Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.251
Filter
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 584-594, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932546

ABSTRACT

Triply periodic minimal surface (TPMS) is widely used because it can be used to control the shape of porous scaffolds precisely by formula. In this paper, an I-wrapped package (I-WP) type porous scaffolds were constructed. The finite element method was used to study the relationship between the wall thickness and period, the morphology and mechanical properties of the scaffolds, as well as to study the compression and fluid properties. It was found that the porosity of I-WP type scaffolds with different wall thicknesses (0.1 ~ 0.2 mm) and periods (I-WP 1 ~ I-WP 5) ranged from 68.01% ~ 96.48%, and the equivalent elastic modulus ranged from 0.655 ~ 18.602 GPa; the stress distribution of the scaffolds tended to be uniform with the increase of periods and wall thicknesses; the equivalent elastic modulus of the I-WP type scaffolds was basically unchanged after the topology optimization, and the permeability was improved by 52.3%. In conclusion, for the I-WP type scaffolds, the period parameter can be adjusted first, then the wall thickness parameter can be controlled. Topology optimization can be combined to meet the design requirements. The I-WP scaffolds constructed in this paper have good mechanical properties and meet the requirements of repairing human bone tissue, which may provide a new choice for the design of artificial bone trabecular scaffolds.


Subject(s)
Finite Element Analysis , Tissue Scaffolds , Tissue Scaffolds/chemistry , Porosity , Elastic Modulus , Tissue Engineering/methods , Humans , Bone and Bones/physiology , Materials Testing , Cancellous Bone , Surface Properties , Stress, Mechanical , Bone Substitutes/chemistry
2.
J Biomed Mater Res B Appl Biomater ; 112(7): e35440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923882

ABSTRACT

Hydroxyapatites (HAps) synthesized from waste animal bones have recently gained attention due to their outstanding properties. This is because there is a need to fabricate scaffolds with desirable mechanical strength, ability to withstand high temperatures, and insoluble in solvents such as water, acetone, ethanol, and isopropyl alcohol. This study is an extensive summary of many articles on the routes of synthesis/preparation of HAp, and the optimum processing parameter, and the biomedical application areas, such as: drug administration, dental implants, bone tissue engineering, orthopedic implant coatings, and tissue regeneration/wound healing. A broad catalog of the synthesis methods (and combination methods), temperature/time, shape/size, and the calcium-to-phosphorous (Ca/P) value of diverse waste animal bone sources were reported. The alkaline hydrolysis method is proposed to be suitable for synthesizing HAp from natural sources due to the technique's ability to produce intrinsic HAp. The method is also preferred to the calcination method owing to the phase transformation that takes place at high temperatures during calcinations. However, calcinations aid in removing impurities and germs during heating at high temperatures. When compared to calcination technique, alkaline hydrolysis method results in crystalline HAp; the higher degree of crystallinity is disadvantageous to HAp bioactivity. In addition, the standardization and removal of impurities and contaminants, thorough biocompatibility to ensure clinical safety of the HAp to the human body, and improvement of the mechanical strength and toughness to match specific requirements for the various biomedical applications are the important areas for future studies.


Subject(s)
Bone and Bones , Durapatite , Animals , Durapatite/chemistry , Bone and Bones/chemistry , Humans , Tissue Engineering , Bone Substitutes/chemistry , Tissue Scaffolds/chemistry
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 755-762, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38918199

ABSTRACT

Objective: To investigate the physicochemical properties, osteogenic properties, and osteogenic ability in rabbit model of femoral condylar defect of acellular dermal matrix (ADM)/dicalcium phosphate (DCP) composite scaffold. Methods: ADM/DCP composite scaffolds were prepared by microfibril technique, and the acellular effect of ADM/DCP composite scaffolds was detected by DNA residue, fat content, and α-1,3-galactosyle (α-Gal) epitopes; the microstructure of scaffolds was characterized by field emission scanning electron microscopy and mercury porosimetry; X-ray diffraction was used to analyze the change of crystal form of scaffold; the solubility of scaffolds was used to detect the pH value and calcium ion content of the solution; the mineralization experiment in vitro was used to observe the surface mineralization. Twelve healthy male New Zealand white rabbits were selected to prepare the femoral condylar defect models, and the left and right defects were implanted with ADM/DCP composite scaffold (experimental group) and skeletal gold ® artificial bone repair material (control group), respectively. Gross observation was performed at 6 and 12 weeks after operation; Micro-CT was used to detect and quantitatively analyze the related indicators [bone volume (BV), bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), bone mineral density (BMD)], and HE staining and Masson staining were performed to observe the repair of bone defects and the maturation of bone matrix. Results: Gross observation showed that the ADM/DCP composite scaffold was a white spongy solid. Compared with ADM, ADM/DCP composite scaffolds showed a significant decrease in DNA residue, fat content, and α-Gal antigen content ( P<0.05). Field emission scanning electron microscopy showed that the ADM/DCP composite scaffold had a porous structure, and DCP particles were attached to the porcine dermal fibers. The porosity of the ADM/DCP composite scaffold was 76.32%±1.63% measured by mercury porosimetry. X-ray diffraction analysis showed that the crystalline phase of DCP in the ADM/DCP composite scaffolds remained intact. Mineralization results in vitro showed that the hydroxyapatite layer of ADM/DCP composite scaffolds was basically mature. The repair experiment of rabbit femoral condyle defect showed that the incision healed completely after operation without callus or osteophyte. Micro-CT showed that bone healing was complete and a large amount of new bone tissue was generated in the defect site of the two groups, and there was no difference in density between the defect site and the surrounding bone tissue, and the osteogenic properties of the two groups were equivalent. There was no significant difference in BV, BV/TV, BS/BV, Tb.Th, Tb.N, and BMD between the two groups ( P>0.05), except that the Tb.Sp in the experimental group was significantly higher than that in the control group ( P<0.05). At 6 and 12 weeks after operation, HE staining and Masson staining showed that the new bone and autogenous bone fused well in both groups, and the bone tissue tended to be mature. Conclusion: The ADM/DCP composite scaffold has good biocompatibility and osteogenic ability similar to the artificial bone material in repairing rabbit femoral condylar defects. It is a new scaffold material with potential in the field of bone repair.


Subject(s)
Acellular Dermis , Bone Regeneration , Bone Substitutes , Calcium Phosphates , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Animals , Rabbits , Calcium Phosphates/chemistry , Male , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Bone Substitutes/chemistry , Biocompatible Materials/chemistry , Femur/surgery , Microscopy, Electron, Scanning , Materials Testing
4.
Clin Oral Investig ; 28(7): 375, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878120

ABSTRACT

OBJECTIVE: To investigate the impact of mineralized dentin matrix (MDM) on the prognosis on bone regeneration and migration of retained roots after coronectomy. MATERIALS AND METHODS: Patients were divided into three groups based on the type of bone graft after coronectomy: Group C (n = 20, collagen), Group T (n = 20, tricalcium phosphate (TCP) + collagen), and Group D (n = 20, MDM + collagen). CBCT scans, conducted immediately and 6 months after surgery, were analyzed using digital software. Primary outcomes, including changes in bone defect depth and retained root migration distance, were evaluated 6 months after surgery. RESULTS: After 6 months, both Groups D and T exhibited greater reduction of the bone defect and lesser retained root migration than Group C (p < 0.001). Group D had greater regenerated bone volume in the distal 2 mm (73 mm3 vs. 57 mm3, p = 0.011) and lesser root migration (2.18 mm vs. 2.96 mm, p < 0.001) than Group T. The proportion of completely bone embedded retained roots was also greater in Group D than in Group C (70.0% vs. 42.1%, p = 0.003). CONCLUSIONS: MDM is an appropriate graft material for improving bone defect healing and reducing retained root migration after coronectomy. CLINICAL RELEVANCE: MDM is an autogenous material prepared chairside, which can significantly improve bone healing and reduce the risk of retained root re-eruption. MDM holds promise as a routine bone substitute material after M3M coronectomy.


Subject(s)
Bone Regeneration , Calcium Phosphates , Collagen , Cone-Beam Computed Tomography , Dentin , Humans , Male , Female , Calcium Phosphates/therapeutic use , Prognosis , Middle Aged , Collagen/therapeutic use , Bone Regeneration/drug effects , Tooth Root/diagnostic imaging , Tooth Root/surgery , Adult , Tooth Crown/surgery , Treatment Outcome , Bone Transplantation/methods , Bone Substitutes/therapeutic use
5.
Biomed Mater ; 19(4)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38838694

ABSTRACT

Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.


Subject(s)
Bone Substitutes , Bone and Bones , Surface Properties , Tantalum , Tissue Engineering , Tantalum/chemistry , Tissue Engineering/methods , Humans , Porosity , Animals , Bone and Bones/metabolism , Bone Substitutes/chemistry , Biocompatible Materials/chemistry , Materials Testing , Prostheses and Implants , Tissue Scaffolds/chemistry
6.
Clin Oral Investig ; 28(6): 351, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822921

ABSTRACT

OBJECTIVES: This study aimed to assess membrane use with a bone substitute graft for guided bone regeneration (GBR) in experimental dehiscence defects. MATERIALS AND METHODS: Maxillary second incisors (I2) in 9 dogs were extracted. Six weeks later, implants were inserted and experimental dehiscence defects (5 × 3 mm) created on the buccal aspect. The defects and surrounding bone were grafted with deproteinized bovine bone mineral. One side (test) was covered with a resorbable collagen membrane whereas the contralateral side (control) was not. After 6 weeks, histomorphometrical analysis was performed to evaluate: (a) first bone-to-implant contact (fBIC), (b) buccal bone thickness at 1 mm increments from implant shoulder, (c) regenerated area (RA), (d) area and percentages of new bone (B), bone substitute (BS) and mineralized tissue (MT). RESULTS: The histological appearance was similar between test and control sites. At central and lateral sections, there were no differences between groups for fBIC, buccal bone thickness, RA, BS, B, %B, MT and %MT. At central sections, membrane use favoured more %BS and %MT (p = 0.052). There was significantly more B, %B and MT at lateral compared to central sections. CONCLUSIONS: Membrane use tended to retain more bone substitute, but had no effect on new bone ingrowth. Lateral sections showed significantly more bone ingrowth and mineralized tissue compared to central sections, confirming that new bone ingrowth takes place mainly from the lateral walls of the defect. CLINICAL RELEVANCE: Preclinical research to clarify the dynamics of bone regeneration in GBR procedures is relevant in clinical practice.


Subject(s)
Bone Substitutes , Membranes, Artificial , Animals , Cattle , Dogs , Bone Substitutes/pharmacology , Bone Regeneration , Incisor , Guided Tissue Regeneration, Periodontal/methods , Maxilla/surgery , Dental Implants , Collagen , Surgical Wound Dehiscence , Minerals
7.
Int J Hyperthermia ; 41(1): 2345382, 2024.
Article in English | MEDLINE | ID: mdl-38843894

ABSTRACT

PURPOSE: The objective was to describe the technique and clinical outcome of microwave thermal ablation (MWA) and perfusion combined with synthetic bone substitutes in treating unicameral bone cysts (UBCs) in adolescents. MATERIALS AND METHODS: A total of 14 consecutive patients were enrolled by percutaneous MWA and saline irrigation combined with synthetic bone substitutes. Clinical follow-up included the assessment of pain, swelling, and functional mobility. Radiological parameters included tumor volume, physis-cyst distance, cortical thickness of the thinnest cortical bone, and the Modified Neer classification system. RESULTS: The mean follow-up was 28.9 months (26-52 months). All UBCs were primary, and all patients underwent the MWA, saline perfusion, and reconstruction combined with a synthetic bone substitute session, except for one patient (7.1%) who required a second session. All patients had good clinical results at the final follow-up. Satisfactory cyst healing was achieved in 13 cases according to radiological parameters. Tumor volume decreased from a mean of 49.7 cm3 before surgery treatment to 13.9 cm3 at the final follow-up (p < 0.01). The physis-cyst distance increased from a mean of 3.17-4.83 cm at the final follow-up (p < 0.01). Cortical thickness improved from a mean of 1.1 mm to 2.0 mm at the final follow-up (p < 0.01). According to the proposed radiological criteria, our results were considered successful (Grading I and II) in 13 patients (92.9%) at the final follow-up. CONCLUSION: Percutaneous microwave ablation combined with a bone graft substitute is a minimally invasive, effective, safe, and cost-effective approach to treating primary bone cysts in the limbs of adolescents.


Subject(s)
Bone Cysts , Bone Substitutes , Microwaves , Humans , Male , Female , Adolescent , Bone Cysts/surgery , Bone Cysts/diagnostic imaging , Bone Substitutes/therapeutic use , Microwaves/therapeutic use , Follow-Up Studies , Child , Plastic Surgery Procedures/methods , Young Adult , Ablation Techniques/methods
8.
Int J Oral Maxillofac Implants ; (3): 350-364, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38905116

ABSTRACT

PURPOSE: The aim of the present study was to compare the histomorphometrically evaluated new bone formation (NB), the radiographically measured graft stability, and the clinical implant outcome for maxillary sinus augmentation grafted with deproteinized bovine bone mineral (DBBM) with either small (Bio-Oss-S, Geistlich) or large (Bio-Oss-L, Geistlich) particles. MATERIALS AND METHODS: Using a split-mouth study design, bilateral maxillary sinus augmentation was performed in 13 patients either with Bio-Oss-S particles (0.25 to 1 mm) or Bio-Oss-L particles (1 to 2 mm). After a healing period of 6 months, bone biopsies were axially retrieved in the molar region for histologic/histomorphometric analysis of NB, including subsequent staged implant placement. To determine graft stability, the maxillary sinus augmentation vertical graft heights were radiographically measured immediately after sinus augmentation, at implant placement, and at the 2- and 4-year post-augmentation follow-ups. In addition, the clinical implant-prosthodontic outcome (survival/ success/marginal bone loss) was assessed at 1 and 3 years post-loading. RESULTS: A total of 22 sinuses from 11 patients with split-mouth evaluation were ultimately available for data and statistical analysis. Histomorphometric analysis of the axially retrieved bone biopsies revealed the presence of NB (S: 25.5% ± 7.0% vs L: 23.6% ± 11.9%; P = .640), residual graft particles (S: 19.6% ± 9.2% vs L: 17.5% ± 6.3%; P = .365) as well as connective tissue (S: 54.9% ± 9.2% vs L: 58.9% ± 12.5%; P = .283), without significant differences between the use of small (Bio-Oss-S) and large (Bio-Oss-L) particles. However, there was significantly (P = .021) higher bone-to-graft contact (BGC) for the small-particle graft sites (27.9% ± 14.8%) compared to the large-particle graft sites (19.9% ± 12.9%), representing a significantly higher osteoconductivity. Both particle sizes showed significant (P < .01) vertical graft height reduction over time (4 years) of about 10%, with predominant graft reduction in the time period between sinus augmentation and implant placement compared to any follow-up periods after implant placement. At the 3-year post-loading implant evaluation, all implants and prostheses survived (100%), and the peri-implant marginal bone loss (S: 0.52 ± 0.19 mm; L: 0.48 ± 0.15 mm) as well as the peri-implant health conditions (S: 87.5%, L:81.2%) did not differ between implants inserted with the two different xenograft particles used. CONCLUSIONS: The use of small and large bovine xenograft particles for maxillary sinus augmentation provides for comparable bone formation, ensuring stable graft dimensions combined with high implant success and healthy peri-implant conditions. However, small particle size resulted in a higher BGC, providing for higher osteoconductivity than with the larger particle size.


Subject(s)
Bone Substitutes , Dental Implantation, Endosseous , Minerals , Particle Size , Sinus Floor Augmentation , Humans , Sinus Floor Augmentation/methods , Middle Aged , Minerals/therapeutic use , Male , Female , Bone Substitutes/therapeutic use , Cattle , Dental Implantation, Endosseous/methods , Animals , Treatment Outcome , Adult , Maxillary Sinus/surgery , Maxillary Sinus/diagnostic imaging , Aged , Osteogenesis/physiology , Biopsy
9.
J Mater Sci Mater Med ; 35(1): 33, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900208

ABSTRACT

Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (P < 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.


Subject(s)
Bone Regeneration , Cell Survival , Glass , Phosphates , Strontium , Titanium , Strontium/chemistry , Strontium/pharmacology , Bone Regeneration/drug effects , Animals , Mice , Phosphates/chemistry , Phosphates/pharmacology , Glass/chemistry , Titanium/chemistry , Cell Survival/drug effects , Materials Testing , Zinc/chemistry , Cell Line , Osteoblasts/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering/methods , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , X-Ray Microtomography
10.
ACS Biomater Sci Eng ; 10(6): 3514-3527, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38723173

ABSTRACT

The field of bone regeneration has always been a hot and difficult research area, and there is no perfect strategy at present. As a new type of biodegradable material, magnesium alloys have excellent mechanical properties and bone promoting ability. Compared with other inert metals, magnesium alloys have significant advantages and broad application prospects in the field of bone regeneration. By searching the official Web sites and databases of various funds, this paper summarizes the research status of magnesium composites in the field of bone regeneration and introduces the latest scientific research achievements and clinical transformations of scholars in various countries and regions, such as improving the corrosion resistance of magnesium alloys by adding coatings. Finally, this paper points out the current problems and challenges, aiming to provide ideas and help for the development of new strategies for the treatment of bone defects and fractures.


Subject(s)
Bone Regeneration , Magnesium , Bone Regeneration/drug effects , Magnesium/therapeutic use , Magnesium/pharmacology , Magnesium/chemistry , Humans , Alloys/chemistry , Alloys/therapeutic use , Biocompatible Materials/therapeutic use , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Animals , Bone Substitutes/therapeutic use , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Corrosion
11.
J Dent ; 146: 105070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740251

ABSTRACT

OBJECTIVES: The objective of this study was to assess whether zinc-doped fluorapatite (ZnFA) could serve as an effective antimicrobial dental bone filler for bone regeneration compared to autografts. METHODS: FA and 2 % zinc-doped FA (2ZnFA) were synthesized and characterized in-house. Compressed and sintered FA and 2ZnFA disks were incubated with bacteria to assess antimicrobial properties. Adipose-derived stem cells were cultured on these discs to evaluate the surfaces' ability to support cell growth and promote osteogenic differentiation. Surfaces exhibiting the highest expressions of the bone markers osteopontin and osteocalcin were selected for an in vivo study in a rat mandibular defect model. Twenty rats were divided into 5 groups, equally, and a 5 mm surgical defect of the jaw was left untreated or filled with 2ZnFA, FA, autograft, or demineralized bone matrix (DBM). At 12 weeks, the defects and surrounding tissues were harvested and subjected to microCT and histological evaluations. RESULTS: Standard techniques such as FTIR, ICP-MS, fluoride probe, and XRD revealed the sintered FA and ZnFA's chemical compositions and structures. Bacterial studies revealed no significant differences in surface bacterial adhesion properties between FA and 2ZnFA, but significantly fewer bacterial loads than control titanium discs (p < 0.05). Cell culture data confirmed that both surfaces could support cell growth and promote the osteogenic differentiation of stem cells. MicroCT analysis confirmed statistical similarities in bone regeneration within FA, 2ZnFA, and autograft groups. CONCLUSION: The data suggests that both FA and 2ZnFA could serve as alternatives to autograft materials, which are the current gold standard. Moreover, these bone fillers outperformed DBM, an allograft material commonly used as a dental bone void filler. CLINICAL SIGNIFICANCE: The use of FA or 2ZnFA for treating mandibular defects led to bone regeneration statistically similar to autograft repair and significantly outperformed the widely used dental bone filler, DBM. Additional translational research may confirm FA-based materials as superior substitutes for existing synthetic bone fillers, ultimately enhancing patient outcomes.


Subject(s)
Apatites , Bone Regeneration , Cell Differentiation , Osteogenesis , Tissue Scaffolds , Zinc , Animals , Apatites/chemistry , Apatites/pharmacology , Bone Regeneration/drug effects , Rats , Tissue Scaffolds/chemistry , Osteogenesis/drug effects , Cell Differentiation/drug effects , Bone Substitutes/pharmacology , Osteopontin , Stem Cells/drug effects , Mandible/surgery , Mandible/diagnostic imaging , X-Ray Microtomography , Osteocalcin , Adipose Tissue/cytology , Anti-Infective Agents/pharmacology , Cell Proliferation/drug effects , Male , Cells, Cultured , Bone Transplantation/methods , Autografts , Spectroscopy, Fourier Transform Infrared
12.
Sci Rep ; 14(1): 10798, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734777

ABSTRACT

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Subject(s)
Biocompatible Materials , Bone Substitutes , Durapatite , Nanocomposites , Silicates , Durapatite/chemistry , Nanocomposites/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Silicates/chemistry , Biocompatible Materials/chemistry , Calcium Compounds/chemistry , Drug Liberation , Dexamethasone/chemistry , Dexamethasone/pharmacology , Polymers/chemistry , Humans , X-Ray Diffraction , Materials Testing , Spectroscopy, Fourier Transform Infrared , Animals
13.
J Biomed Mater Res B Appl Biomater ; 112(5): e35416, 2024 May.
Article in English | MEDLINE | ID: mdl-38747324

ABSTRACT

The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).


Subject(s)
Bone Substitutes , Nanoparticles , Animals , Bone Substitutes/chemistry , Nanoparticles/chemistry , Ceramics/chemistry , Materials Testing , Durapatite/chemistry , Sheep , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction , Bone Transplantation
14.
Clin Oral Investig ; 28(6): 342, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801474

ABSTRACT

OBJECTIVE: To compare implant stability and clinical outcome in implant placement between osteotome sinus floor elevation (OSFE) with biphasic calcium phosphate (BCP) which consisted of 30% of hydroxyapatite (HA) and 70% of beta-tricalcium phosphate (ß -TCP) grafting material and OSFE without using bone grafting material. The research questions is whether the BCP provides any benefit in OSFE or not. MATERIALS AND METHODS: Thirty patients (30 implants) with a single edentulous area of upper premolar or molar were randomly separated into OSFE with BCP (n = 15) and OSFE without grafting (n = 15). The patients were reevaluated 3, 6, 9, and 12 months after implant loading. The clinical assessments (implant stability quotient (ISQ), implant survival-failure rate, and surgical complication) were analyzed. Together with radiographic assessments in 2D (endo-sinus bone gain (ESBG), mean marginal bone change (MMBC)) and 3D (endo-sinus bone gain in CBCT (ESBG-CT)) were evaluated, with a mean follow-up time of at least 12 months of functional loading and prosthetic complication. RESULTS: 20 remaining implants (OSFE with BCP, n = 10; OSFE without grafting, n = 10) were analyzed. Mean ISQ was 79.18 ± 3.43 in 1-year follow-up (ISQ; OSFE with BCP = 78.72 ± 3.46, OSFE without grafting = 79.65 ± 3.52). ISQ in both groups increased steadily without significant differences in each follow-up. (p = 0.56). In radiographic evaluation, at 6-, 9-, and 12-month, OSFE without grafting group showed statistically significant lower MMBC (p < 0.05). The 1-year clinical results showed that 2 implants failed in OSFE with BCP, and 1 implant failed in OSFE without grafting. CONCLUSIONS: Graft material "BCP" (HA30:TCP70) coupled with OSFE presents no extraordinary benefit in implant stability, clinical and radiographic outcome in 1-year follow-up. CLINICAL RELEVANCE: Clinically, OSFE with grafting materials provides no additional benefit. CLINICAL TRIAL REGISTRATION NUMBER: TCTR20210517008 (date of registration: May 17, 2021).


Subject(s)
Bone Substitutes , Cone-Beam Computed Tomography , Dental Implantation, Endosseous , Hydroxyapatites , Sinus Floor Augmentation , Humans , Sinus Floor Augmentation/methods , Male , Female , Middle Aged , Treatment Outcome , Hydroxyapatites/therapeutic use , Dental Implantation, Endosseous/methods , Adult , Bone Substitutes/therapeutic use , Bone Transplantation/methods , Aged , Osteotomy/methods
15.
Braz Dent J ; 35: e245461, 2024.
Article in English | MEDLINE | ID: mdl-38775590

ABSTRACT

This study aimed to evaluate the osteogenic potential of hydroxyapatite (HA), Alginate (Alg), and Gelatine (Gel) composite in a critical-size defect model in rats. Twenty-four male rats were divided into three groups: a negative control with no treatment (Control group), a positive control treated with deproteinized bovine bone mineral (DBBM group), and the experimental group treated with the new HA-Alg-Gel composite (HA-Alg-Gel group). A critical size defect (8.5mm) was made in the rat's calvaria, and the bone formation was evaluated by in vivo microcomputed tomography analysis (µCT) after 1, 15, 45, and 90 days. After 90 days, the animals were euthanized and histological and histomorphometric analyses were performed. A higher proportion of mineralized tissue/biomaterial was observed in the DBBM group when compared to the HA-Alg-Gel and Control groups in the µCT analysis during all analysis periods. However, no differences were observed in the mineralized tissue/biomaterial proportion observed on day 1 (immediate postoperative) in comparison to later periods of analysis in all groups. In the histomorphometric analysis, the HA-Alg-Gel and Control groups showed higher bone formation than the DBBM group. Moreover, in histological analysis, five samples of the HA-Alg-Gal group exhibited formed bone spicules adjacent to the graft granules against only two of eight samples in the DBBM group. Both graft materials ensured the maintenance of defect bone thickness, while a tissue thickness reduction was observed in the control group. In conclusion, this study demonstrated the osteoconductive potential of HA-Alg-Gel bone graft by supporting new bone formation around its particles.


Subject(s)
Alginates , Bone Regeneration , Durapatite , Gelatin , Skull , X-Ray Microtomography , Animals , Bone Regeneration/drug effects , Durapatite/pharmacology , Skull/surgery , Skull/diagnostic imaging , Rats , Male , Biocompatible Materials , Glucuronic Acid , Rats, Wistar , Hexuronic Acids , Osteogenesis/drug effects , Bone Substitutes
16.
Acta Cir Bras ; 39: e392424, 2024.
Article in English | MEDLINE | ID: mdl-38808817

ABSTRACT

PURPOSE: To evaluate the inductive capacity of F18 bioglass putty on the induced membrane technique in a segmental bone defect of the rabbit's radius. METHODS: Ten female Norfolk at 24 months of age were used. The animals were randomly separated based on postoperative time points: five rabbits at 21 and four at 42 days. A 1-cm segmental bone defect was created in both radii. The bone defects were filled with an F18 bioglass putty. RESULTS: Immediate postoperative radiographic examination revealed the biomaterial occupying the segmental bone defect as a well-defined radiopaque structure with a density close to bone tissue. At 21 and 42 days after surgery, a reduction in radiopacity and volume of the biomaterial was observed, with particle dispersion in the bone defect region. Histologically, the induced membrane was verified in all animals, predominantly composed of fibrocollagenous tissue. In addition, chondroid and osteoid matrices undergoing regeneration, a densely vascularized tissue, and a foreign body type reaction composed of macrophages and multinucleated giant cells were seen. CONCLUSIONS: the F18 bioglass putty caused a foreign body-type inflammatory response with the development of an induced membrane without expansion capacity to perform the second stage of the Masquelet technique.


Subject(s)
Biocompatible Materials , Bone Regeneration , Bone Substitutes , Ceramics , Radius , Animals , Rabbits , Female , Bone Regeneration/drug effects , Radius/diagnostic imaging , Radius/surgery , Bone Substitutes/therapeutic use , Reproducibility of Results , Time Factors , Random Allocation , Membranes, Artificial
17.
Clin Exp Dent Res ; 10(3): e875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798121

ABSTRACT

BACKGROUND: The bone regeneration therapy is often used in patients with inadequate bone support for implants, particularly following tooth extractions. Xenografts derived from animal tissues are effective bone reconstructive options that resist resorption and pose a low risk of transmitting disease. Therefore, these implants may be a good option for enhancing and stabilizing maxillary sinuses. The purpose of this study was to compare two xenografts, Bone+B® and InterOss®, for the reconstruction of rabbit calvaria defects. METHODS AND MATERIALS: The study involved seven male New Zealand white rabbits. In the surgical procedure, 21 spots were created on both sides of the midline calvarium by creating three 8-millimeter defects. A control group was used, as well as two treatment groups utilizing Bone+B® Grafts and InterOss® Grafts. After 3 months, the rabbits were euthanized, followed by pathological evaluation. Analysis of these samples focused on bone formation, xenograft remaining material, and inflammation levels, using Adobe Photoshop CS 8.0 and SPSS version 24. RESULTS: With the application of Bone+B® graft, bone formation ranged from 32% to 45%, with a mean of 37.80% (±5.63), and the remaining material ranged from 28% to 37%, with a mean of 32.60% (±3.65). Using InterOss® grafts, bone formation was 61% to 75%, the mean was 65.83% (±4.75), and the remaining material was 9% to 18%, with a mean of 13.17% (±3.06). The bone formation in the control group ranged from 10% to 25%, with a mean of 17.17% (±6.11). InterOss® had lower inflammation levels than other groups, but the difference was not statistically significant (p > .05). CONCLUSION: InterOss® bone powder is the best option for maxillofacial surgery and bone reconstruction. This is due to more bone formation, less remaining material, and a lower inflammation level. Compared to the control group, Bone+B® improves healing and bone quality, thus making it an alternative to InterOss®.


Subject(s)
Bone Regeneration , Bone Substitutes , Bone Transplantation , Heterografts , Skull , Animals , Rabbits , Skull/surgery , Skull/pathology , Male , Bone Transplantation/methods , Bone Substitutes/pharmacology , Osteogenesis
18.
Int J Implant Dent ; 10(1): 26, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801622

ABSTRACT

PURPOSE: Particulate bovine bone substitutes (BS) are commonly used in oral regeneration. However, more literature is needed focusing on comparative analyses among various particulate bovine BS. This study evaluates pre-clinical and clinical data of different particulate bovine BS in oral regeneration. METHODS: A narrative review was conducted by screening the PubMed database Included in the review were pre-clinical and clinical studies until 2024 comparing a minimum of two distinct particulate bovine BS. In addition to examining general data concerning manufacturing and treatment processes, biological safety, physical and chemical characteristics, and graft resorption, particular emphasis was placed on assessing pre-clinical and clinical data related to ridge preservation, sinus floor elevation, peri-implant defects, and various forms of alveolar ridge augmentation utilizing particulate bovine BS. RESULTS: Various treatment temperatures ranging from 300 to 1,250 °C and the employment of chemical cleaning steps were identified for the manufacturing process of particulate bovine BS deemed to possess biosecurity. A notable heterogeneity was observed in the physical and chemical characteristics of particulate bovine BS, with minimal or negligible graft resorption. Variations were evident in particle and pore sizes and the porosity of particulate bovine BS. Pre-clinical assessments noted a marginal inclination towards favorable outcomes for particulate bovine BS subjected to higher treatment temperatures. However, clinical data are insufficient. No distinctions were observed regarding ridge preservation, while slight advantages were noted for high-temperature treated particulate bovine BS in sinus floor elevation. CONCLUSIONS: Subtle variances in both pre-clinical and clinical outcomes were observed in across various particulate bovine BS. Due to inadequate data, numerous considerations related to diverse particulate bovine BS, including peri-implant defects, must be more conclusive. Additional clinical studies are imperative to address these knowledge gaps effectively.


Subject(s)
Bone Substitutes , Cattle , Animals , Bone Substitutes/therapeutic use , Humans , Alveolar Ridge Augmentation/methods , Bone Regeneration/physiology
19.
Biomater Adv ; 161: 213900, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772132

ABSTRACT

This study investigates the safety and efficacy of 3D-printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for patient-specific cranioplasty surgeries, employing liquid deposition modeling (LDM) technology. This research is pioneering as it explores the impact of gamma radiation on PCL/HA scaffolds and utilizes printing ink with the highest content of HA known in the composite. The mechanical, morphological, and macromolecular stability of the gamma-sterilized scaffolds were verified before implantation. Subsequent research involving animal subjects was conducted to explore the effects of sterilized implants. Eventually, three clinical cases were selected for the implantation studies as part of a phase 1 non-randomized open-label clinical trial. It was shown that a 25 kGy gamma-ray dose for sterilizing the printed implants did not alter the required geometrical precision of the printed implants. The implants exhibited well-distributed HA and strength comparable to cancellous bone. Gamma radiation reduced hydrophobicity and water uptake capacity without inducing pyrogenic or inflammatory responses. Personalized PCL/HA substitutes successfully treated various craniomaxillofacial defects, including trauma-induced facial asymmetry and congenital deformities. HA nanoparticles in the ink stimulated significant osteoconductive responses within three months of implantation. Moreover, the results revealed that while larger implants may exhibit a slower bone formation response in comparison to smaller implants, they generally had an acceptable rate and volume of bone formation. This clinical trial suggests the application of a sterilized PCL/HA composite for craniomaxillofacial surgery is safe and could be considered as a substitute for autologous bone.


Subject(s)
Durapatite , Gamma Rays , Polyesters , Printing, Three-Dimensional , Durapatite/chemistry , Durapatite/therapeutic use , Humans , Polyesters/chemistry , Animals , Sterilization/methods , Male , Female , Tissue Scaffolds/chemistry , Prostheses and Implants , Adult , Bone Substitutes/chemistry , Bone Substitutes/therapeutic use
20.
J Biomed Mater Res B Appl Biomater ; 112(5): e35405, 2024 May.
Article in English | MEDLINE | ID: mdl-38701384

ABSTRACT

The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.


Subject(s)
Bone Substitutes , Durapatite , Hydrogels , Poloxamer , Rats, Wistar , Silicon Dioxide , Animals , Male , Poloxamer/chemistry , Poloxamer/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Silicon Dioxide/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Rats , Materials Testing , Rheology , Tibia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...