Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.069
Filter
1.
Int J Biol Sci ; 20(9): 3557-3569, 2024.
Article in English | MEDLINE | ID: mdl-38993575

ABSTRACT

To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.


Subject(s)
Dentin , Odontoblasts , Receptors, Transforming Growth Factor beta , Signal Transduction , Transforming Growth Factor beta , Dentin/metabolism , Transforming Growth Factor beta/metabolism , Animals , Odontoblasts/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Mice , Tooth/metabolism , Bone and Bones/metabolism , X-Ray Microtomography , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice, Knockout
2.
Theranostics ; 14(10): 3859-3899, 2024.
Article in English | MEDLINE | ID: mdl-38994021

ABSTRACT

Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.


Subject(s)
Osseointegration , Osteoporosis , Humans , Osteoporosis/therapy , Animals , Reactive Oxygen Species/metabolism , Bone Regeneration , Autophagy , Bone and Bones/metabolism , Apoptosis , Bioengineering/methods
3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000517

ABSTRACT

Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).


Subject(s)
Aging , Bone and Bones , Cellular Senescence , Inflammation , Humans , Cellular Senescence/genetics , Inflammation/genetics , Inflammation/metabolism , Aging/genetics , Bone and Bones/metabolism , Bone and Bones/pathology , Animals , Senescence-Associated Secretory Phenotype/genetics , Signal Transduction
4.
Nutrients ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38999757

ABSTRACT

The role of bone and muscle as endocrine organs may be important contributing factors for children's growth and development. Myokines, secreted by muscle cells, play a role in regulating bone metabolism, either directly or indirectly. Conversely, markers of bone metabolism, reflecting the balance between bone formation and bone resorption, can also influence myokine secretion. This study investigated a panel of serum myokines and their relationships with bone metabolism markers in children following vegetarian and omnivorous diets. A cohort of sixty-eight healthy prepubertal children, comprising 44 vegetarians and 24 omnivores, participated in this study. Anthropometric measurements, dietary assessments, and biochemical analyses were conducted. To evaluate the serum concentrations of bone markers and myokines, an enzyme-linked immunosorbent assay (ELISA) was used. The studied children did not differ regarding their serum myokine levels, except for a higher concentration of decorin in the vegetarian group (p = 0.020). The vegetarians demonstrated distinct pattern of bone metabolism markers compared to the omnivores, with lower levels of N-terminal propeptide of type I procollagen (P1NP) (p = 0.001) and elevated levels of C-terminal telopeptide of type I collagen (CTX-I) (p = 0.018). Consequently, the P1NP/CTX-I ratio was significantly decreased in the vegetarians. The children following a vegetarian diet showed impaired bone metabolism with reduced bone formation and increased bone resorption. Higher levels of decorin, a myokine involved in collagen fibrillogenesis and essential for tissue structure and function, may suggest a potential compensatory mechanism contributing to maintaining bone homeostasis in vegetarians. The observed significant positive correlations between myostatin and bone metabolism markers, including P1NP and soluble receptor activator of nuclear factor kappa-B ligand (sRANKL), suggest an interplay between muscle and bone metabolism, potentially through the RANK/RANKL/OPG signaling pathway.


Subject(s)
Biomarkers , Bone and Bones , Diet, Vegetarian , Humans , Child , Biomarkers/blood , Male , Female , Bone and Bones/metabolism , Vegetarians , Diet , Cytokines/blood , Collagen Type I/blood , Myokines
5.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000002

ABSTRACT

Bone is a unique type of mineralised connective tissue that can support and protect soft tissues, contain bone marrow, and allow movement [...].


Subject(s)
Bone and Bones , Humans , Bone and Bones/metabolism , Bone and Bones/physiology , Animals
6.
Clin Interv Aging ; 19: 1259-1272, 2024.
Article in English | MEDLINE | ID: mdl-39011312

ABSTRACT

Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.


Subject(s)
Adipose Tissue , Bone Marrow , Osteoporosis, Postmenopausal , Humans , Adipose Tissue/metabolism , Female , Bone Density , Adipokines/metabolism , Estrogens/metabolism , Bone and Bones/metabolism , Animals , Cytokines/metabolism , Homeostasis
7.
Methods Mol Biol ; 2816: 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38977583

ABSTRACT

The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.


Subject(s)
Lipid Metabolism , Musculoskeletal Diseases , Signal Transduction , Animals , Humans , Bone and Bones/metabolism , Eicosanoids/metabolism , Muscle, Skeletal/metabolism , Musculoskeletal Diseases/metabolism , Phospholipids/metabolism , Sphingolipids/metabolism
8.
Front Endocrinol (Lausanne) ; 15: 1417191, 2024.
Article in English | MEDLINE | ID: mdl-38974581

ABSTRACT

Osteoporosis and osteoarthritis continue to pose significant challenges to the aging population, with limited preventive options and pharmacological treatments often accompanied by side effects. Amidst ongoing efforts to discover new therapeutic agents, tocotrienols (TTs) have emerged as potential candidates. Derived from annatto bean and palm oil, TTs have demonstrated efficacy in improving skeletal and joint health in numerous animal models of bone loss and osteoarthritis. Mechanistic studies suggest that TTs exert their effects through antioxidant, anti-inflammatory, Wnt-suppressive, and mevalonate-modulating mechanisms in bone, as well as through self-repair mechanisms in chondrocytes. However, human clinical trials in this field remain scarce. In conclusion, TTs hold promise as agents for preventing osteoporosis and osteoarthritis, pending further evidence from human clinical trials.


Subject(s)
Osteoarthritis , Osteoporosis , Tocotrienols , Tocotrienols/therapeutic use , Tocotrienols/pharmacology , Humans , Animals , Osteoarthritis/drug therapy , Osteoarthritis/prevention & control , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Bone and Bones/drug effects , Bone and Bones/metabolism
9.
Medicine (Baltimore) ; 103(29): e38861, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39029026

ABSTRACT

Osteoporosis (OP) constitutes a notable public health concern that significantly impacts the skeletal health of the global aging population. Its prevalence is steadily escalating, yet the intricacies of its diagnosis and treatment remain challenging. Recent investigations have illuminated a profound interlink between gut microbiota (GM) and bone metabolism, thereby opening new avenues for probing the causal relationship between GM and OP. Employing Mendelian randomization (MR) as the investigative tool, this study delves into the causal rapport between 211 varieties of GM and OP. The data are culled from genome-wide association studies (GWAS) conducted by the MiBioGen consortium, in tandem with OP genetic data gleaned from the UK Biobank, BioBank Japan Project, and the FinnGen database. A comprehensive repertoire of statistical methodologies, encompassing inverse-variance weighting, weighted median, Simple mode, Weighted mode, and MR-Egger regression techniques, was adroitly harnessed for meticulous analysis. The discernment emerged that the genus Coprococcus3 is inversely associated with OP, potentially serving as a deterrent against its onset. Additionally, 21 other gut microbial species exhibited a positive correlation with OP, potentially accentuating its proclivity and progression. Subsequent to rigorous scrutiny via heterogeneity and sensitivity analyses, these findings corroborate the causal nexus between GM and OP. Facilitated by MR, this study successfully elucidates the causal underpinning binding GM and OP, thereby endowing invaluable insights for deeper exploration into the pivotal role of GM in the pathogenesis of OP.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis , Humans , Mendelian Randomization Analysis/methods , Osteoporosis/prevention & control , Osteoporosis/genetics , Bone and Bones/metabolism
10.
Bone Res ; 12(1): 38, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961077

ABSTRACT

Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.


Subject(s)
Adipocytes , Aging , Cellular Senescence , Animals , Adipocytes/metabolism , Cellular Senescence/physiology , Mice , Aging/physiology , Mice, Inbred C57BL , Bone Marrow Cells/metabolism , Bone and Bones/metabolism , Bone and Bones/physiology , Male , Osteogenesis/physiology , Signal Transduction , Macrophages/metabolism
11.
PLoS One ; 19(7): e0304074, 2024.
Article in English | MEDLINE | ID: mdl-38976685

ABSTRACT

MIR125B, particularly its 5p strand, is apparently involved in multiple cellular processes, including osteoblastogenesis and osteoclastogenesis. Given that MIR125B is transcribed from the loci Mir125b1 and Mir125b2, three mature transcripts (MIR125B-5p, MIR125B1-3p, and MIR125B2-3p) are generated (MIR125B-5p is common to both); however, their expression profiles and roles in the bones remain poorly understood. Both primary and mature MIR125B transcripts were differentially expressed in various organs, tissues, and cells, and their expression patterns did not necessarily correlate in wild-type (WT) mice. We generated Mir125b2 knockout (KO) mice to examine the contribution of Mir125b2 to MIR125B expression profiles and bone phenotypes. Mir125b2 KO mice were born and grew normally without any changes in bone parameters. Interestingly, in WT and Mir125b2 KO, MIR125B-5p was abundant in the calvaria and bone marrow stromal cells. These results indicate that the genetic ablation of Mir125b2 does not impinge on the bones of mice, attracting greater attention to MIR125B-5p derived from Mir125b1. Future studies should investigate the conditional deletion of Mir125b1 and both Mir125b1 and Mir125b2 in mice.


Subject(s)
Bone and Bones , Mice, Knockout , MicroRNAs , Phenotype , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Bone and Bones/metabolism , Osteogenesis/genetics , Mice, Inbred C57BL , Skull/metabolism
12.
Heart Fail Clin ; 20(3): 307-316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844301

ABSTRACT

Cardiac amyloidosis (CA) is caused by the myocardial deposition of misfolded proteins, either amyloid transthyretin (ATTR) or immunoglobulin light chains (AL). The paradigm of this condition has transformed, since CA is increasingly recognized as a relatively prevalent cause of heart failure. Cardiac scintigraphy with bone tracers is the unique noninvasive technique able to confirm CA without performing tissue biopsy or advanced imaging tests. A moderate-to-intense myocardial uptake (Perugini grade ≥2) associated with the absence of a monoclonal component is greater than 99% specific for ATTR-CA, while AL-CA confirmation requires tissue biopsy.


Subject(s)
Amyloidosis , Cardiomyopathies , Radiopharmaceuticals , Humans , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/metabolism , Amyloidosis/diagnostic imaging , Amyloidosis/metabolism , Amyloidosis/pathology , Radionuclide Imaging/methods , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Bone and Bones/pathology , Myocardium/pathology , Myocardium/metabolism , Amyloid Neuropathies, Familial/diagnostic imaging , Amyloid Neuropathies, Familial/metabolism , Amyloid Neuropathies, Familial/pathology , Heart Failure/diagnostic imaging , Heart Failure/metabolism , Prealbumin/metabolism
13.
FASEB J ; 38(11): e23726, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847773

ABSTRACT

Calcitriol and calcimimetics are used to treat hyperparathyroidism secondary to chronic kidney disease (CKD). Calcitriol administration and the subsequent increase in serum calcium concentration decrease parathyroid hormone (PTH) levels, which should reduce bone remodeling. We have previously reported that, when maintaining a given concentration of PTH, the addition of calcimimetics is associated with an increased bone cell activity. Whether calcitriol administration affects bone cell activity while PTH is maintained constant should be evaluated in an animal model of renal osteodystrophy. The aim of the present study was to compare in CKD PTH-clamped rats the bone effects of calcitriol and calcimimetic administration. The results show that the administration of calcitriol and calcimimetic at doses that induced a similar reduction in PTH secretion produced dissimilar effects on osteoblast activity in 5/6 nephrectomized (Nx) rats with secondary hyperparathyroidism and in Nx rats with clamped PTH. Remarkably, in both rat models, the administration of calcitriol decreased osteoblastic activity, whereas calcimimetic increased bone cell activity. In vitro, calcitriol supplementation inhibited nuclear translocation of ß-catenin and reduced proliferation, osteogenesis, and mineralization in mesenchymal stem cells differentiated into osteoblasts. In conclusion, besides the action of calcitriol and calcimimetics at parathyroid level, these treatments have specific effects on bone cells that are independent of the PTH level.


Subject(s)
Calcimimetic Agents , Calcitriol , Osteoblasts , Parathyroid Hormone , Animals , Calcitriol/pharmacology , Rats , Calcimimetic Agents/pharmacology , Calcimimetic Agents/therapeutic use , Parathyroid Hormone/pharmacology , Male , Osteoblasts/drug effects , Osteoblasts/metabolism , Hyperparathyroidism, Secondary/drug therapy , Hyperparathyroidism, Secondary/etiology , Hyperparathyroidism, Secondary/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Rats, Wistar , Renal Insufficiency/drug therapy , Renal Insufficiency/metabolism , Osteogenesis/drug effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Cell Differentiation/drug effects , Calcium/metabolism
14.
Nutrients ; 16(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892677

ABSTRACT

Bile acids help facilitate intestinal lipid absorption and have endocrine activity in glucose, lipid and bone metabolism. Obesity and exercise influence bile acid metabolism and have opposite effects in bone. This study investigates if regular exercise helps mitigate the adverse effects of obesity on bone, potentially by reversing alterations in bile acid metabolism. Four-month-old female Sprague Dawley rats either received a high-fat diet (HFD) or a chow-based standard diet (lean controls). During the 10-month study period, half of the animals performed 30 min of running at moderate speed on five consecutive days followed by two days of rest. The other half was kept inactive (inactive controls). At the study's end, bone quality was assessed by microcomputed tomography and biomechanical testing. Bile acids were measured in serum and stool. HFD feeding was related to reduced trabecular (-33%, p = 1.14 × 10-7) and cortical (-21%, p = 2.9 × 10-8) bone mass and lowered femoral stiffness (12-41%, p = 0.005). Furthermore, the HFD decreased total bile acids in serum (-37%, p = 1.0 × 10-6) but increased bile acids in stool (+2-fold, p = 7.3 × 10-9). These quantitative effects were accompanied by changes in the relative abundance of individual bile acids. The concentration of serum bile acids correlated positively with all cortical bone parameters (r = 0.593-0.708), whilst stool levels showed inverse correlations at the cortical (r = -0.651--0.805) and trabecular level (r = -0.656--0.750). Exercise improved some trabecular and cortical bone quality parameters (+11-31%, p = 0.043 to 0.001) in lean controls but failed to revert the bone loss related to the HFD. Similarly, changes in bile acid metabolism were not mitigated by exercise. Prolonged HFD consumption induced quantitative and qualitative alterations in bile acid metabolism, accompanied by bone loss. Tight correlations between bile acids and structural indices of bone quality support further functional analyses on the potential role of bile acids in bone metabolism. Regular moderate exercise improved trabecular and cortical bone quality in lean controls but failed in mitigating the effects related to the HFD in bone and bile acid metabolism.


Subject(s)
Bile Acids and Salts , Bone and Bones , Diet, High-Fat , Physical Conditioning, Animal , Rats, Sprague-Dawley , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Female , Diet, High-Fat/adverse effects , Physical Conditioning, Animal/physiology , Rats , Bone and Bones/metabolism , Bone Density , X-Ray Microtomography , Feces/chemistry , Obesity/metabolism
15.
Front Endocrinol (Lausanne) ; 15: 1394785, 2024.
Article in English | MEDLINE | ID: mdl-38883597

ABSTRACT

Osteoporosis (OP) is a chronic systemic bone metabolism disease characterized by decreased bone mass, microarchitectural deterioration, and fragility fractures. With the demographic change caused by long lifespans and population aging, OP is a growing health problem. The role of miRNA in the pathogenesis of OP has also attracted widespread attention from scholars in recent years. Type H vessels are unique microvessels of the bone and have become a new focus in the pathogenesis of OP because they play an essential role in osteogenesis-angiogenesis coupling. Previous studies found some miRNAs regulate type H vessel formation through the regulatory factors, including platelet-derived growth factor-BB (PDGF-BB), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and so on. These findings help us gain a more in-depth understanding of the relationship among miRNAs, type H vessels, and OP to find a new perspective on treating OP. In the present mini-review, we will introduce the role of type H vessels in the pathogenesis of OP and the regulation of miRNAs on type H vessel formation by affecting regulatory factors to provide some valuable insights for future studies of OP treatment.


Subject(s)
MicroRNAs , Osteoporosis , Animals , Humans , Bone and Bones/blood supply , Bone and Bones/metabolism , Bone and Bones/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Microvessels/pathology , Microvessels/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Osteogenesis/genetics , Osteogenesis/physiology , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology
16.
Cells ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891042

ABSTRACT

The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFR+Sca-1+ subsets, Nestin+, or LepR+ cells. Of these, the LepR+ cells are the major source of SCF and CXCL12 in the BM microenvironment and play a major role in HSC maintenance and hematopoiesis. LepR+ cells give rise to most of the bones and BM adipocytes, further regulating the microenvironment. In adult BM, LepR+ cells are quiescent but after fracture or irradiation, they proliferate and differentiate into mesenchymal lineage osteogenic, adipogenic and/or chondrogenic cells. They also play a crucial role in the steady-state hematopoiesis process, as well as hematopoietic regeneration and the homing of hematopoietic stem cells (HSCs) after myeloablative injury and/or HSC transplantation. They line the sinusoidal cavities, maintain the trabeculae formation, and provide the space for HSC homing and retention. However, the LepR+ cell subset is heterogeneous; some subsets have higher adipogenic potential, while others express osteollineage-biased genes. Different transcription factors like Early B cell factor 3 (EBF3) or RunX2 help maintain this balance between the self-renewing and committed states, whether osteogenic or adipogenic. The study of LepR+ MSCs holds immense promise for advancing our understanding of HSC biology, tissue regeneration, metabolic disorders, and immune responses. In this review, we will discuss the origin of the BM resident LepR+ cells, different subtypes, and the role of LepR+ cells in maintaining hematopoiesis, osteogenesis, and BM adipogenesis following their multifaceted impact.


Subject(s)
Mesenchymal Stem Cells , Receptors, Leptin , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Humans , Receptors, Leptin/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Bone and Bones/metabolism , Hematopoiesis , Bone Marrow/metabolism , Cell Differentiation
17.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892199

ABSTRACT

In exploring the challenges of bone repair and regeneration, this review evaluates the potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductivity of these engineered scaffolds, as well as their interactions with critical cellular players in bone healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate that incorporating nanostructured materials and bioactive compounds is particularly effective in promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential of these advanced biomaterials in clinical settings is widely recognized and the paper advocates continued research into multi-responsive scaffold systems.


Subject(s)
Biocompatible Materials , Bone Regeneration , Bone and Bones , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Humans , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Biocompatible Materials/chemistry , Osteogenesis , Cell Differentiation
18.
Rev Fac Cien Med Univ Nac Cordoba ; 81(2): 270-284, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38941224

ABSTRACT

When large amounts of Fluoride are consumed produces insulin resistance, but exercise can reverse insulin resistance in rats, because of a high fluoride uptake by bone tissue. However, bone quality has not been studied in those experiments. Therefore, the aim of this work was to evaluate bone quality in rats treated with fluoride when performing exercise. Sprague-Dawley rats were divided into 3 groups (n=6 per group): Control (drinking water without fluoride), Fluoride (drinking water with fluoride 15 mg/L for 30 days) and Exercise (daily running on a treadmill and drinking water with fluoride 15 mg/L for 30 days).  Then, bone mineral density, mechanical and histological properties and bone fluoride level were measured. No effect of treatment on any bone parameters were observed. These results indicate that exercise normalizes glucose metabolism in insulin-resistant rats by bone fluoride uptake; however, this increase in bone fluoride does not manifest in bone deterioration.


Cuando se consumen grandes cantidades de fluoruro se produce resistencia a la insulina, pero la realización de ejercicio puede revertir dicho efecto en ratas, debido a una alta absorción de fluoruro por el tejido óseo. Sin embargo, la calidad ósea no ha sido estudiada. Por ello, el objetivo de este trabajo fue evaluar la calidad ósea en ratas tratadas con flúor que realizan ejercicio. Se trabajó con ratas Sprague-Dawley que se dividieron en 3 grupos (n=6 por grupo): Control (recibiron agua sin flúor), Flúor (recibieron agua con flúor 15 mg/L durante 30 días) y Ejercicio (realizaron ejercicio diariamente en cinta ergométrica y recibieron agua con fluoruro 15 mg/L por 30 días). Luego, se midieron la densidad mineral ósea, las propiedades biomecánicas e histológicas y el nivel de fluoruro óseo. No se observó ningún efecto del tratamiento sobre ningún parámetro óseo. Estos resultados indican que el ejercicio normaliza el metabolismo de la glucosa en ratas resistentes a la insulina mediante la captación ósea de fluoruro; sin embargo, este aumento del fluoruro óseo no se manifiesta en deterioro óseo.


Subject(s)
Bone Density , Fluorides , Insulin Resistance , Physical Conditioning, Animal , Rats, Sprague-Dawley , Animals , Insulin Resistance/physiology , Bone Density/drug effects , Physical Conditioning, Animal/physiology , Fluorides/pharmacology , Rats , Male , Bone and Bones/metabolism , Bone and Bones/drug effects
19.
In Vivo ; 38(4): 1557-1570, 2024.
Article in English | MEDLINE | ID: mdl-38936927

ABSTRACT

BACKGROUND/AIM: This study examined the effects of tocotrienols (TT) in conjunction with statin on glucose homeostasis, bone microstructure, gut microbiome, and systemic and liver inflammatory markers in obese C57BL/6J mice. MATERIALS AND METHODS: Forty male C57BL/6J mice were fed a high-fat diet (HFD) and assigned into four groups in a 2 (no statin vs. 120 mg statin/kg diet)×2 (no TT vs. 400 mg TT/kg diet) factorial design for 14 weeks. RESULTS: Statin and TT improved glucose tolerance only when each was given alone, and only statin supplementation decreased insulin resistance. Consistently, only statin supplementation decreased serum insulin levels and HOMA-IR. Pancreatic insulin was also increased with statin treatment. Statin and TT, alone or in combination, reduced the levels of serum IL-6, but only TT attenuated the increased serum leptin levels induced by a HFD. Statin supplementation increased bone area/total area and connectivity density at LV-4, while TT supplementation increased bone area/total area and trabecular number, but decreased trabecular separation at the distal femur. Statin supplementation, but not TT, reduced hepatic inflammatory cytokine gene expression. Neither TT supplementation nor statin supplementation statistically altered microbiome species evenness or richness. However, they altered the relative abundance of certain microbiome species. Most notably, both TT and statin supplementation increased the relative abundance of Lachnospiraceae UCG-006. CONCLUSION: TT and statin collectively benefit bone microstructure, glucose homeostasis, and microbial ecology in obese mice. Such changes may be, in part, associated with suppression of inflammation in the host.


Subject(s)
Bone and Bones , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Homeostasis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Obesity , Tocotrienols , Animals , Gastrointestinal Microbiome/drug effects , Tocotrienols/pharmacology , Tocotrienols/administration & dosage , Mice , Homeostasis/drug effects , Obesity/drug therapy , Obesity/metabolism , Male , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Diet, High-Fat/adverse effects , Bixaceae/chemistry , Mice, Obese , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Glucose/metabolism , Mice, Inbred C57BL , Insulin Resistance , Blood Glucose , Disease Models, Animal , Liver/drug effects , Liver/metabolism , Liver/pathology , Biomarkers , Carotenoids
20.
FASEB J ; 38(13): e23758, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923594

ABSTRACT

Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.


Subject(s)
Bone and Bones , Circadian Rhythm , Humans , Circadian Rhythm/physiology , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Bone Diseases/physiopathology , Bone Diseases/metabolism , Circadian Clocks/physiology
SELECTION OF CITATIONS
SEARCH DETAIL