Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.834
Filter
1.
Arch Osteoporos ; 19(1): 55, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954145

ABSTRACT

Trends toward more favorable improvement of the cortical bone parameters by once-weekly (56.5 µg once a week) and twice-weekly teriparatide (28.2 µg twice a week), and that of the trabecular bone parameters by once-daily (1/D) teriparatide (20 µg/day once a day) were shown. PURPOSE: To examine the effects of differences in the amount of teriparatide (TPTD) per administration and its dosing frequency on the bone structure in the proximal femur by dual-energy X-ray absorptiometry (DXA)-based 3D-modeling (3D-SHAPER software). METHODS: This was a multicenter retrospective study. Patients aged 50 years or older with primary osteoporosis who continuously received once-/twice-weekly (1・2/W, n = 60) or 1/D TPTD (n = 14) administration for at least one year were included in the study. Measurement regions included the femoral neck (FN), trochanter (TR), femoral shaft (FS), and total proximal hip (TH). Concurrently, the bone mineral density (BMD) and Trabecular Bone Score (TBS) were measured. RESULTS: The cross-sectional area, cross-sectional moment of inertia, and section modulus in the FS were significantly improved in the 1・2/W TPTD group, as compared to the 1/D TPTD group. However, significant improvement of the cortical thickness and buckling ratio in the FN was observed in the 1/D TPTD group, as compared to the 1・2/W TPTD group. Trabecular BMD values in the FS and TH were significantly increased in the 1/D TPTD group, as compared to the 1・2/W TPTD group, while the cortical BMD values in the TR, FS, and TH were significantly increased in the 1・2/W TPTD group, as compared to the 1/D TPTD group. CONCLUSION: Trends toward more favorable improvement of the cortical bone by 1・2/W TPTD and that of the trabecular bones by 1/D TPTD were observed.


Subject(s)
Absorptiometry, Photon , Bone Density Conservation Agents , Bone Density , Femur , Imaging, Three-Dimensional , Teriparatide , Humans , Teriparatide/administration & dosage , Teriparatide/pharmacology , Female , Bone Density/drug effects , Retrospective Studies , Aged , Middle Aged , Male , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/pharmacology , Femur/drug effects , Femur/diagnostic imaging , Imaging, Three-Dimensional/methods , Osteoporosis/drug therapy , Osteoporosis/diagnostic imaging , Drug Administration Schedule , Aged, 80 and over , Dose-Response Relationship, Drug
4.
JMIR Res Protoc ; 13: e50542, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990638

ABSTRACT

BACKGROUND: Women of reproductive age experience cyclical variation in the female sex steroid hormones 17ß-estradiol and progesterone during the menstrual cycle that is attenuated by some hormonal contraceptives. Estrogens perform a primary function in sexual development and reproduction but have nonreproductive effects on bone, muscle, and sinew tissues (ie, ligaments and tendons), which may influence injury risk and physical performance. OBJECTIVE: The purpose of the study is to understand the effect of the menstrual cycle and hormonal contraceptive use on bone and calcium metabolism, and musculoskeletal health and performance. METHODS: A total of 5 cohorts of physically active women (aged 18-40 years) will be recruited to participate: eumenorrheic, nonhormonal contraceptive users (n=20); combined oral contraceptive pill (COCP) users (n=20); hormonal implant users (n=20); hormonal intrauterine system users (n=20); and hormonal injection users (n=20). Participants must have been using the COCP and implant for at least 1 year and the intrauterine system and injection for at least 2 years. First-void urine samples and fasted blood samples will be collected for biochemical analysis of calcium and bone metabolism, hormones, and metabolic markers. Knee extensor and flexor strength will be measured using an isometric dynamometer, and lower limb tendon and stiffness, tone, and elasticity will be measured using a Myoton device. Functional movement will be assessed using a single-leg drop to assess the frontal plane projection angle and the qualitative assessment of single leg loading. Bone density and macro- and microstructure will be measured using ultrasound, dual-energy x-ray absorptiometry, and high-resolution peripheral quantitative computed tomography. Skeletal material properties will be estimated from reference point indentation, performed on the flat surface of the medial tibia diaphysis. Body composition will be assessed by dual-energy x-ray absorptiometry. The differences in outcome measures between the hormonal contraceptive groups will be analyzed in a one-way between-group analysis of covariance. Within the eumenorrheic group, the influence of the menstrual cycle on outcome measures will be assessed using a linear mixed effects model. Within the COCP group, differences across 2 time points will be analyzed using the paired-samples 2-tailed t test. RESULTS: The research was funded in January 2020, and data collection started in January 2022, with a projected data collection completion date of August 2024. The number of participants who have consented at the point of manuscript submission is 66. It is expected that all data analysis will be completed and results published by the end of 2024. CONCLUSIONS: Understanding the effects of the menstrual cycle and hormonal contraception on musculoskeletal health and performance will inform contraceptive choices for physically active women to manage injury risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT05587920; https://classic.clinicaltrials.gov/ct2/show/NCT05587920. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50542.


Subject(s)
Menstrual Cycle , Humans , Female , Adult , Young Adult , Cross-Sectional Studies , Prospective Studies , Menstrual Cycle/drug effects , Adolescent , Hormonal Contraception/adverse effects , Cohort Studies , Bone Density/drug effects
5.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999785

ABSTRACT

Excessive vitamin A (VA) negatively impacts bone. Interactions between VA and vitamin D (VD) in bone health are not well-understood. This study used a traditional two-by-two factorial design. Pigs were weaned and randomized to four treatments (n = 13/group): -A-D, -A+D, +A-D, and +A+D for 3 and 5 wk. Serum, liver, kidney, adrenal glands, spleen, and lung were analyzed by ultra-performance LC. Growth was evaluated by weight measured weekly and BMD by DXA. Weights were higher in -A+D (18.1 ± 1.0 kg) and +A+D (18.2 ± 2.3 kg) at 5 wk than in -A-D (15.5 ± 2.1 kg) and +A-D (15.8 ± 1.5 kg). Serum retinol concentrations were 0.25 ± 0.023, 0.22 ± 0.10, 0.77 ± 0.12, and 0.84 ± 0.28 µmol/L; and liver VA concentrations were 0.016 ± 0.015, 0.0065 ± 0.0035, 2.97 ± 0.43, 3.05 ± 0.68 µmol/g in -A-D, -A+D, +A-D, and +A+D, respectively. Serum 25(OH)D3 concentrations were 1.5 ± 1.11, 1.8 ± 0.43, 27.7 ± 8.91, and 23.9 ± 6.67 ng/mL in -A-D, +A-D, -A+D, +A+D, respectively, indicating a deficiency in -D and adequacy in +D. BMD was highest in +D (p < 0.001). VA and the interaction had no effect on BMD. Dietary VD influenced weight gain, BMD, and health despite VA status.


Subject(s)
Bone Density , Vitamin A Deficiency , Vitamin A , Vitamin D , Animals , Bone Density/drug effects , Vitamin D/blood , Swine , Vitamin A/blood , Female , Male , Disease Models, Animal , Liver/metabolism , Liver/drug effects , Dietary Supplements
6.
Prog Orthod ; 25(1): 25, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004686

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue caused by mutations associated with type I collagen, which results in defective extracellular matrix in temporomandibular joint (TMJ) cartilage and subchondral bone. TMJ is a fibrocartilaginous joint expressing type I collagen both in the cartilage and the subchondral bone. In the present study the effects of alendronate and altered loading of the TMJ was analyzed both in male and female OI mice. MATERIALS AND METHODS: Forty-eight, 10-weeks-old male and female OI mice were divided into 3 groups: (1) Control group: unloaded group, (2) Saline + Loaded: Saline was injected for 2 weeks and then TMJ of mice was loaded for 5 days, (3) alendronate + loaded: alendronate was injected for 2 weeks and then TMJ of mice was loaded for 5 days. Mice in all the groups were euthanized 24-h after the final loading. RESULTS: Alendronate pretreatment led to significant increase in bone volume and tissue density. Histomorphometrically, alendronate treatment led to increase in mineralization, cartilage thickness and proteoglycan distribution. Increased mineralization paralleled decreased osteoclastic activity. Our immunohistochemistry revealed decreased expression of matrix metallopeptidase 13 and ADAM metallopeptidase with thrombospondin type 1 motif 5. CONCLUSION: The findings of this research support that alendronate prevented the detrimental effects of loading on the extracellular matrix of the TMJ cartilage and subchondral bone.


Subject(s)
Alendronate , Bone Density Conservation Agents , Osteogenesis Imperfecta , Temporomandibular Joint , Animals , Alendronate/pharmacology , Alendronate/therapeutic use , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/pathology , Mice , Male , Female , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/pharmacology , Temporomandibular Joint/pathology , Temporomandibular Joint/drug effects , Matrix Metalloproteinase 13/metabolism , ADAMTS5 Protein , Disease Models, Animal , Bone Density/drug effects , Proteoglycans
7.
Medicine (Baltimore) ; 103(27): e38740, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968492

ABSTRACT

While biological disease-modifying anti-rheumatic drugs (bDMARDs) are considered beneficial for preventing osteoporosis and bone fracture, it is unclear whether bone loss is involved in the development of vertebral fracture, and few reports have examined the factors related to vertebral fracture in rheumatoid arthritis (RA) patients using bDMARDs. This study aims to identify factors influencing vertebral fracture in RA patients treated with bDMARDs. We retrospectively examined the records of 129 RA patients treated with bDMARDs for over 5 years. The lumbar spine and femoral bone mineral density, Disease Activity Score-28-C-Reactive Protein (DAS28-CRP) value, Simplified Disease Activity Index (SDAI), and modified Health Assessment Questionnaire (mHAQ) score were evaluated. The frequency of new vertebral fracture during the study and their risk factors were investigated. A comparison between the fracture group and the nonfracture group was performed. Multivariate analysis was performed using logistic regression analysis to detect risk factors for new vertebral fracture. The number of patients with new vertebral fracture during follow-up was 15 (11.6%) of the 129 patients in the study. Age and mHAQ score were significantly higher and lumbar spine and femoral neck bone mineral density were significantly lower in the fracture group than the nonfracture group. The risk factors for new vertebral fracture during the disease course were older age and higher mHAQ score indicating no remission over the 5 years of follow-up. In this study, there was no significant difference in disease indices such as the DAS28-CRP value and the SDAI between the fracture and nonfracture groups, suggesting an effective control of RA with bDMARDs. However, age and the mHAQ score, an index of RA dysfunction, were significantly higher in the fracture group. These results suggest that improving functional impairment may be important to prevent vertebral fracture in patients using bDMARDs.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Bone Density , Spinal Fractures , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/complications , Male , Female , Spinal Fractures/etiology , Spinal Fractures/prevention & control , Spinal Fractures/epidemiology , Risk Factors , Middle Aged , Antirheumatic Agents/therapeutic use , Retrospective Studies , Aged , Bone Density/drug effects , Lumbar Vertebrae , Age Factors , Adult
8.
Front Endocrinol (Lausanne) ; 15: 1412046, 2024.
Article in English | MEDLINE | ID: mdl-38974576

ABSTRACT

Background: Patients with Cushing's disease (CD) often experience slow recovery of bone mineral density (BMD), and the effectiveness of anti-osteoporosis drugs in young CD patients who have achieved biochemical remission after surgery is not well understood. Therefore, we aimed to explore whether bisphosphonates could help accelerate the recovery of osteoporosis in young CD patients with remission. Methods: We retrospectively enrolled 34 young patients with CD who achieved postoperative biochemical remission. All patients suffered from osteoporosis before surgery and were divided into postoperative bisphosphonate treatment group (16 cases) and without bisphosphonate treatment group (18 cases). Clinical data, BMD (Z Value), and bone turnover markers were collected at the time of diagnosis and one year after successful tumor resection. Results: The Z values in the lumbar spine showed slight improvement in both groups at follow-up compared to baseline, but this improvement was not statistically significant. There was no significant difference observed between the two groups at follow-up. One year after operation, bone formation markers (OC and P1NP) were significantly higher than those at baseline in both groups. However, OC and P1NP in the bisphosphonate treatment group were lower than those in control group at one year follow-up. In without bisphosphonate treatment group, ß-CTX from follow-up visit was higher than that at baseline, while no significant difference was observed in the bisphosphonate treatment group before and after surgery. Conclusion: Young patients with Cushing's disease combined with osteoporosis might not benefit from bisphosphonate therapy for osteoporosis recovery in the first year after achieving biochemical remission.


Subject(s)
Bone Density Conservation Agents , Bone Density , Diphosphonates , Osteoporosis , Pituitary ACTH Hypersecretion , Humans , Retrospective Studies , Female , Diphosphonates/therapeutic use , Male , Pituitary ACTH Hypersecretion/drug therapy , Pituitary ACTH Hypersecretion/surgery , Osteoporosis/drug therapy , Bone Density/drug effects , Adult , Bone Density Conservation Agents/therapeutic use , Young Adult , Remission Induction , Adolescent , Treatment Outcome , Biomarkers/blood , Follow-Up Studies
9.
Shanghai Kou Qiang Yi Xue ; 33(2): 211-218, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-39005102

ABSTRACT

PURPOSE: To investigate the effects of different cortical bone thickness and jaw bone density at implant sites on intraoperative pain during implant surgery. METHODS: One hundred and eighty-seven patients(263 implant sites) who underwent implant placement surgery at the Fourth Affiliated Hospital of Nanchang University from August 2021 to August 2022 were selected to investigate the effects of different cortical bone thickness and jaw bone density HU values at implant sites on the anesthetic effect under local infiltration anesthesia with epinephrine in articaine. SPSS 26.0 software package was used for data analysis. RESULTS: The mean cortical bone thickness at the painful sites[(3.90±1.36) mm] was significantly greater than that at the non-painful sites [(2.24±0.66) mm], and the difference was statistically significant(P<0.05). The differences in cortical bone thickness in the mandibular anterior, premolar, and molar regions were statistically significant in the comparison of pain and non-pain sites. The mean HU value of bone density was (764.46±239.75) for the painful sites and (612.23±235.31) for the non-painful sites, with significant difference(P<0.05). The difference was not significant(P>0.05) when comparing the HU values of painful sites with non-painful sites in the mandibular anterior teeth and anterior molar region, while the difference was significant(P<0.05) when comparing the HU values of painful sites with non-painful sites in the mandibular molar region. CONCLUSIONS: Sites with large cortical bone thickness have a greater effect on blocking infiltrative anesthetic penetration and are more prone to intraoperative pain during implantation. In the mandibular anterior and premolar regions, the HU value of the implant sites had less effect on infiltrative anesthetic penetration, and the effect was greater in the mandibular molar region, and the implant sites with high HU values in the mandibular molar region were more likely to have intraoperative pain. When the cortical bone thickness in the planned implant site is greater than 3.9 mm and the mean bone density in the mandibular molar region is greater than 665 HU. If there is sufficient safe distance for hole operation, it is recommended to apply mandibular nerve block anesthesia combined with articaine infiltration anesthesia to avoid intraoperative pain and bad surgical experience for the patients.


Subject(s)
Bone Density , Cortical Bone , Mandible , Humans , Bone Density/drug effects , Mandible/surgery , Mandible/anatomy & histology , Cortical Bone/anatomy & histology , Dental Implants , Anesthesia, Local/methods , Pain/etiology , Carticaine/administration & dosage
11.
J Orthop Surg Res ; 19(1): 393, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970109

ABSTRACT

BACKGROUND: To aim of this study is to assess the mechanism through which Desertliving Cistanche modulates the PI3K/AKT signaling pathway in the treatment of hyperlipidemic osteoporosis in ovariectomized rats. METHODS: We randomly assigned specific-pathogen-free (SPF) rats into five groups (n = 10 per group). The normal control group received a standard diet, while the model group, atorvastatin group, diethylstilbestrol group, and treatment group were fed a high-fat diet. Four weeks later, bilateral ovariectomies were conducted, followed by drug interventions. After six weeks of treatment, relevant indicators were compared and analyzed. RESULTS: Compared to the normal control group, rats in the model group exhibited blurred trabecular morphology, disorganized osteocytes, significantly elevated levels of bone-specific alkaline phosphatase (BALP), bone Gla-protein (BGP), total cholesterol (TC), tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL). Also, the model group revealed significantly reduced levels of ultimate load, fracture load, estradiol (E2), bone mineral density (BMD), osteoprotegerin (OPG), and phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in femoral tissue. The atorvastatin group presented with higher TC and TNF-α levels compared to the normal control group. Conversely, the treatment group demonstrated enhanced trabecular morphology, denser structure, smaller bone marrow cavities, and reduced BALP, BGP, TC, TNF-α, and RANKL levels. Furthermore, the treatment group exhibited higher levels of E2, BMD, OPG, and PI3K and Akt in bone tissue compared to the model group. The treatment group also had lower TC and TNF-α levels than the atorvastatin group. Biomechanical analysis indicated that after administration of Desertliving Cistanche, the treatment group had reduced body mass, increased ultimate and fracture load of the femur, denser bone structure, smaller bone marrow cavities, and altered periosteal arrangement compared to the model group. CONCLUSION: Our study revealed that Desertliving Cistanche demonstrated significant efficacy in preventing and treating postmenopausal hyperlipidemic osteoporosis in rats.


Subject(s)
Cistanche , Hyperlipidemias , Osteoporosis , Ovariectomy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Ovariectomy/adverse effects , Female , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Phosphatidylinositol 3-Kinases/metabolism , Hyperlipidemias/complications , Hyperlipidemias/metabolism , Osteoporosis/etiology , Osteoporosis/metabolism , Rats , Rats, Sprague-Dawley , Bone Density/drug effects , Random Allocation
12.
Cochrane Database Syst Rev ; 7: CD013451, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979716

ABSTRACT

BACKGROUND: Bisphosphonates and receptor activator of nuclear factor-kappa B ligand (RANKL)-inhibitors are amongst the bone-modifying agents used as supportive treatment in women with breast cancer who do not have bone metastases. These agents aim to reduce bone loss and the risk of fractures. Bisphosphonates have demonstrated survival benefits, particularly in postmenopausal women. OBJECTIVES: To assess and compare the effects of different bone-modifying agents as supportive treatment to reduce bone mineral density loss and osteoporotic fractures in women with breast cancer without bone metastases and generate a ranking of treatment options using network meta-analyses (NMAs). SEARCH METHODS: We identified studies by electronically searching CENTRAL, MEDLINE and Embase until January 2023. We searched various trial registries and screened abstracts of conference proceedings and reference lists of identified trials. SELECTION CRITERIA: We included randomised controlled trials comparing different bisphosphonates and RANKL-inihibitors with each other or against no further treatment or placebo for women with breast cancer without bone metastases. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the risk of bias of included studies and certainty of evidence using GRADE. Outcomes were bone mineral density, quality of life, overall fractures, overall survival and adverse events. We conducted NMAs and generated treatment rankings. MAIN RESULTS: Forty-seven trials (35,163 participants) fulfilled our inclusion criteria; 34 trials (33,793 participants) could be considered in the NMA (8 different treatment options). Bone mineral density We estimated that the bone mineral density of participants with no treatment/placebo measured as total T-score was -1.34. Evidence from the NMA (9 trials; 1166 participants) suggests that treatment with ibandronate (T-score -0.77; MD 0.57, 95% CI -0.05 to 1.19) may slightly increase bone mineral density (low certainty) and treatment with zoledronic acid (T-score -0.45; MD 0.89, 95% CI 0.62 to 1.16) probably slightly increases bone mineral density compared to no treatment/placebo (moderate certainty). Risedronate (T-score -1.08; MD 0.26, 95% CI -0.32 to 0.84) may result in little to no difference compared to no treatment/placebo (low certainty). We are uncertain whether alendronate (T-score 2.36; MD 3.70, 95% CI -2.01 to 9.41) increases bone mineral density compared to no treatment/placebo (very low certainty). Quality of life No quantitative analyses could be performed for quality of life, as only three studies reported this outcome. All three studies showed only minimal differences between the respective interventions examined. Overall fracture rate We estimated that 70 of 1000 participants with no treatment/placebo had fractures. Evidence from the NMA (16 trials; 19,492 participants) indicates that treatment with clodronate or ibandronate (42 of 1000; RR 0.60, 95% CI 0.39 to 0.92; 40 of 1000; RR 0.57, 95% CI 0.38 to 0.86, respectively) decreases the number of fractures compared to no treatment/placebo (high certainty). Denosumab or zoledronic acid (51 of 1000; RR 0.73, 95% CI 0.52 to 1.01; 55 of 1000; RR 0.79, 95% CI 0.56 to 1.11, respectively) probably slightly decreases the number of fractures; and risedronate (39 of 1000; RR 0.56, 95% CI 0.15 to 2.16) probably decreases the number of fractures compared to no treatment/placebo (moderate certainty). Pamidronate (106 of 1000; RR 1.52, 95% CI 0.75 to 3.06) probably increases the number of fractures compared to no treatment/placebo (moderate certainty). Overall survival We estimated that 920 of 1000 participants with no treatment/placebo survived overall. Evidence from the NMA (17 trials; 30,991 participants) suggests that clodronate (924 of 1000; HR 0.95, 95% CI 0.77 to 1.17), denosumab (927 of 1000; HR 0.91, 95% CI 0.69 to 1.21), ibandronate (915 of 1000; HR 1.06, 95% CI 0.83 to 1.34) and zoledronic acid (925 of 1000; HR 0.93, 95% CI 0.76 to 1.14) may result in little to no difference regarding overall survival compared to no treatment/placebo (low certainty). Additionally, we are uncertain whether pamidronate (905 of 1000; HR 1.20, 95% CI 0.81 to 1.78) decreases overall survival compared to no treatment/placebo (very low certainty). Osteonecrosis of the jaw We estimated that 1 of 1000 participants with no treatment/placebo developed osteonecrosis of the jaw. Evidence from the NMA (12 trials; 23,527 participants) suggests that denosumab (25 of 1000; RR 24.70, 95% CI 9.56 to 63.83), ibandronate (6 of 1000; RR 5.77, 95% CI 2.04 to 16.35) and zoledronic acid (9 of 1000; RR 9.41, 95% CI 3.54 to 24.99) probably increases the occurrence of osteonecrosis of the jaw compared to no treatment/placebo (moderate certainty). Additionally, clodronate (3 of 1000; RR 2.65, 95% CI 0.83 to 8.50) may increase the occurrence of osteonecrosis of the jaw compared to no treatment/placebo (low certainty). Renal impairment We estimated that 14 of 1000 participants with no treatment/placebo developed renal impairment. Evidence from the NMA (12 trials; 22,469 participants) suggests that ibandronate (28 of 1000; RR 1.98, 95% CI 1.01 to 3.88) probably increases the occurrence of renal impairment compared to no treatment/placebo (moderate certainty). Zoledronic acid (21 of 1000; RR 1.49, 95% CI 0.87 to 2.58) probably increases the occurrence of renal impairment while clodronate (12 of 1000; RR 0.88, 95% CI 0.55 to 1.39) and denosumab (11 of 1000; RR 0.80, 95% CI 0.54 to 1.19) probably results in little to no difference regarding the occurrence of renal impairment compared to no treatment/placebo (moderate certainty). AUTHORS' CONCLUSIONS: When considering bone-modifying agents for managing bone loss in women with early or locally advanced breast cancer, one has to balance between efficacy and safety. Our findings suggest that bisphosphonates (excluding alendronate and pamidronate) or denosumab compared to no treatment or placebo likely results in increased bone mineral density and reduced fracture rates. Our survival analysis that included pre and postmenopausal women showed little to no difference regarding overall survival. These treatments may lead to more adverse events. Therefore, forming an overall judgement of the best ranked bone-modifying agent is challenging. More head-to-head comparisons, especially comparing denosumab with any bisphosphonate, are needed to address gaps and validate the findings of this review.


Subject(s)
Bone Density Conservation Agents , Bone Density , Breast Neoplasms , Diphosphonates , Network Meta-Analysis , RANK Ligand , Randomized Controlled Trials as Topic , Humans , Female , Breast Neoplasms/drug therapy , Bone Density Conservation Agents/therapeutic use , Diphosphonates/therapeutic use , Bone Density/drug effects , RANK Ligand/antagonists & inhibitors , RANK Ligand/therapeutic use , Zoledronic Acid/therapeutic use , Quality of Life , Osteoporosis/drug therapy , Denosumab/therapeutic use , Osteoporotic Fractures/prevention & control , Risedronic Acid/therapeutic use , Ibandronic Acid/therapeutic use , Clodronic Acid/therapeutic use , Pamidronate/therapeutic use
13.
Clin Exp Rheumatol ; 42(7): 1311-1316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39026507

ABSTRACT

Osteoporosis is a skeletal disease characterised by reduced bone mass and deterioration of bone microarchitecture, underlying a higher risk of fragility fractures. Several options are available for its treatment, including both anti-resorptive and anabolic agents. The present review discusses and summarises the most recent literature on anabolic treatment, with a focus on abaloparatide, and on the assessment of fragility fracture risk, with a focus on trabecular bone score. Finally, we provide a discussion on the effects of different antiosteoporotic medications in terms of fragility fracture risk reduction.


Subject(s)
Anabolic Agents , Bone Density Conservation Agents , Bone Density , Osteoporosis , Osteoporotic Fractures , Humans , Osteoporosis/drug therapy , Osteoporotic Fractures/prevention & control , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Bone Density Conservation Agents/therapeutic use , Bone Density/drug effects , Anabolic Agents/therapeutic use , Parathyroid Hormone-Related Protein/therapeutic use , Risk Factors , Risk Assessment , Treatment Outcome
14.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891810

ABSTRACT

Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients' response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = -2.21% ± 2.56; p = 0.026) and TH (CC = -2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis.


Subject(s)
Alendronate , Bone Density Conservation Agents , Bone Density , Geranyltranstransferase , Osteoporosis , Polymorphism, Single Nucleotide , Treatment Failure , Humans , Alendronate/therapeutic use , Alendronate/pharmacology , Bone Density/drug effects , Bone Density/genetics , Female , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Male , Osteoporosis/drug therapy , Osteoporosis/genetics , Aged , Middle Aged , Bone Density Conservation Agents/therapeutic use , Genotype , Alleles , Case-Control Studies
15.
JAMA Netw Open ; 7(6): e2415455, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38865129

ABSTRACT

Importance: Daily supplementation with the probiotic Limosilactobacillus reuteri ATCC PTA 6475 (L reuteri) vs placebo has previously been demonstrated to reduce bone loss in an estrogen deficiency mice model and older women, although the magnitude of the effect was small. We hypothesized that long-term treatment with L reuteri could result in clinically relevant skeletal benefits in postmenopausal osteoporosis. Objective: To evaluate whether daily supplementation with L reuteri vs placebo could reduce early postmenopausal bone loss and whether the effects remained or increased over time during 2 years of treatment. Design, Setting, and Participants: A double-blind, randomized, placebo-controlled clinical trial was conducted between December 4, 2019, and October 6, 2022, at a single center in Gothenburg, southwestern Sweden. Participants were recruited by online advertisements, and letters were sent to 10 062 women aged 50 to 60 years. Responding women (n = 752) underwent telephone screening, resulting in 292 women being invited to a screening visit. Of those who were screened, 239 women met all inclusion criteria and had no exclusion criteria. Interventions: Capsules with L reuteri in 2 doses, 5 × 108 (low dose) or 5 × 109 (high dose) colony-forming units, taken twice daily or placebo were administered. All capsules also included cholecalciferol, 200 IU. Main Outcomes and Measures: The primary outcome was the relative change in tibia total volumetric bone mineral density (vBMD) over 2 years. Secondary outcomes included relative change in areal BMD of the lumbar spine and total hip, bone turnover markers C-terminal telopeptide cross-links of collagen type I and type I procollagen intact N-terminal propeptide, as well as tibia trabecular bone volume fraction and cortical vBMD. Both intention-to-treat and per-protocol analyses were conducted. Results: A total of 239 postmenopausal women (median age, 55 [IQR, 53-56] years) were included. Tibia vBMD (primary outcome), hip and spine vBMD, and tibia cortical area and BMD decreased significantly in all groups, with no group-to-group differences (percent change tibia vBMD high dose vs placebo least-squares means, -0.08 [95 CI, -0.85 to 0.69] and low dose vs placebo least-squares means, -0.22 [95% CI, -0.99 to 0.55]). There were no significant treatment effects on any other predefined outcomes. A prespecified sensitivity analysis found a significant interaction between body mass index (BMI) and treatment effect at 2 years. No significant adverse effects were observed. Conclusions and Relevance: In this randomized clinical trial of 239 early postmenopausal women, supplementation with L reuteri had no effect on bone loss or bone turnover over 2 years. The observed interaction between BMI and treatment effect warrants further investigation. Trial Registration: ClinicalTrials.gov Identifier: NCT04169789.


Subject(s)
Bone Density , Limosilactobacillus reuteri , Osteoporosis, Postmenopausal , Probiotics , Humans , Female , Middle Aged , Double-Blind Method , Osteoporosis, Postmenopausal/prevention & control , Bone Density/drug effects , Probiotics/therapeutic use , Sweden
16.
Nutrients ; 16(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892573

ABSTRACT

With the global aging population, addressing prevalent age-related conditions such as osteoporosis and sarcopenia is crucial. Traditional nutritional strategies focusing on single nutrients like calcium, vitamin D, or protein have limitations, prompting a nuanced exploration of the relationship between aging, nutrition, and musculoskeletal health. This cross-sectional study examines the complex interplay between dietary intake of macronutrients, common micronutrients, and water, as well as their association with musculoskeletal health in adults aged 50 to 80 years, using U.S. National Health and Nutrition Examination Survey data (NHANES). Employing multiple linear regression, restricted cubic splines, weighted quantile sum (WQS), and quantile-based g-computation (QGC) regression models, our initial analysis using the WQS model revealed that a one-quartile increase in mixed macronutrient intake was associated with a significant 0.009 unit increase in bone mineral density (BMD) and a 0.670 unit increase in grip strength, while a similar increase in mixed micronutrient intake showed a 0.007 unit increase in BMD and a 0.442 unit increase in grip strength. Our findings highlight the importance of a balanced dietary approach in promoting musculoskeletal health in the elderly, offering holistic strategies for overall well-being.


Subject(s)
Bone Density , Micronutrients , Nutrients , Nutrition Surveys , Humans , Aged , Micronutrients/administration & dosage , Male , Female , Nutrients/administration & dosage , Middle Aged , Cross-Sectional Studies , Aged, 80 and over , Bone Density/drug effects , Nutritional Status , Aging/physiology , Diet/methods , Hand Strength , Osteoporosis/prevention & control
17.
BMC Musculoskelet Disord ; 25(1): 487, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909178

ABSTRACT

BACKGROUND: Increased intake of specific vitamins has been linked to a decreased prevalence of osteoporosis. However, the association between dietary folate intake and the risk of osteoporosis in the general population remains incompletely understood. Therefore, we aimed to determine the association between dietary folate intake and the risk of osteoporosis in the general population of the USA. METHODS: In this cross-sectional study, data from the National Health and Nutrition Examination Survey (2017-2020) were collected. Osteoporosis was considered to be indicated by a bone mineral density greater than 2.5 standard deviations below the mean of the young adult reference group. Dietary folate intake was measured by a 24-hour dietary recall. Multivariate logistic regression models and restricted cubic spline models were used. RESULTS: The study included 2297 participants (mean age: 63.69 ± 0.35 years), 49.92% of whom were female. In the general population, increased dietary folate intake was directly associated with a decreased risk of osteoporosis (P for trend = 0.005). In the age > 60 years and female subgroups, folate intake was inversely associated with the risk of osteoporosis (P for trend < 0.001). The dose‒response curve suggested that this association was nonlinear (P for nonlinearity = 0.015). CONCLUSIONS: Our cross-sectional study provides initial insights into the inverse association between dietary folate intake and the risk of osteoporosis in the general U.S. POPULATION: Further research is needed to confirm these associations.


Subject(s)
Folic Acid , Nutrition Surveys , Osteoporosis , Humans , Female , Cross-Sectional Studies , Male , Middle Aged , Osteoporosis/epidemiology , Osteoporosis/prevention & control , Folic Acid/administration & dosage , Risk Factors , Bone Density/drug effects , United States/epidemiology , Aged , Diet/adverse effects , Adult
18.
Rev Fac Cien Med Univ Nac Cordoba ; 81(2): 270-284, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38941224

ABSTRACT

When large amounts of Fluoride are consumed produces insulin resistance, but exercise can reverse insulin resistance in rats, because of a high fluoride uptake by bone tissue. However, bone quality has not been studied in those experiments. Therefore, the aim of this work was to evaluate bone quality in rats treated with fluoride when performing exercise. Sprague-Dawley rats were divided into 3 groups (n=6 per group): Control (drinking water without fluoride), Fluoride (drinking water with fluoride 15 mg/L for 30 days) and Exercise (daily running on a treadmill and drinking water with fluoride 15 mg/L for 30 days).  Then, bone mineral density, mechanical and histological properties and bone fluoride level were measured. No effect of treatment on any bone parameters were observed. These results indicate that exercise normalizes glucose metabolism in insulin-resistant rats by bone fluoride uptake; however, this increase in bone fluoride does not manifest in bone deterioration.


Cuando se consumen grandes cantidades de fluoruro se produce resistencia a la insulina, pero la realización de ejercicio puede revertir dicho efecto en ratas, debido a una alta absorción de fluoruro por el tejido óseo. Sin embargo, la calidad ósea no ha sido estudiada. Por ello, el objetivo de este trabajo fue evaluar la calidad ósea en ratas tratadas con flúor que realizan ejercicio. Se trabajó con ratas Sprague-Dawley que se dividieron en 3 grupos (n=6 por grupo): Control (recibiron agua sin flúor), Flúor (recibieron agua con flúor 15 mg/L durante 30 días) y Ejercicio (realizaron ejercicio diariamente en cinta ergométrica y recibieron agua con fluoruro 15 mg/L por 30 días). Luego, se midieron la densidad mineral ósea, las propiedades biomecánicas e histológicas y el nivel de fluoruro óseo. No se observó ningún efecto del tratamiento sobre ningún parámetro óseo. Estos resultados indican que el ejercicio normaliza el metabolismo de la glucosa en ratas resistentes a la insulina mediante la captación ósea de fluoruro; sin embargo, este aumento del fluoruro óseo no se manifiesta en deterioro óseo.


Subject(s)
Bone Density , Fluorides , Insulin Resistance , Physical Conditioning, Animal , Rats, Sprague-Dawley , Animals , Insulin Resistance/physiology , Bone Density/drug effects , Physical Conditioning, Animal/physiology , Fluorides/pharmacology , Rats , Male , Bone and Bones/metabolism , Bone and Bones/drug effects
19.
JAMA Netw Open ; 7(6): e2416775, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38916894

ABSTRACT

Importance: A major concern with weight loss is concomitant bone loss. Exercise and glucagon-like peptide-1 receptor agonists (GLP-1RAs) represent weight loss strategies that may protect bone mass despite weight loss. Objective: To investigate bone health at clinically relevant sites (hip, spine, and forearm) after diet-induced weight loss followed by a 1-year intervention with exercise, liraglutide, or both combined. Design, Setting, and Participants: This study was a predefined secondary analysis of a randomized clinical trial conducted between August 2016 and November 2019 at the University of Copenhagen and Hvidovre Hospital in Denmark. Eligible participants included adults aged 18 to 65 years with obesity (body mass index of 32-43) and without diabetes. Data analysis was conducted from March to April 2023, with additional analysis in February 2024 during revision. Interventions: After an 8-week low-calorie diet (800 kcal/day), participants were randomized to 1 of 4 groups for 52 weeks: a moderate- to vigorous-intensity exercise program (exercise alone), 3.0 mg daily of the GLP-1 RA liraglutide (liraglutide alone), the combination, or placebo. Main Outcomes and Measures: The primary outcome was change in site-specific bone mineral density (BMD) at the hip, lumbar spine, and distal forearm from before the low-calorie diet to the end of treatment, measured by dual-energy x-ray absorptiometry in the intention-to-treat population. Results: In total, 195 participants (mean [SD] age, 42.84 [11.87] years; 124 female [64%] and 71 male [36%]; mean [SD] BMI, 37.00 [2.92]) were randomized, with 48 participants in the exercise group, 49 participants in the liraglutide group, 49 participants in the combination group, and 49 participants in the placebo group. The total estimated mean change in weight losses during the study was 7.03 kg (95% CI, 4.25-9.80 kg) in the placebo group, 11.19 kg (95% CI, 8.40-13.99 kg) in the exercise group, 13.74 kg (95% CI, 11.04-16.44 kg) in the liraglutide group, and 16.88 kg (95% CI, 14.23-19.54 kg) in the combination group. In the combination group, BMD was unchanged compared with the placebo group at the hip (mean change, -0.006 g/cm2; 95% CI, -0.017 to 0.004 g/cm2; P = .24) and lumbar spine (-0.010 g/cm2; 95% CI, -0.025 to 0.005 g/cm2; P = .20). Compared with the exercise group, BMD decreased for the liraglutide group at the hip (mean change, -0.013 g/cm2; 95% CI, -0.024 to -0.001 g/cm2; P = .03) and spine (mean change, -0.016 g/cm2; 95% CI, -0.032 to -0.001 g/cm2; P = .04). Conclusions and Relevance: In this randomized clinical trial, the combination of exercise and GLP-1RA (liraglutide) was the most effective weight loss strategy while preserving bone health. Liraglutide treatment alone reduced BMD at clinically relevant sites more than exercise alone despite similar weight loss. Trial Registration: EudraCT: 2015-005585-32.


Subject(s)
Bone Density , Exercise , Glucagon-Like Peptide-1 Receptor , Liraglutide , Humans , Female , Male , Middle Aged , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Bone Density/drug effects , Adult , Obesity/drug therapy , Obesity/therapy , Weight Loss/drug effects , Hypoglycemic Agents/therapeutic use , Aged , Combined Modality Therapy , Denmark
20.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928460

ABSTRACT

Osteoporosis, a prevalent chronic health issue among the elderly, is a global bone metabolic disease. Flavonoids, natural active compounds widely present in vegetables, fruits, beans, and cereals, have been reported for their anti-osteoporotic properties. Onion is a commonly consumed vegetable rich in flavonoids with diverse pharmacological activities. In this study, the trabecular structure was enhanced and bone mineral density (BMD) exhibited a twofold increase following oral administration of onion flavonoid extract (OFE). The levels of estradiol (E2), calcium (Ca), and phosphorus (P) in serum were significantly increased in ovariectomized (OVX) rats, with effects equal to alendronate sodium (ALN). Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) levels in rat serum were reduced by 35.7% and 36.9%, respectively, compared to the OVX group. In addition, the effects of OFE on bone health were assessed using human osteoblast-like cells MG-63 and osteoclast precursor RAW 264.7 cells in vitro as well. Proliferation and mineralization of MG-63 cells were promoted by OFE treatment, along with increased ALP activity and mRNA expression of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL). Additionally, RANKL-induced osteoclastogenesis and osteoclast activity were inhibited by OFE treatment through decreased TRAP activity and down-regulation of mRNA expression-related enzymes in RAW 264.7 cells. Overall findings suggest that OFE holds promise as a natural functional component for alleviating osteoporosis.


Subject(s)
Cell Differentiation , Cell Proliferation , Flavonoids , Onions , Osteoblasts , Osteogenesis , Osteoporosis , Plant Extracts , RANK Ligand , Animals , Osteoblasts/drug effects , Osteoblasts/metabolism , RANK Ligand/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , Flavonoids/pharmacology , Mice , Onions/chemistry , Cell Differentiation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Cell Proliferation/drug effects , RAW 264.7 Cells , Osteogenesis/drug effects , Humans , Female , Osteoclasts/drug effects , Osteoclasts/metabolism , Bone Density/drug effects , Ovariectomy , Rats, Sprague-Dawley , Osteoprotegerin/metabolism , Osteoprotegerin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL