Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.871
1.
Endocrinology ; 165(7)2024 May 27.
Article En | MEDLINE | ID: mdl-38752331

C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.


Biphenyl Compounds , Bone Development , Mice, Inbred C57BL , Natriuretic Peptide, C-Type , Neprilysin , Animals , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Neprilysin/genetics , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/metabolism , Bone Development/drug effects , Mice , Biphenyl Compounds/pharmacology , Mice, Knockout , Aminobutyrates/pharmacology , Signal Transduction/drug effects , Male , Valsartan/pharmacology , Growth Plate/drug effects , Growth Plate/metabolism , Drug Combinations , Tetrazoles/pharmacology
2.
Eur J Pharmacol ; 975: 176642, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38754538

The effective treatment of diabetes with comorbid depression is a big challenge so far. Honokiol, a bioactive compound from the dietary supplement Magnolia officinalis extract, possesses multiple health benefits. The present study aims to propose a network pharmacology-based method to elucidate potential targets of honokiol in treating diabetes with comorbid depression and related mechanisms. The antidepressant-like efficacy of honokiol was evaluated in high-fat diet (HFD) induced diabetic mice using animal behavior testing, immuno-staining and western blotting assay. Through network pharmacology analysis, retinoid X receptor alpha (RXRα) and vitamin D receptor (VDR) were identified as potential targets related to diabetes and depression. The stable binding conformation between honokiol and RXR/VDR was determined by molecular docking simulation. Moreover, hononkiol effectively alleviated depression-like behaviors in HFD diabetic mice, presented anti-diabetic and anti-neuroinflammatory functions, and protected the hippocampal neuroplasticity. Importantly, honokiol could activate RXR/VDR heterodimer in vivo. The beneficial effects of honokiol on HFD mice were significantly suppressed by UVI3003 (a RXR antagonist), while enhanced by calcitriol (a VDR agonist). Additionally, the disruption of autophagy in the hippocampus of HFD mice was ameliorated by honokiol, which was attenuated by UVI3003 but strengthened by calcitriol. Taken together, the data provide new evidence that honokiol exerts the antidepressant-like effect in HFD diabetic mice via activating RXR/VDR heterodimer to restore the balance of autophagy. Our findings indicate that the RXR/VDR-mediated signaling might be a potential target for treating diabetes with comorbid depression.


Biphenyl Compounds , Depression , Diabetes Mellitus, Experimental , Lignans , Molecular Docking Simulation , Network Pharmacology , Receptors, Calcitriol , Animals , Lignans/pharmacology , Lignans/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Mice , Male , Depression/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/agonists , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Retinoid X Receptor alpha/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Autophagy/drug effects , Behavior, Animal/drug effects , Comorbidity , Allyl Compounds , Phenols
3.
Toxicol Appl Pharmacol ; 487: 116958, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735591

Acute lung injury (ALI) remains a significant clinical challenge due to the absence of effective treatment alternatives. This study presents a new method that employs a screening platform focusing on MyD88 affinity, anti-inflammatory properties, and toxicity. This platform was used to evaluate a 300-compound library known for its anti-inflammatory potential. Among the screened compounds, Bicyclol emerged as a standout, exhibiting MyD88 binding and a significant reduction in LPS-stimulated pro-inflammatory factors production in mouse primary peritoneal macrophages. By targeting MyD88, Bicyclol disrupts the MyD88/TLR4 complex and MyD88 polymer formation, thereby mitigating the MAPKs and NF-κB signaling pathways. In vivo experiments further confirmed Bicyclol's efficacy, demonstrating alleviated ALI symptoms, decreased inflammatory cytokines level, and reduced inflammatory cells presence in lung tissues. These findings were associated with a decrease in mortality in LPS-challenged mice. Overall, Bicyclol represents a promising treatment option for ALI by specifically targeting MyD88 and limiting inflammatory responses.


Acute Lung Injury , Biphenyl Compounds , Lipopolysaccharides , Mice, Inbred C57BL , Myeloid Differentiation Factor 88 , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Myeloid Differentiation Factor 88/metabolism , Mice , Male , Biphenyl Compounds/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism
4.
Bioorg Med Chem ; 107: 117762, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38759254

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.


Biphenyl Compounds , Cell Proliferation , Drug Screening Assays, Antitumor , Lignans , YAP-Signaling Proteins , Humans , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , HCT116 Cells , YAP-Signaling Proteins/metabolism , Molecular Structure , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Sulfides/chemistry , Sulfides/pharmacology , Sulfides/chemical synthesis , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Allyl Compounds , Phenols
5.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735991

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Autoantibodies , Dopaminergic Neurons , Parkinson Disease , Receptor, Angiotensin, Type 1 , Animals , Autoantibodies/immunology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/immunology , Rats , Dopaminergic Neurons/metabolism , Parkinson Disease/therapy , Parkinson Disease/pathology , Disease Models, Animal , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Male , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Oxidopamine/pharmacology , Humans , Rats, Sprague-Dawley
7.
Sci Rep ; 14(1): 12377, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811632

Sacubitril/valsartan has been highly recognized as a treatment for Chronic heart failure (CHF). Its potential cardioprotective benefits and mechanisms, however, remain to be explored. Metabolomics can be used to identify the metabolic characteristics and related markers, as well as the influence of drugs, thereby opening up the new mechanism for sacubitril/valsartan therapy in CHF disease. In this study, the ligation of left anterior descending and exhaustive swimming were used to induce a rat model of CHF after myocardial infarction. The efficacy was appraised with echocardiography, serum NT-proBNP, and histopathologica. UPLC-Q/TOF-MS combined with multivariate statistical analysis approach were used to analyze the effect of sacubitril/valsartan on CHF rats. RT-qPCR and western blot were performed to investigate the tryptophan/kynurenine metabolism pathway. Accordingly, the basal cardiac function were increased, while the serum NT-proBNP and collagen volume fraction decreased in CHF rats with sacubitril/valsartan. Sacubitril/valsartan regulated the expression of kynurenine et.al 8 metabolomic biomarkers in CHF rats serum, and it contributed to the cardioprotective effects through tryptophan metabolism pathway. In addition, the mRNA and protein expression of the indoleamine 2,3-dioxygenase (IDO) in the myocardial tissue of CHF rats, were down-regulated by sacubitril/valsartan, which was the same with the IL-1ß, IFN-γ, TNF-α, COX-2, and IL-6 mRNA expression, and IL-1ß, IFN-γ, and TNF-α expression in serum. In conclusion, sacubitril/valsartan can ameliorate cardiac function and ventricular remodeling in CHF rats, at least in part through inhibition of tryptophan/kynurenine metabolism.


Aminobutyrates , Biphenyl Compounds , Drug Combinations , Heart Failure , Inflammation , Kynurenine , Tetrazoles , Tryptophan , Valsartan , Ventricular Remodeling , Animals , Aminobutyrates/pharmacology , Valsartan/pharmacology , Biphenyl Compounds/pharmacology , Ventricular Remodeling/drug effects , Kynurenine/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Rats , Tryptophan/metabolism , Male , Tetrazoles/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Disease Models, Animal , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/blood , Rats, Sprague-Dawley
8.
Eur J Med Chem ; 272: 116471, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38704945

Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.


Biphenyl Compounds , Lignans , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Humans , Structure-Activity Relationship , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Allyl Compounds , Phenols
9.
Phytochemistry ; 223: 114132, 2024 Jul.
Article En | MEDLINE | ID: mdl-38714288

Honokiol (HK) and magnolol (MAG) are typical representatives of neolignans possessing a wide range of biological activities and are employed as traditional medicines in Asia. In the past few decades, HK and MAG have been proven to be promising chemical scaffolds for the development of novel neolignan drugs. This review focuses on recent advances in the medicinal chemistry of HK and MAG derivatives, especially their structure-activity relationships. In addition, it also presents a comprehensive summary of the pharmacology, biosynthetic pathways, and metabolic characteristics of HK and MAG. This review can provide pharmaceutical chemists deeper insights into medicinal research on HK and MAG, and a reference for the rational design of HK and MAG derivatives.


Biphenyl Compounds , Lignans , Lignans/chemistry , Lignans/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Structure-Activity Relationship , Humans , Molecular Structure , Allyl Compounds , Phenols
10.
Acta Neuropathol ; 147(1): 75, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656399

In multiple sclerosis (MS), persisting disability can occur independent of relapse activity or development of new central nervous system (CNS) inflammatory lesions, termed chronic progression. This process occurs early and it is mostly driven by cells within the CNS. One promising strategy to control progression of MS is the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of both B cells and myeloid cells, such as macrophages and microglia. The benefit of BTK inhibition by evobrutinib was shown as we observed reduced pro-inflammatory activation of microglia when treating chronic experimental autoimmune encephalomyelitis (EAE) or following the adoptive transfer of activated T cells. Additionally, in a model of toxic demyelination, evobrutinib-mediated BTK inhibition promoted the clearance of myelin debris by microglia, leading to an accelerated remyelination. These findings highlight that BTK inhibition has the potential to counteract underlying chronic progression of MS.


Agammaglobulinaemia Tyrosine Kinase , Encephalomyelitis, Autoimmune, Experimental , Microglia , Myelin Sheath , Piperidines , Pyrimidines , Animals , Female , Mice , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Biphenyl Compounds/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , Microglia/pathology , Microglia/drug effects , Microglia/metabolism , Myelin Sheath/pathology , Myelin Sheath/metabolism , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Remyelination/physiology , Remyelination/drug effects
11.
Chem Biol Drug Des ; 103(5): e14509, 2024 May.
Article En | MEDLINE | ID: mdl-38684369

The biphenyl scaffold represents a prominent privileged structure within the realms of organic chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti-inflammatory, anti-HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure, namely the quinoline core. We have also diversified the substituents attached to the benzyloxy group at either the meta or para position of the biphenyl ring categorized into two distinct groups: [4,3']biphenylaminoquinoline-substituted and [3,3']biphenylaminoquinoline-substituted compounds. We embarked on an assessment of the cytotoxic activities of these derivatives in colorectal cancer cell line SW480 and prostate cancer cell line DU145 for exploring the structure-activity relationship. Furthermore, we determined the IC50 values of selected compounds that exhibited superior inhibitory effects on cell viability against SW480, DU145 cells, as well as MDA-MB-231 and MiaPaCa-2 cells. Notably, [3,3']biphenylaminoquinoline derivative 7j displayed the most potent cytotoxicity against these four cancer cell lines, SW480, DU145, MDA-MB-231, and MiaPaCa-2, with IC50 values of 1.05 µM, 0.98 µM, 0.38 µM, and 0.17 µM, respectively. This highly promising outcome underscores the potential of [3,3']biphenylaminoquinoline 7j for further investigation as a prospective anticancer agent in future research endeavors.


Antineoplastic Agents , Biphenyl Compounds , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Line, Tumor , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Drug Screening Assays, Antitumor , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Aminoquinolines/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects
12.
Biomed Pharmacother ; 174: 116535, 2024 May.
Article En | MEDLINE | ID: mdl-38581923

Studies have shown that Sacubitril/valsartan (Sac/Val) can reduce myocardial inflammation in myocarditis mice, in addition to its the recommended treatment of heart failure. However, the underlying mechanisms of Sac/Val in myocarditis remain unclear. C-type natriuretic peptide (CNP), one of the targeting natriuretic peptides of Sac/Val, was recently reported to exert cardio-protective and anti-inflammatory effects in cardiovascular systems. Here, we focused on circulating levels of CNP in patients with acute myocarditis (AMC) and whether Sac/Val modulates inflammation by targeting CNP in experimental autoimmune myocarditis (EAM) mice as well as LPS-induced RAW 264.7 cells and bone marrow derived macrophages (BMDMs) models. Circulating CNP levels were higher in AMC patients compared to healthy controls, and these levels positively correlated with the elevated inflammatory cytokines IL-6 and monocyte count. In EAM mice, Sac/Val alleviated myocardial inflammation while augmenting circulating CNP levels rather than BNP and ANP, accompanied by reduction in intracardial M1 macrophage infiltration and expression of inflammatory cytokines IL-1ß, TNF-α, and IL-6. Furthermore, Sac/Val inhibited CNP degradation and directly blunted M1 macrophage polarization in LPS-induced RAW 264.7 cells and BMDMs. Mechanistically, the effects might be mediated by the NPR-C/cAMP/JNK/c-Jun signaling pathway apart from NPR-B/cGMP/NF-κB pathway. In conclusion, Sac/Val exerts a protective effect in myocarditis by increasing CNP concentration and inhibiting M1 macrophages polarization.


Aminobutyrates , Biphenyl Compounds , Drug Combinations , Macrophages , Myocarditis , Natriuretic Peptide, C-Type , Valsartan , Animals , Mice , Myocarditis/drug therapy , Myocarditis/metabolism , Myocarditis/pathology , Macrophages/drug effects , Macrophages/metabolism , Aminobutyrates/pharmacology , Valsartan/pharmacology , RAW 264.7 Cells , Male , Humans , Biphenyl Compounds/pharmacology , Natriuretic Peptide, C-Type/pharmacology , Tetrazoles/pharmacology , Acute Disease , Disease Models, Animal , Female , Cytokines/metabolism , Cytokines/blood , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Cell Polarity/drug effects
13.
Int Immunopharmacol ; 132: 111963, 2024 May 10.
Article En | MEDLINE | ID: mdl-38560962

We aimed in this study to investigate the possible cardioprotective effects of sacubitril/valsartan against sunitinib-induced cardiac fibrosis (CF) and oxidative stress via targeting thioredoxin-interacting protein/thioredoxin (TXNIP/TRX) system and nuclear factor-kappa B (NF-κB)/Wingless-related MMTV integration site (Wnt)/ß-catenin/Sex-determining region Y box 9 (SOX9) signaling. CF was induced in male Wistar albino rats by cumulative dose of sunitinib (300 mg/kg, given over 4 weeks as: 25 mg/kg orally, three times a week), which were co-treated with sacubitril/valsartan (68 mg/kg/day, orally) for four weeks. Significant elevation in blood pressure, cardiac inflammatory and fibrotic markers besides cardiac dysfunction were observed. These alterations were associated with disruption of TXNIP/TRX system, upregulation of NF-κB/Wnt/ß-catenin/SOX9 pathway along with marked increase in lysyl oxidase (LOX) and matrix metalloproteinase-1 (MMP-1) expressions and extensive deposition of collagen fibers in cardiac tissues. Luckily, sacubitril/valsartan was able to reverse all of the aforementioned detrimental effects in sunitinib-administered rats. These findings illustrate a potential role of sacubitril/valsartan in alleviating CF and oxidative stress induced by sunitinib via antioxidant, anti-inflammatory and antifibrotic properties. These remarkable effects of sacubitril/valsartan were mediated by its ability to improve TXNIP/TRX system and downregulate NF-κB/Wnt/ß-catenin/SOX9 signaling in addition to decreasing LOX and MMP-1 expressions in cardiac tissues. In summary, this study highlights sacubitril/valsartan as a potential therapeutic agent in mitigating CF and oxidative stress especially in cancer cases treated with sunitinib.


Aminobutyrates , Biphenyl Compounds , Drug Combinations , Fibrosis , NF-kappa B , Oxidative Stress , Rats, Wistar , Sunitinib , Tetrazoles , Thioredoxins , Valsartan , Wnt Signaling Pathway , Animals , Valsartan/pharmacology , Valsartan/therapeutic use , Male , Oxidative Stress/drug effects , Biphenyl Compounds/therapeutic use , Biphenyl Compounds/pharmacology , NF-kappa B/metabolism , Aminobutyrates/pharmacology , Aminobutyrates/therapeutic use , Rats , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Thioredoxins/metabolism , Wnt Signaling Pathway/drug effects , Carrier Proteins/metabolism , Down-Regulation/drug effects , Myocardium/pathology , Myocardium/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
14.
J Obstet Gynaecol Res ; 50(6): 1010-1019, 2024 Jun.
Article En | MEDLINE | ID: mdl-38576101

BACKGROUND: Ovarian cancer (OVCA) stands as one of the most fatal gynecological malignancies. Honokiol (HNK) has been substantiated by numerous studies for its anti-tumor activity against malignancies including OVCA. Consequently, this work was designed to elucidate the impact of HNK-mediated modulation of the YAP/TAZ pathway on the biological functions of OVCA cells. METHODS: OVCA cells were subjected to treatment with varying concentrations (0, 25, 50, 75, and 100 µM) of HNK, concomitant with the administration of YAP agonist (XMU). Assessment of cellular viability was executed employing the CCK-8 assay, while quantification of cellular proliferation transpired via colony formation assays. Apoptosis was ascertained using flow cytometry, and expression of apoptosis-related proteins (caspase-3, Bcl-2, Bax), EMT-related proteins (E-cadherin, N-cadherin), migration-associated proteins (MMP-2, MMP-9), and YAP/TAZ pathway-related proteins was evaluated by western blot. Transwell experiments were conducted to assess cellular migratory and invasive propensities. Xenograft tumor models were built to observe tumor growth (volume and weight), apoptosis was assessed by TUNEL staining, and Ki67 expression was evaluated through IHC. RESULTS: HNK exerted inhibitory effects on the viability and proliferative capacity of OVCA cells, elicited apoptotic responses, curtailed the migratory and invasive tendencies of cells, and downregulated the YAP/TAZ pathway. Stimulation with YAP agonist (XMU-MP-1) partially attenuated the impacts of HNK on OVCA cell biology. Experiments in vivo confirmed that HNK inhibited OVCA tumor growth. CONCLUSION: The outcomes of this investigation conclusively established that HNK orchestrated the modulation of the YAP/TAZ pathway, thereby exerting control over the malignant phenotypic manifestations of OVCA cells. The ascertained function of HNK in restraining cellular proliferation and tumor progression provided novel evidence of its anti-proliferative activity within OVCA cells.


Adaptor Proteins, Signal Transducing , Biphenyl Compounds , Lignans , Ovarian Neoplasms , Transcription Factors , YAP-Signaling Proteins , Female , Humans , Lignans/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Biphenyl Compounds/pharmacology , Transcription Factors/metabolism , Cell Line, Tumor , Animals , Adaptor Proteins, Signal Transducing/metabolism , Mice , Apoptosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Mice, Nude , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Allyl Compounds , Phenols
15.
Bioorg Chem ; 147: 107340, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593532

In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.


Anti-HIV Agents , Biphenyl Compounds , Drug Design , HIV Reverse Transcriptase , HIV-1 , Quinazolines , Reverse Transcriptase Inhibitors , Solubility , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Structure-Activity Relationship
16.
Circ Arrhythm Electrophysiol ; 17(5): e012517, 2024 May.
Article En | MEDLINE | ID: mdl-38666379

BACKGROUND: Sacubitril/valsartan (Sac/Val) is superior to angiotensin-converting enzyme inhibitors in reducing the risk of heart failure hospitalization and cardiovascular death, but its mechanistic data on myocardial scar after myocardial infarction (MI) are lacking. The objective of this work was to assess the effects of Sac/Val on inflammation, fibrosis, electrophysiological properties, and ventricular tachycardia inducibility in post-MI scar remodeling in swine. METHODS: After MI, 22 pigs were randomized to receive ß-blocker (BB; control, n=8) or BB+Sac/Val (Sac/Val, n=9). The systemic immune response was monitored. Cardiac magnetic resonance data were acquired at 2-day and 29-day post MI to assess ventricular remodeling. Programmed electrical stimulation and high-density mapping were performed at 30-day post MI to assess ventricular tachycardia inducibility. Myocardial samples were collected for histological analysis. RESULTS: Compared with BB, BB+Sac/Val reduced acute circulating leukocytes (P=0.009) and interleukin-12 levels (P=0.024) at 2-day post MI, decreased C-C chemokine receptor type 2 expression in monocytes (P=0.047) at 15-day post MI, and reduced scar mass (P=0.046) and border zone mass (P=0.043). It also lowered the number and mass of border zone corridors (P=0.009 and P=0.026, respectively), scar collagen I content (P=0.049), and collagen I/III ratio (P=0.040). Sac/Val reduced ventricular tachycardia inducibility (P=0.034) and the number of deceleration zones (P=0.016). CONCLUSIONS: After MI, compared with BB, BB+Sac/Val was associated with reduced acute systemic inflammatory markers, reduced total scar and border zone mass on late gadolinium-enhanced magnetic resonance imaging, and lower ventricular tachycardia inducibility.


Aminobutyrates , Biphenyl Compounds , Cicatrix , Disease Models, Animal , Drug Combinations , Myocardial Infarction , Myocardium , Tachycardia, Ventricular , Valsartan , Ventricular Remodeling , Animals , Valsartan/pharmacology , Aminobutyrates/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/physiopathology , Myocardial Infarction/complications , Myocardial Infarction/pathology , Cicatrix/physiopathology , Cicatrix/etiology , Cicatrix/pathology , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/prevention & control , Tachycardia, Ventricular/metabolism , Ventricular Remodeling/drug effects , Biphenyl Compounds/pharmacology , Myocardium/pathology , Myocardium/metabolism , Anti-Inflammatory Agents/pharmacology , Tetrazoles/pharmacology , Fibrosis , Swine , Anti-Arrhythmia Agents/pharmacology , Female , Male , Time Factors , Magnetic Resonance Imaging, Cine , Heart Rate/drug effects
17.
Biomater Sci ; 12(10): 2639-2647, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563394

Triple negative breast cancer (TNBC) exhibits limited responsiveness to immunotherapy owing to its immunosuppressive tumor microenvironment (TME). Here, a reactive oxygen species (ROS)-labile nanodrug encapsulating the photosensitizer Ce6 and Bcl-2 inhibitor ABT-737 was developed to provoke a robust immune response via the synergistic effect of photodynamic therapy (PDT) and the reversal of apoptosis resistance. Upon exposure to first-wave near-infrared laser irradiation, the generated ROS triggers PEG cleavage, facilitating the accumulation of the nanodrug at tumor region and endocytosis by tumor cells. Further irradiation leads to the substantial generation of cytotoxic ROS, initiating an immunogenic cell death (ICD) cascade, which prompts the maturation of dendritic cells (DCs) as well as the infiltration of T cells into the tumor site. Meanwhile, Bcl-2 inhibition counteracts apoptosis resistance, thereby amplifying PDT-induced ICD and bolstering antitumor immunity. As a result, the ROS-sensitive nanodrug demonstrates a potent inhibitory effect on tumor growth.


Apoptosis , Biphenyl Compounds , Immunotherapy , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Sulfonamides , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Humans , Apoptosis/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Female , Reactive Oxygen Species/metabolism , Animals , Mice , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemistry , Chlorophyllides , Cell Line, Tumor , Piperazines/pharmacology , Piperazines/chemistry , Nitrophenols/pharmacology , Nitrophenols/chemistry , Nanoparticles/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
18.
Int Immunopharmacol ; 133: 112098, 2024 May 30.
Article En | MEDLINE | ID: mdl-38626551

Lung cancer is a serious health issue globally, and current treatments have proven to be inadequate. Therefore, immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway have become a viable treatment option in lun cancer. Honokiol, a lignan derived from Magnolia officinalis, has been found to possess anti-inflammatory, antioxidant, and antitumor properties. Our research found that honokiol can effectively regulate PD-L1 through network pharmacology and transcriptome analysis. Cell experiments showed that honokiol can significantly reduce PD-L1 expression in cells with high PD-L1 expression. Molecular docking, cellular thermal shift assay (CETSA) and Bio-Layer Interferometry (BLI)indicated that Honokiol can bind to PD-L1. Co-culture experiments on lung cancer cells and T cells demonstrated that honokiol mediates PD-L1 degradation, stimulates T cell activation, and facilitates T cell killing of tumor cells. Moreover, honokiol activates CD4 + and CD8 + T cell infiltration in vivo, thus suppressing tumor growth in C57BL/6 mice. In conclusion, this study has demonstrated that honokiol can inhibit the growth of lung cancer by targeting tumor cell PD-L1, suppressing PD-L1 expression, blocking the PD-1/PD-L1 pathway, and enhancing anti-tumor immunity.


B7-H1 Antigen , Biphenyl Compounds , Lignans , Lung Neoplasms , Mice, Inbred C57BL , Lignans/pharmacology , Lignans/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , B7-H1 Antigen/metabolism , Humans , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , Allyl Compounds , Phenols
19.
Aging (Albany NY) ; 16(6): 5065-5076, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38526331

Vascular cognitive impairment (VCI) is claimed as the second most common type of dementia after Alzheimer's disease (AD), in which hypertension is a critical inducer. Currently, hypertension-induced cognitive impairment lacks clinical treatments. Irbesartan is a long-acting angiotensin receptor antagonist with promising antihypertensive properties. Our research will focus on the potential function of Irbesartan on hypertension-induced cognitive impairment. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were orally dosed with normal saline or 20 mg/kg/day Irbesartan for 14 consecutive days, with 4 groups divided shown as below: WKY, Irbesartan, SHR, SHR+ Irbesartan. Firstly, the markedly increased systolic blood pressure observed in SHR rats was signally repressed by Irbesartan on Day 7 and 14 post-dosing. Moreover, notably decreased time of exploring the novel object in the object recognition task (ORT) test, elevated escape latency, and reduced time in the target quadrant in the Morris water maze (MWM) test were observed in SHR rats, which were prominently reversed by Irbesartan. Furthermore, the declined superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) level, increased cyclin-dependent kinase-5 (CDK5) activity, and enhanced protein level of p35/p25, p-Tau (pSer214)/Tau46, and brain-derived neurotrophic factor (BDNF) were memorably rescued by Irbesartan. Lastly, the activity of cAMP/cAMP response element binding protein (CREB) signaling in the hippocampus of SHR rats was markedly repressed, accompanied by an upregulation of phosphodiesterase 4B (PDE4B), which was observably rescued by Irbesartan. Collectively, Irbesartan protected against the hypertension-induced cognitive impairment in SHR rats by regulating the cAMP/CREB signaling.


Cognitive Dysfunction , Hypertension , Rats , Animals , Irbesartan/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Blood Pressure/physiology , Biphenyl Compounds/pharmacology , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Hypertension/complications , Hypertension/drug therapy , Hypertension/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology
20.
Biomed Pharmacother ; 173: 116391, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461685

This study investigated whether sacubitril/valsartan or valsartan are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in two experimental models of pre-hypertension induced by continuous light (24 hours/day) exposure or by chronic lactacystin treatment, and how this potential protection interferes with the renin-angiotensin-aldosterone system (RAAS). Nine groups of three-month-old male Wistar rats were treated for six weeks as follows: untreated controls (C), sacubitril/valsartan (ARNI), valsartan (Val), continuous light (24), continuous light plus sacubitril/valsartan (24+ARNI) or valsartan (24+Val), lactacystin (Lact), lactacystin plus sacubitil/valsartan (Lact+ARNI) or plus valsartan (Lact+Val). Both the 24 and Lact groups developed a mild but significant systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, as well as LV systolic and diastolic dysfunction. Yet, no changes in serum renin-angiotensin were observed either in the 24 or Lact groups, though aldosterone was increased in the Lact group compared to the controls. In both models, sacubitril/valsartan and valsartan reduced elevated SBP, LV hypertrophy and fibrosis and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan and valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7 in the 24 and Lact groups and reduced aldosterone in the Lact group. We conclude that both continuous light exposure and lactacystin treatment induced normal-to-low serum renin-angiotensin models of pre-hypertension, whereas aldosterone was increased in lactacystin-induced pre-hypertension. The protection by ARNI or valsartan in the hypertensive heart in either model was related to the Ang II blockade and the protective Ang 1-7, while in lactacystin-induced pre-hypertension this protection seems to be additionally related to the reduced aldosterone level.


Acetylcysteine/analogs & derivatives , Aminobutyrates , Heart Failure , Hypertension , Prehypertension , Rats , Animals , Male , Renin-Angiotensin System , Renin , Aldosterone , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Rats, Wistar , Valsartan/pharmacology , Hypertension/drug therapy , Biphenyl Compounds/pharmacology , Hypertrophy, Left Ventricular , Drug Combinations , Fibrosis , Stroke Volume
...