 (v/v), 205.8 µmol/m2/s of light intensity, and 10.6 days of harvest time. This work provides a systematic methodology with RSM to explore the benefits of symbiotic microalgae-bacteria culture, and to optimize various cultivation parameters within complex wastewater environments for practical applications of integrated wastewater-microalgae systems for cost-efficient bioenergy production.


Subject(s)
Bacteria , Biofuels , Biomass , Carbon Dioxide , Microalgae , Wastewater , Wastewater/microbiology , Microalgae/growth & development , Microalgae/metabolism , Biofuels/microbiology , Bacteria/metabolism , Bacteria/growth & development , Carbon Dioxide/metabolism , Coculture Techniques/methods , Symbiosis , Lipids/biosynthesis , Lipids/analysis
18.
Environ Sci Pollut Res Int ; 31(43): 55280-55300, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39227535

ABSTRACT

The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.


Subject(s)
Biomass , Luffa , Trimethoprim , Water Pollutants, Chemical , Water Purification , Luffa/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Trimethoprim/chemistry , Water Purification/methods , Water/chemistry , Kinetics
19.
Proc Biol Sci ; 291(2031): 20240642, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39288804

ABSTRACT

Nutrient addition, particularly nitrogen, often increases plant aboveground biomass but causes species loss. Asymmetric competition for light is frequently assumed to explain the biomass-driven species loss. However, it remains unclear whether other factors such as water can also play a role. Increased aboveground leaf area following nitrogen addition and warming may increase transpiration and cause water limitation, leading to a decline in diversity. To test this, we conducted field measurements in a grassland community exposed to nitrogen and water addition, and warming. We found that warming and/or nitrogen addition significantly increased aboveground biomass but reduced species richness. Water addition prevented species loss in either nitrogen-enriched or warmed treatments, while it partially mitigated species loss in the treatment exposed to increases in both temperature and nitrogen. These findings thus strongly suggest that water limitation can be an important driver of species loss as biomass increases after nitrogen addition and warming when soil moisture is limiting. This result is further supported by a meta-analysis of published studies across grasslands worldwide. Our study indicates that loss of grassland species richness in the future may be greatest under a scenario of increasing temperature and nitrogen deposition, but decreasing precipitation.


Subject(s)
Biodiversity , Biomass , Grassland , Nitrogen , Water , Nitrogen/metabolism , Temperature , Global Warming , Poaceae/physiology
20.
J Agric Food Chem ; 72(37): 20537-20546, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39231308

ABSTRACT

Understanding and recognizing the structural characteristics of lignin-carbohydrate complexes (LCCs) and lignin in different growth stages and tissue types of bamboo will facilitate industrial processes and practical applications of bamboo biomass. Herein, the LCC and lignin samples were sequentially isolated from fibers and parenchyma cells of bamboo with different growth ages. The diverse yields of sequential fractions not only reflect the different biomass recalcitrance between bamboo fibers and parenchyma cells but also uncover the structural heterogeneity of these tissues at different growth stages. The molecular structures and structural inhomogeneities of the isolated lignin and LCC samples were comprehensively investigated. The results showed that the structural features of lignin and LCC linkages in parenchyma cells were abundant in ß-O-4 linkages but less with carbon-carbon linkages, suggesting that lignin and cross-linked LCC in parenchyma cells are simple in nature and easily to be tamed and tractable in the current biorefinery. Parallelly, the different ball-milled samples were directly characterized by high-resolution (800 M) solution-state 2D-HSQC NMR to analyze the whole lignocellulosic material. Overall, the scheme presented in this study will provide a comprehensive understanding of lignin and LCC linkages in fibers and parenchyma cells of bamboo and enable the utilization of bamboo biomass.


Subject(s)
Carbohydrates , Lignin , Lignin/chemistry , Lignin/metabolism , Carbohydrates/chemistry , Biomass , Sasa/chemistry , Sasa/growth & development , Sasa/metabolism , Magnetic Resonance Spectroscopy , Molecular Structure , Poaceae/chemistry , Poaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL