Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.348
Filter
1.
Respir Res ; 25(1): 316, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160536

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a long-term disease that impacts approximately 1% of the world's population. Currently, levosimendan (Lev) is proposed for PH treatment. However, the mechanism of Lev in the treatment of PH is unknown. METHODS: We used hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) to establish a PH cell model. A number of cell biology methods were performed to assay alterations in cell proliferation, migration and apoptosis after Lev treatment. qRT-PCR and WB were performed to test the levels of circUSP34 and miR-1298, and BMP/Smad protein respectively. In addition, the regulatory relationship between circUSP34 or BMPR2 with miR-1298 was verified through the use of double luciferase as well as RIP assay. In addition, we explored the regulatory effect of Lev on the circUSP34/miR-1298/BMP/Smad axis using a rat PH model. RESULTS: Our results demonstrate that Lev inhibited PASMCs cell proliferation, migration and promoted apoptosis exposed to hypoxia. In hypoxia-treated PASMCs, circUSP34 expression got downregulated while miR-1298 upregulated, whereas the addition with Lev resulted in upregulation of circUSP34 expression and downregulation of miR-1298 expression, indicating that circUSP34 can target and regulate miR-1298. In addition, miR-1298 targets and regulates the expression of BMPR2. In a rat PH model induced by hypoxia combined with SU5416, Lev upregulated circUSP34 targeting miR-1298-mediated BMP/Smad axis to alleviate the PH phenotype. CONCLUSION: We have shown that Lev can be used as a therapeutic drug for PH patients, which works through the circUSP34/miR-1298/BMP/Smad axis to alleviate PH symptoms.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , Rats, Sprague-Dawley , Simendan , Up-Regulation , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Rats , Up-Regulation/drug effects , Simendan/pharmacology , Male , Cells, Cultured , Smad Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Signal Transduction/drug effects , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Apoptosis/drug effects
2.
Nat Commun ; 15(1): 6948, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138165

ABSTRACT

Cranial sutures separate neighboring skull bones and are sites of bone growth. A key question is how osteogenic activity is controlled to promote bone growth while preventing aberrant bone fusions during skull expansion. Using single-cell transcriptomics, lineage tracing, and mutant analysis in zebrafish, we uncover key developmental transitions regulating bone formation at sutures during skull expansion. In particular, we identify a subpopulation of mesenchyme cells in the mid-suture region that upregulate a suite of genes including BMP antagonists (e.g. grem1a) and pro-angiogenic factors. Lineage tracing with grem1a:nlsEOS reveals that this mid-suture subpopulation is largely non-osteogenic. Moreover, combinatorial mutation of BMP antagonists enriched in this mid-suture subpopulation results in increased BMP signaling in the suture, misregulated bone formation, and abnormal suture morphology. These data reveal establishment of a non-osteogenic mesenchyme population in the mid-suture region that restricts bone formation through local BMP antagonism, thus ensuring proper suture morphology.


Subject(s)
Bone Morphogenetic Proteins , Cranial Sutures , Mesoderm , Osteogenesis , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/genetics , Cranial Sutures/metabolism , Cranial Sutures/embryology , Cranial Sutures/growth & development , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Mesoderm/metabolism , Mesoderm/embryology , Mesoderm/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Skull/embryology , Single-Cell Analysis , Mutation
3.
Eur J Pharmacol ; 978: 176793, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38960061

ABSTRACT

In recent years, a common-used antidiabetic drug, liraglutide, was identified with extra effects on lipid metabolism. Its effects against excessive lipid deposition in bone marrow were gained much attention but not well established. Our aim in the present study is to explore the interaction of miRNAs-mRNAs altered by liraglutide administration during bone marrow adipogenesis in diabetes. To establish the diabetic animal model, rats were treated with high fat diet (HFD) and STZ injection. We then identified the lowering effect of liraglutide on lipids metabolism in the diabetes. During this process, high-throughput sequencing and bioinformatics analyses on miRNAs extracted from bone marrow mesenchymal stem cells (BMSCs) were conducted after liraglutide administration. We then identified five differentially expressed miRNAs (miRNA-150-5p, miRNA-129-5p, miRNA-201-3p, miRNA-201-5p, and miRNA-214-5p). The expressions of the DE miRNAs were verified as temporal specific expression patterns in Day 3 and in Day 7. Among them, miRNA-150-5p expression was more stable and consistent with the sequencing data. Of interest, miR-150-5p overexpression facilitated adipogenesis of BMSCs. But this promotion was alleviated by liraglutide. The predicted target gene of miR-150-5p, GDF11, was validated to be involved in liraglutide alleviated BMSCs' lipid accumulation in diabetes. In vitro, liraglutide increased the GDF11 expression, rescued its down-expression by siGDF11 and inhibit the adipogenesis of BMSCs cultured in high glucose medium. In vivo, liraglutide reversed the HFD-STZ induced excessive lipid droplets by up-regulation of GDF11 expression, which was discounted by agomiR-150-5p injection. Above all, liraglutide might alleviate bone marrow fat accumulation via inactivating miR-150-5p/GDF11 axis in diabetes.


Subject(s)
Adipogenesis , Diabetes Mellitus, Experimental , Liraglutide , Mesenchymal Stem Cells , MicroRNAs , Rats, Sprague-Dawley , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Rats , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Bone Marrow/drug effects , Bone Marrow/metabolism , Diet, High-Fat/adverse effects , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism
4.
Elife ; 122024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051990

ABSTRACT

Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.


Subject(s)
Amnion , Bone Morphogenetic Proteins , Gene Expression Regulation, Developmental , Amnion/metabolism , Amnion/embryology , Humans , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Animals , Signal Transduction , Gene Expression Profiling , Cell Differentiation , Female , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Pluripotent Stem Cells/metabolism , Pregnancy
5.
Anticancer Res ; 44(8): 3355-3364, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060083

ABSTRACT

BACKGROUND/AIM: As an antagonist of bone morphogenetic protein (BMP), Noggin facilitates osteolytic bone metastases from breast cancer. The present study aimed to further dissect its role in oestrogen receptor (ER) positive breast cancer. MATERIALS AND METHODS: Noggin expression in ER positive breast cancer cell lines (MCF-7 and T-47D) was determined under conditions of oestrogen deprivation and treatment with 17-ß-oestradiol (E2). Activation of Smad1/5/8 in the oestrogen-regulated Noggin was examined using recombinant human BMP7 (rhBMP7) and a BMP receptor inhibitor (LDN-193189). The influence of Noggin on cellular functions was evaluated in MCF-7 and T-47D cell lines. Responses to tamoxifen and chemotherapy drugs were determined in MCF-7 and T-47D cells with Noggin over-expression using MTT assay. RESULTS: Noggin expression was negatively correlated with ERα in breast cancers. Noggin was up-regulated upon oestrogen deprivation, an effect that was eliminated by E2 Furthermore, increased levels of phosphorylated Smad1/5/8 were observed in the oestrogen-deprived MCF-7 and T-47D cells, which was prevented by E2 and LDN-193189, respectively. BMP7-induced Noggin expression and activation of Smad1/5/8 was also prevented by E2 and LDN-193189. Noggin over-expression resulted in an increase in the proliferation of both MCF-7 and T-47D cells. MCF-7 and T-47D cells over-expressing Noggin exhibited a good tolerance to tamoxifen (TAM), DTX, and 5-FU, but the percentage of viable cells was higher compared with the controls. CONCLUSION: Noggin expression can be repressed by oestrogen through inference with the BMP/Smad signalling. Over-expression of Noggin promotes the proliferation of MCF-7 and T-47D cells, contributing to drug resistance.


Subject(s)
Breast Neoplasms , Carrier Proteins , Estrogens , Signal Transduction , Smad Proteins , Tamoxifen , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Female , Signal Transduction/drug effects , Smad Proteins/metabolism , Estrogens/pharmacology , Estrogens/metabolism , MCF-7 Cells , Tamoxifen/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Gene Expression Regulation, Neoplastic/drug effects , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estradiol/pharmacology
6.
Ann N Y Acad Sci ; 1537(1): 113-128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970771

ABSTRACT

Goldenhar syndrome, a rare craniofacial malformation, is characterized by developmental anomalies in the first and second pharyngeal arches. Its etiology is considered to be heterogenous, including both genetic and environmental factors that remain largely unknown. To further elucidate the genetic cause in a five-generation Goldenhar syndrome pedigree and exploit the whole-exome sequencing (WES) data of this pedigree, we generated collapsed haplotype pattern markers based on WES and employed rare variant nonparametric linkage analysis. FBLN2 was identified as a candidate gene via analysis of WES data across the significant linkage region. A fbln2 knockout zebrafish line was established by CRISPR/Cas9 to examine the gene's role in craniofacial cartilage development. fbln2 was expressed specifically in the mandible during the zebrafish early development, while fbln2 knockout zebrafish exhibited craniofacial malformations with abnormal chondrocyte morphologies. Functional studies revealed that fbln2 knockout caused abnormal chondrogenic differentiation, apoptosis, and proliferation of cranial neural crest cells (CNCCs), and downregulated the bone morphogenic protein (BMP) signaling pathway in the zebrafish model. This study demonstrates the role of FBLN2 in CNCC development and BMP pathway regulation, and highlights FBLN2 as a candidate gene for Goldenhar syndrome, which may have implications for the selection of potential screening targets and the development of treatments for conditions like microtia-atresia.


Subject(s)
Goldenhar Syndrome , Neural Crest , Pedigree , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/genetics , Neural Crest/metabolism , Goldenhar Syndrome/genetics , Goldenhar Syndrome/metabolism , Goldenhar Syndrome/pathology , Humans , Female , Male , Cell Differentiation/genetics , Exome Sequencing , Chondrogenesis/genetics , Signal Transduction/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics
7.
JCI Insight ; 9(16)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990653

ABSTRACT

The neurofibromatosis type 1 (NF1) RASopathy is associated with persistent fibrotic nonunions (pseudarthrosis) in human and mouse skeletal tissue. Here, we performed spatial transcriptomics to define the molecular signatures occurring during normal endochondral healing following fracture in mice. Within the control fracture callus, we observed spatially restricted activation of morphogenetic pathways, such as TGF-ß, WNT, and BMP. To investigate the molecular mechanisms contributing to Nf1-deficient delayed fracture healing, we performed spatial transcriptomic analysis on a Postn-cre;Nf1fl/- (Nf1Postn) fracture callus. Transcriptional analyses, subsequently confirmed through phospho-SMAD1/5/8 immunohistochemistry, demonstrated a lack of BMP pathway induction in Nf1Postn mice. To gain further insight into the human condition, we performed spatial transcriptomic analysis of fracture pseudarthrosis tissue from a patient with NF1. Analyses detected increased MAPK signaling at the fibrocartilaginous-osseus junction. Similar to that in the Nf1Postn fracture, BMP pathway activation was absent within the pseudarthrosis tissue. Our results demonstrate the feasibility of delineating the molecular and tissue-specific heterogeneity inherent in complex regenerative processes, such as fracture healing, and reconstructing phase transitions representing endochondral bone formation in vivo. Furthermore, our results provide in situ molecular evidence of impaired BMP signaling underlying NF1 pseudarthrosis, potentially informing the clinical relevance of off-label BMP2 as a therapeutic intervention.


Subject(s)
Bone Morphogenetic Proteins , Fracture Healing , Neurofibromatosis 1 , Pseudarthrosis , Signal Transduction , Transcriptome , Animals , Pseudarthrosis/metabolism , Pseudarthrosis/genetics , Mice , Humans , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/complications , Neurofibromatosis 1/pathology , Fracture Healing/genetics , Fractures, Bone/metabolism , Fractures, Bone/genetics , Disease Models, Animal , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Gene Expression Profiling
8.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891830

ABSTRACT

The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis.


Subject(s)
Adenosine Deaminase , Bone Morphogenetic Proteins , Drosophila Proteins , Drosophila melanogaster , Signal Transduction , Spermatogenesis , Animals , Male , Spermatogenesis/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Testis/metabolism
9.
In Vivo ; 38(4): 1594-1600, 2024.
Article in English | MEDLINE | ID: mdl-38936890

ABSTRACT

BACKGROUND/AIM: Recent reports indicate that sclerostin is secreted by periodontal ligament tissue-derived (PDL) cells during orthodontic force loading and that the secreted sclerostin contributes to bone metabolism. However, the detailed mechanism is poorly understood. The aim of this study was to determine how PDL cells affect bone formation. MATERIALS AND METHODS: Rat periodontal ligament tissue was immunohistochemically stained for sclerostin. Cultured primary PDL cells, osteoblasts, and skin fibroblasts (Sfbs) isolated from rat periodontal ligament tissue, calvaria, and skin, respectively, were examined. Osteoblasts were cultured with control conditioned medium (Cont-CDM) and PDL cell culture conditioned medium (PDL-CDM) for up to 21 days. Cultured osteoblasts were then stained with alkaline phosphatase and von Kossa stain. Osteoblasts cultured in each conditioned medium were analyzed by real-time quantitative PCR for bone Gla protein (Bgp), Axin2, and Ki67 expression. PDL cells used to obtain conditioned medium were analyzed for Sost, Ectodin and Wnt1 expression and compared with expression in Sfbs. RESULTS: Expression of sclerostin was observed in periodontal ligament tissue by immunohistochemical staining. The formation of mineralization nodules was inhibited in PDL-CDM compared with Cont-CDM in osteoblast culture. In PDL-CDM, the expression levels of Bgp and Axin2 in osteoblasts were decreased compared with Cont-CDM. In PDL cells, expression levels of Sost and Ectodin were much higher than in Sfbs; however, expression of Wnt1 was lower in PDL cells compared with Sfbs. CONCLUSION: PDL cells secrete various proteins, including sclerostin and suppress osteogenesis in osteoblasts through the canonical Wnt pathway.


Subject(s)
Osteoblasts , Osteogenesis , Periodontal Ligament , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Animals , Osteoblasts/metabolism , Osteoblasts/cytology , Rats , Culture Media, Conditioned/pharmacology , Cells, Cultured , Male , Fibroblasts/metabolism , Cell Differentiation , Immunohistochemistry , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Genetic Markers
10.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891790

ABSTRACT

Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.


Subject(s)
Hedgehog Proteins , Ribs , Spine , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Ribs/metabolism , Ribs/embryology , Spine/metabolism , Spine/embryology , Gene Expression Regulation, Developmental , Mesoderm/metabolism , Mesoderm/embryology , Quail , Somites/metabolism , Somites/embryology , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Carrier Proteins
11.
Elife ; 122024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856718

ABSTRACT

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.


Congenital disorders are medical conditions that are present from birth. Although many congenital disorders are rare, they can have a severe impact on the quality of life of those affected. For example, congenital pulmonary airway malformation (CPAM) is a rare congenital disorder that occurs in around 1 out of every 25,000 pregnancies. In CPAM, abnormal, fluid-filled sac-like pockets of tissue, known as cysts, form within the lungs of unborn babies. After birth, these cysts become air-filled and do not behave like normal lung tissue and stop a baby's lungs from working properly. In severe cases, babies with CPAM need surgery immediately after birth. We still do not understand exactly what the underlying causes of CPAM might be. CPAM is not considered to be hereditary ­ that is, it does not appear to be passed down in families ­ nor is it obviously linked to any environmental factors. CPAM is also very difficult to study, because researchers cannot access tissue samples during the critical early stages of the disease. To overcome these difficulties, Luo et al. wanted to find a way to study CPAM in the laboratory. First, they developed a non-human animal 'model' that naturally forms CPAM-like lung cysts, using genetically modified mice where the gene for the signaling molecule Bmpr1a had been deleted in lung cells. Normally, Bmpr1a is part of a set of the molecular instructions, collectively termed BMP signaling, which guide healthy lung development early in life. However, mouse embryos lacking Bmpr1a developed abnormal lung cysts that were similar to those found in CPAM patients, suggesting that problems with BMP signalling might also trigger CPAM in humans. Luo et al. also identified several other genes in the Bmpr1a-deficient mouse lungs that had abnormal patterns of activity. All these genes were known to be controlled by BMP signaling, and to play a role in the development and organisation of lung tissue. This suggests that when these genes are not controlled properly, they could drive formation of CPAM cysts when BMP signaling is compromised. This work is a significant advance in the tools available to study CPAM. Luo et al.'s results also shed new light on the molecular mechanisms underpinning this rare disorder. In the future, Luo et al. hope this knowledge will help us develop better treatments for CPAM, or even help to prevent it altogether.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Lung , Mesoderm , Mice, Knockout , Signal Transduction , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/deficiency , Mice , Lung/embryology , Lung/metabolism , Lung/pathology , Mesoderm/embryology , Mesoderm/metabolism , Cysts/metabolism , Cysts/pathology , Cysts/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Lung Diseases/metabolism , Lung Diseases/pathology , Lung Diseases/genetics , Disease Models, Animal
12.
Nat Commun ; 15(1): 4976, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862520

ABSTRACT

Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.


Subject(s)
Bone Morphogenetic Proteins , Signal Transduction , Animals , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Mice , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/chemistry , Glycoproteins/metabolism , Glycoproteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Binding Sites , Protein Domains , Protein Binding , Organoids/metabolism , Organoids/embryology , HEK293 Cells , Gastrulation/genetics , Mutation , Crystallography, X-Ray , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Proteins
13.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828726

ABSTRACT

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.


Subject(s)
Adaptor Proteins, Signal Transducing , Down Syndrome , Endothelial Cells , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Young Adult , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Down Syndrome/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Genetic Markers , Phenotype , Wnt Signaling Pathway
14.
PLoS Genet ; 20(6): e1011324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875298

ABSTRACT

The Transforming Growth Factor beta (TGF-ß) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that may enhance, repress, or generate novel functions. In the nematode Caenorhabditis elegans, there are only five TGF-ß ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-ß/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans. Here we show that all five TGF-ß ligands play a role in survival on bacterial pathogens. We also demonstrate that multiple TGF-ß ligand pairs act nonredundantly as part of this response. We show that the two BMP-like ligands-DBL-1 and TIG-2-function independently of each other in the immune response, while TIG-2/BMP and the TGF-ß/Activin-like ligand TIG-3 function together. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Additionally, we identify TIG-2 and TIG-3 as members of a rare subset of TGF-ß ligands lacking the conserved cysteine responsible for disulfide linking mature dimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-ß/Activin signaling pathway do not play a major role in survival. These results demonstrate a novel potential for BMP and TGF-ß/Activin subfamily ligands to interact and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.


Subject(s)
Bone Morphogenetic Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Immunity, Innate , Signal Transduction , Transforming Growth Factor beta , Animals , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/immunology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Immunity, Innate/genetics , Ligands , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Activins/metabolism , Activins/genetics , Neuropeptides
15.
Sci China Life Sci ; 67(9): 1915-1927, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38913236

ABSTRACT

The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.


Subject(s)
Signal Transduction , Smad6 Protein , Humans , Smad6 Protein/metabolism , Smad6 Protein/genetics , HEK293 Cells , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Mutation
16.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1762-1773, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812188

ABSTRACT

The study aimed to investigate the therapeutic effects of the n-butanol extract of Pulsatilla Decoction(BEPD) on ulcerative colitis(UC) via the bone morphogenetic protein(BMP) signaling pathway. C57BL/6 mice were divided into six groups: control, model, mesalazine, and BEPD low-, medium-, and high-dose groups. Except for the control group, the rest groups were treated with 3% dextran sulfate sodium(DSS) freely for seven consecutive days to establish the UC mouse model, followed by treatment with different concentrations of BEPD and mesalazine by gavage. The murine body weight and disease activity index(DAI) were recorded. After the mice were sacrificed, their colon tissues were collected for histological analysis. Alcian blue/periodic acid-Schiff(AB/PAS) staining was used to detect the number and mucus secretion status of goblet cells; immunohistochemistry was performed to measure the expression of ki67, cleaved caspase-3, mucin 2(Muc2), and matrix metalloproteinase-9(MMP9) in colon tissues; and immunofluorescence was used to analyze the expression of tight junction proteins in colon tissues, and enzyme linked immunosorbent assay(ELISA) was employed to quantify the levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1ß, and IL-6. Western blot was conducted to evaluate the expression of BMP pathway-related proteins in mouse colon tissues. Quantitative real-time PCR(qRT-PCR) was performed to measure the expression of genes related to goblet cell differentiation in mouse colon tissues. In addition, this study also examined the protective effect and underlying mechanism of BEPD-containing serum on lipopolysaccharide(LPS)-induced barrier damages in LS174T goblet cells in vitro. The results showed that BEPD significantly alleviated UC symptoms in mice, restored goblet cell diffe-rentiation function, promoted Muc2 secretion and tight junction protein expression, and suppressed inflammatory factor secretion while activating the BMP signaling pathway. Therefore, BEPD may exert its therapeutic effects on UC by activating the BMP signaling pathway, providing a new strategy for drug intervention in UC.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Mice, Inbred C57BL , Pulsatilla , Signal Transduction , Animals , Signal Transduction/drug effects , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Male , Pulsatilla/chemistry , Humans , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 758-760, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818565

ABSTRACT

Char syndrome is a rare autosomal dominant genetic disorder characterized by patent ductus arteriosus, facial dysmorphism, and dysplasia of fingers/toes. It may also be associated with multiple papillae, dental dysplasia, and sleep disorders. TFAP2B has proven to be a pathogenic gene for neural crest derivation and development, and several variants of this gene have been identified. Bone morphogenetic protein signaling plays an important role in embryonic development by participating in limb growth and patterning, and regulation of neural crest cell development. TFAP2B is an upstream regulatory gene for bone morphogenetic proteins 2 and 4. Variants of the TFAP2B gene may lead to abnormal proliferation of neural crest cells by affecting the expression of bone morphogenetic proteins, resulting in multiple organ dysplasia syndrome. In addition, TFAP2B variants may only lead to patent ductus arteriosus instead of typical Char syndrome.


Subject(s)
Ductus Arteriosus, Patent , Humans , Ductus Arteriosus, Patent/genetics , Transcription Factor AP-2/genetics , Abnormalities, Multiple/genetics , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Neural Crest/metabolism , Neural Crest/embryology , Face/abnormalities , Fingers/abnormalities
18.
Med Oncol ; 41(7): 166, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819709

ABSTRACT

The full-length p200CUX1 protein encoded by the homology frame CUT-like protein (CUX1) plays an important role in tumors as a pro-oncogene or oncogene. However, its role and mechanism in acute myeloid leukemia remain unknown. p200CUX1 regulates several pathways, including the MAPK signaling pathway. Our data showed that p200CUX1 is lowly expressed in THP1 and U937 AML cell lines. Lentiviral overexpression of p200CUX1 reduced proliferation and promoted apoptosis and G0/G1 phase blockade, correlating with MAPK pathway suppression. Additionally, p200CUX1 regulated the expression of bone morphogenetic protein 8B (BMP8B), which is overexpressed in AML. Overexpression of p200CUX1 downregulated BMP8B expression and inhibited the MAPK pathway. Furthermore, BMP8B knockdown inhibited AML cell proliferation, enhanced apoptosis and the sensitivity of ATRA-induced cell differentiation, and blocked G0/G1 transition. Our findings demonstrate the pivotal function of the p200CUX1-BMP8B-MAPK axis in maintaining the viability of AML cells. Consequently, targeting p200CUX1 could represent a viable strategy in AML therapy.


Subject(s)
Apoptosis , Cell Proliferation , Leukemia, Myeloid, Acute , MAP Kinase Signaling System , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System/physiology , Cell Line, Tumor , Repressor Proteins/genetics , Repressor Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Disease Progression
19.
Stem Cells Dev ; 33(15-16): 438-447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814826

ABSTRACT

The prognosis of fracture is directly related to several factors. Due to the limitations of existing treatment strategies, there are still many fractures with poor healing. Bone marrow mesenchymal stem cells (BMSCs) have the potential to differentiate into osteoblasts and chondrocytes. Therefore, BMSC transplantation is promised as an effective method for treating bone fractures. We aim to explore whether silently expressing sclerostin gene (SOST) can promote bone formation through the SOST/Wnt/ß-catenin signal pathway. We isolated rat BMSCs and the target gene (SOST shRNA) was transduced into them for osteogenic induction. The results showed that SOST significantly inhibited the proliferation and osteogenic differentiation of BMSCs during osteogenic induction, whereas silently expressing SOST not only increased the number of surviving BMSCs but also promoted the expression of osteogenesis-related proteins RUNX2, osteoprotegerin, Collagen I (COL-I), and bone morphogenetic protein-2 during osteogenic induction. The results of imaging examination in rats show that downregulating the expression of SOST can promote the formation of bony callus and the transformation of cartilage tissue into normal bone tissue, and then accelerate the healing of osteoporotic fracture. In addition, we also found that SOST silencing can activate the Wnt/ß-catenin pathway to achieve these effects. In conclusion, SOST silencing can promote the proliferation and osteogenic differentiation of BMSCs in situ, and therefore may enhance the therapeutic efficiency of BMSC transplantation in OPF.


Subject(s)
Cell Differentiation , Fracture Healing , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Wnt Signaling Pathway , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Rats , Mesenchymal Stem Cell Transplantation/methods , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , beta Catenin/metabolism , beta Catenin/genetics , Genetic Markers , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Cells, Cultured , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Female , Male
20.
Elife ; 122024 May 01.
Article in English | MEDLINE | ID: mdl-38690987

ABSTRACT

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Subject(s)
Chondrocytes , Congenital Microtia , Cyclic AMP-Dependent Protein Kinases , Signal Transduction , Animals , Chondrocytes/metabolism , Congenital Microtia/genetics , Congenital Microtia/metabolism , Mice , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Chondrogenesis/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL