Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69.139
Filter
2.
PeerJ ; 12: e17539, 2024.
Article in English | MEDLINE | ID: mdl-38952964

ABSTRACT

The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1ß) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1ß expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1ß), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1ß), pre-frontal cortex (IL-1ß), and hypothalamus (IL-1ß). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.


Subject(s)
Glucocorticoids , Metyrapone , Mice, Inbred C57BL , Mifepristone , Sleep Deprivation , Animals , Male , Metyrapone/pharmacology , Sleep Deprivation/metabolism , Sleep Deprivation/drug therapy , Mice , Mifepristone/pharmacology , Glucocorticoids/pharmacology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Inflammation/metabolism , Inflammation/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Corticosterone/blood , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Brain/metabolism , Brain/drug effects , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/genetics
3.
J Biochem Mol Toxicol ; 38(7): e23760, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953502

ABSTRACT

Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy. Curcumin (CUR) and piperine (PP) show a protective effect on neurodegenerative and neurological diseases. This research was designed to measure several biochemical parameters in the brain tissue of CP-applied rats to investigate the impact of combined CUR-PP administration. The study evaluated six groups of eight rats: Group 1 was the control; Groups 2 and 3 were administered 200 or 300 mg/kg CUR-PP via oral gavage; Group 4 received only 200 mg/kg CP on day 1; Groups 5 and 6 received CP + CUR-PP for 7 days. Data from all parameters indicated that CP caused brain damage. Phosphorylated TAU (pTAU), amyloid-beta peptide 1-42 (Aß1-42), glutamate (GLU), and gamma amino butyric acid (GABA) parameters were the same in Groups 4, 5, and 6. On the other hand, 8-hydroxy-2-deoxyguanosine (8-OHdG), nitric oxide (NO), interleukin-6 (IL-6), nuclear factor kappa beta (NF-kß), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α) levels in the CP + CUR-PP groups were lower than those in the CP group (p < 0.05). However, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) parameters were higher in the CP + CUR-PP groups compared to the CP group (p < 0.05). It is thought that the similarity of Groups 5 and 6 with Group 4 in Aß1-42, pTAU, GLU, and GABA parameters hinder the determination of treatment protection however, they might have a therapeutic effect if the applied dose or study duration were changed. This study attempted to evaluate the effects of a CUR-PP combination on CP-induced brain damage in rats by measuring biochemical parameters and performing histopathological examinations. Based on the findings, this CUR-PP combination could be considered an alternative medicine option in cases with conditions similar to those evaluated in this study.


Subject(s)
Alkaloids , Benzodioxoles , Brain Injuries , Curcumin , Cyclophosphamide , Piperidines , Polyunsaturated Alkamides , Animals , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Curcumin/pharmacology , Piperidines/pharmacology , Alkaloids/pharmacology , Rats , Cyclophosphamide/toxicity , Cyclophosphamide/adverse effects , Male , Brain Injuries/chemically induced , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/prevention & control , Rats, Wistar , Brain/metabolism , Brain/drug effects , Brain/pathology , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology
4.
AAPS PharmSciTech ; 25(6): 149, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954224

ABSTRACT

Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aß1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aß1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aß1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aß1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aß1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aß1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Mice, Inbred BALB C , Neuroprotective Agents , Peptide Fragments , Silybin , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Mice , Silybin/pharmacology , Silybin/administration & dosage , Peptide Fragments/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Brain/drug effects , Brain/metabolism , Brain/pathology , Particle Size , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Disease Models, Animal , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism
5.
BMC Med ; 22(1): 266, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38951846

ABSTRACT

BACKGROUND: Benzodiazepine use is common, particularly in older adults. Benzodiazepines have well-established acute adverse effects on cognition, but long-term effects on neurodegeneration and dementia risk remain uncertain. METHODS: We included 5443 cognitively healthy (MMSE ≥ 26) participants from the population-based Rotterdam Study (57.4% women, mean age 70.6 years). Benzodiazepine use from 1991 until baseline (2005-2008) was derived from pharmacy dispensing records, from which we determined drug type and cumulative dose. Benzodiazepine use was defined as prescription of anxiolytics (ATC-code: N05BA) or sedative-hypnotics (ATC-code: N05CD) between inception of pharmacy records and study baseline. Cumulative dose was calculated as the sum of the defined daily doses for all prescriptions. We determined the association with dementia risk until 2020 using Cox regression. Among 4836 participants with repeated brain MRI, we further determined the association of benzodiazepine use with changes in neuroimaging markers using linear mixed models. RESULTS: Of all 5443 participants, 2697 (49.5%) had used benzodiazepines at any time in the 15 years preceding baseline, of whom 1263 (46.8%) used anxiolytics, 530 (19.7%) sedative-hypnotics, and 904 (33.5%) used both; 345 (12.8%) participants were still using at baseline assessment. During a mean follow-up of 11.2 years, 726 participants (13.3%) developed dementia. Overall, use of benzodiazepines was not associated with dementia risk compared to never use (HR [95% CI]: 1.06 [0.90-1.25]), irrespective of cumulative dose. Risk estimates were somewhat higher for any use of anxiolytics than for sedative-hypnotics (HR 1.17 [0.96-1.41] vs 0.92 [0.70-1.21]), with strongest associations for high cumulative dose of anxiolytics (HR [95% CI] 1.33 [1.04-1.71]). In imaging analyses, current use of benzodiazepine was associated cross-sectionally with lower brain volumes of the hippocampus, amygdala, and thalamus and longitudinally with accelerated volume loss of the hippocampus and to a lesser extent amygdala. However, imaging findings did not differ by type of benzodiazepines or cumulative dose. CONCLUSIONS: In this population-based sample of cognitively healthy adults, overall use of benzodiazepines was not associated with increased dementia risk, but potential class-dependent adverse effects and associations with subclinical markers of neurodegeneration may warrant further investigation.


Subject(s)
Benzodiazepines , Dementia , Humans , Female , Dementia/epidemiology , Dementia/chemically induced , Male , Aged , Benzodiazepines/adverse effects , Benzodiazepines/administration & dosage , Middle Aged , Magnetic Resonance Imaging , Netherlands/epidemiology , Aged, 80 and over , Neuroimaging , Brain/diagnostic imaging , Brain/drug effects , Brain/pathology , Prospective Studies , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/chemically induced , Hypnotics and Sedatives/adverse effects , Risk Factors
6.
Trials ; 25(1): 441, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956594

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a leading cause of disability worldwide across domains of health and cognition, affecting overall quality of life. Approximately one third of individuals with depression do not fully respond to treatments (e.g., conventional antidepressants, psychotherapy) and alternative strategies are needed. Recent early phase trials suggest psilocybin may be a safe and efficacious intervention with rapid-acting antidepressant properties. Psilocybin is thought to exert therapeutic benefits by altering brain network connectivity and inducing neuroplastic changes that endure for weeks post-treatment. Although early clinical results are encouraging, psilocybin's acute neurobiological effects on neuroplasticity have not been fully investigated. We aim to examine for the first time how psilocybin acutely (intraday) and subacutely (weeks) alters functional brain networks implicated in depression. METHODS: Fifty participants diagnosed with MDD or persistent depressive disorder (PDD) will be recruited from a tertiary mood disorders clinic and undergo 1:1 randomization into either an experimental or control arm. Participants will be given either 25 mg psilocybin or 25 mg microcrystalline cellulose (MCC) placebo for the first treatment. Three weeks later, those in the control arm will transition to receiving 25 mg psilocybin. We will investigate whether treatments are associated with changes in arterial spin labelling and blood oxygenation level-dependent contrast neuroimaging assessments at acute and subacute timepoints. Primary outcomes include testing whether psilocybin demonstrates acute changes in (1) cerebral blood flow and (2) functional brain activity in networks associated with mood regulation and depression when compared to placebo, along with changes in MADRS score over time compared to placebo. Secondary outcomes include changes across complementary clinical psychiatric, cognitive, and functional scales from baseline to final follow-up. Serum peripheral neurotrophic and inflammatory biomarkers will be collected at baseline and follow-up to examine relationships with clinical response, and neuroimaging measures. DISCUSSION: This study will investigate the acute and additive subacute neuroplastic effects of psilocybin on brain networks affected by depression using advanced serial neuroimaging methods. Results will improve our understanding of psilocybin's antidepressant mechanisms versus placebo response and whether biological measures of brain function can provide early predictors of treatment response. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06072898. Registered on 6 October 2023.


Subject(s)
Affect , Brain , Depressive Disorder, Major , Psilocybin , Randomized Controlled Trials as Topic , Humans , Psilocybin/therapeutic use , Psilocybin/adverse effects , Psilocybin/administration & dosage , Psilocybin/pharmacology , Affect/drug effects , Brain/diagnostic imaging , Brain/drug effects , Brain/physiopathology , Depressive Disorder, Major/drug therapy , Magnetic Resonance Imaging , Time Factors , Treatment Outcome , Adult , Neuronal Plasticity/drug effects , Young Adult , Male , Antidepressive Agents/therapeutic use , Female , Middle Aged
7.
Biochemistry (Mosc) ; 89(6): 1109-1121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981704

ABSTRACT

At the Institute of Cytology and Genetics (Novosibirsk, Russia) for over 85 generations, gray rats have been selected for high aggression toward humans (aggressive rats) or its complete absence (tame rats). Aggressive rats are an interesting model for studying fear-induced aggression. Benzopentathiepin TC-2153 exerts an antiaggressive effect on aggressive rats and affects the serotonergic system: an important regulator of aggression. The aim of this study was to investigate effects of TC-2153 on key serotonergic-system enzymes - tryptophan hydroxylase 2 (TPH2) and monoamine oxidase A (MAOA) - in the brain of aggressive and tame rats. Either TC-2153 (10 or 20 mg/kg) or vehicle was administered once intraperitoneally to aggressive and tame male rats. TPH2 and MAOA enzymatic activities and mRNA and protein levels were assessed. The selection for high aggression resulted in upregulation of Tph2 mRNA in the midbrain, of the TPH2 protein in the hippocampus, and of proteins TPH2 and MAOA in the hypothalamus, as compared to tame rats. MAO enzymatic activity was higher in the midbrain and hippocampus of aggressive rats while TPH2 activity did not differ between the strains. The single TC-2153 administration decreased TPH2 and MAO activity in the hypothalamus and midbrain, respectively. The drug affected MAOA protein levels in the hypothalamus: upregulated them in aggressive rats and downregulated them in tame ones. Thus, this study shows profound differences in the expression and activity of key serotonergic system enzymes in the brain of rats selectively bred for either highly aggressive behavior toward humans or its absence, and the effects of benzopentathiepin TC-2153 on these enzymes may point to mechanisms of its antiaggressive action.


Subject(s)
Aggression , Brain , Monoamine Oxidase , Tryptophan Hydroxylase , Animals , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Monoamine Oxidase/metabolism , Monoamine Oxidase/genetics , Rats , Male , Brain/metabolism , Brain/drug effects , Brain/enzymology , Aggression/drug effects , Humans , Serotonin/metabolism
8.
FASEB J ; 38(13): e23790, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38982638

ABSTRACT

Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1ß, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.


Subject(s)
Blood-Brain Barrier , Heterocyclic Compounds, 3-Ring , Oxazines , Piperazines , Pyridones , Animals , Mice , Piperazines/pharmacology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Oxazines/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Mice, Inbred C57BL , Female , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/adverse effects , HIV Infections/drug therapy , HIV Infections/metabolism , Male , Anti-Retroviral Agents/adverse effects , Brain/metabolism , Brain/drug effects
9.
Sci Adv ; 10(28): eado3501, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985859

ABSTRACT

Macrocyclic drugs can address an increasing range of molecular targets but enabling central nervous system (CNS) access to these drugs has been viewed as an intractable problem. We designed and synthesized a series of quinolinium-modified cyclosporine derivatives targeted to the mitochondrial cyclophilin D protein. Modification of the cation to enable greater delocalization was confirmed by x-ray crystallography of the cations. Critically, greater delocalization improved brain concentrations. Assessment of the compounds in preclinical assays and for pharmacokinetics identified a molecule JP1-138 with at least 20 times the brain levels of a non-delocalized compound or those reported for cyclosporine. Levels were maintained over 24 hours together with low hERG potential. The paradigm outlined here could have widespread utility in the treatment of CNS diseases.


Subject(s)
Quinolinium Compounds , Animals , Humans , Quinolinium Compounds/chemistry , Quinolinium Compounds/pharmacokinetics , Cyclosporine/chemistry , Cyclosporine/pharmacokinetics , Central Nervous System/metabolism , Central Nervous System/drug effects , Crystallography, X-Ray , Peptides/chemistry , Peptides/pharmacokinetics , Brain/metabolism , Brain/drug effects , Mice
12.
Alzheimers Res Ther ; 16(1): 144, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38951839

ABSTRACT

The Amyloid precursor protein (APP) is a transmembrane glycoprotein from which amyloid-ß (Aß) peptides are generated after proteolytic cleavage. Aß peptides are the main constituent of amyloid plaques in Alzheimer's Disease (AD). The physiological functions of APP in the human adult brain are very diverse including intracellular signaling, synaptic and neuronal plasticity, and cell adhesion, among others. There is growing evidence that APP becomes dysfunctional in AD and that this dyshomeostasis may impact several APP functions beyond Aß generation. The vast majority of current anti-amyloid approaches in AD have focused on reducing the synthesis of Aß or increasing the clearance of brain Aß aggregates following a paradigm in which Aß plays a solo in APP dyshomeostasis. A wider view places APP at the center stage in which Aß is an important, but not the only, factor involved in APP dyshomeostasis. Under this paradigm, APP dysfunction is universal in AD, but with some differences across different subtypes. Little is known about how to approach APP dysfunction therapeutically beyond anti-Aß strategies. In this review, we will describe the role of APP dyshomeostasis in AD beyond Aß and the potential therapeutic strategies targeting APP.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/metabolism , Animals , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/drug effects
13.
BMC Vet Res ; 20(1): 303, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982442

ABSTRACT

BACKGROUND: The inappropriate use of pesticides including fungicides creates severe biological hazards that can endanger fish health and impede sustainable aquaculture. OBJECTIVE: This study investigated the negative impacts of metiram (MET), a fungicide on the health status of Nile tilapia (Oreochromis niloticus) for a 96-hour duration as an acute exposure in a static renewal system. METHODS: Three hundred fish (average body weight: 37.50 ± 0.22 g) were assigned into six groups (50 fish/group) with five replicates (10 fish/replicate). Fish were exposed to various six concentrations (0, 1.5, 3, 4.5, 6, and 7.5 mg/L) of MET as a water exposure to for 96-hour without water exchange. The fish's behavior, clinical signs, and mortalities were documented every day of the exposure period. Additionally, MET's impact on blood profile, stress biomarkers, hepato-renal functions, immune-antioxidant status, and brain biomarker were closely monitored. RESULTS: The lethal concentration (LC50) of MET estimated using Finney's probit technique was 3.77 mg/L. The fish's behavior was severely impacted by acute MET exposure, as clear by an increase in surfacing, loss of equilibrium, unusual swimming, laterality, abnormal movement, and a decline in aggressive behaviors. The survivability and hematological indices (white and red blood cell count, differential white blood cell count, hematocrit value, and hemoglobin) were significantly reduced in a concentration-dependent manner following MET exposure. Acute exposure to MET (1.5-7.5 mg/L) incrementally increased stress biomarkers (nor-epinephrine, cortisol, and glucose), lipid peroxides (malondialdehyde), and brain oxidative DNA damage biomarker (8-hydroxy-2-deoxyguanosine). A hepato-renal dysfunction by MET exposure (4.5-7.5 mg/L) was evidenced by the significant increase in the alanine and aspartate aminotransferases and creatinine values. Moreover, a substantial decline in the immune parameters (lysozyme, complement 3, serum bactericidal activity, and antiprotease activity) and antioxidant variables (total antioxidant capacity, superoxide dismutase, and glutathione peroxidase) resulted from acute MET exposure. CONCLUSION: According to these findings, the 96-hour LC50 of MET in Nile tilapia was 3.77 mg/L. MET exposure triggered toxicity in Nile tilapia, as seen by alterations in fish neuro-behaviors, immune-antioxidant status, hepato-renal functioning, and signifying physiological disturbances. This study emphasizes the potential ecological dangers provoked by MET as an environmental contaminant to aquatic systems. However, the long-term MET exposure is still needed to be investigated.


Subject(s)
Cichlids , Fungicides, Industrial , Animals , Cichlids/metabolism , Cichlids/physiology , Fungicides, Industrial/toxicity , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects , Oxidative Stress/drug effects , Biomarkers/blood , Lethal Dose 50 , Brain/metabolism , Brain/drug effects
14.
Georgian Med News ; (349): 25-30, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963196

ABSTRACT

Antioxidants are widely used in medicine due to their ability to bind free radicals - active biomolecules that destroy the genetic apparatus of cells and the structure of their membranes, which makes it possible to reduce the intensity of oxidative processes in the body. In a living organism, free radicals are involved in various processes, but their activity is controlled by antioxidants. The purpose of this work was to conduct a series of studies to identify the antioxidant activity of new synthesized compounds of a series of oxalic acid diamides in the brain and liver tissue of white rats in vivo and in vitro experiments, as well as to determine their potential pharmacological properties. The studies were conducted on outbred white male rats, weighing 180-200 g, kept on a normal diet. After autopsy, the brain and liver were isolated, washed with saline, cleared of blood vessels, and homogenized in Tris-HCl buffer (pH-7.4) (in vitro). The research results showed significant antioxidant activity (AOA) of all compounds with varying effectiveness. The most pronounced activity was demonstrated by compound SV-425 in both brain and liver tissues. Compound SV-427 demonstrated the least activity, with levels in brain tissue and liver tissue. In addition, all physicochemical descriptors of the studied compounds comply with Lipinski's rule of five to identify new molecules for the treatment of oxidative stress. From the data obtained, it can be concluded that the studied compounds have antioxidant properties, helping to protect cells from oxidative stress. This is important for the prevention and treatment of diseases associated with increased levels of free radicals.


Subject(s)
Antioxidants , Brain , Lipid Peroxidation , Liver , Oxalic Acid , Animals , Brain/metabolism , Brain/drug effects , Liver/metabolism , Liver/drug effects , Male , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Free Radicals/metabolism , Lipid Peroxidation/drug effects , Oxalic Acid/chemistry , Oxalic Acid/metabolism , Oxalic Acid/pharmacology , Diamide/pharmacology , Diamide/chemistry , Oxidative Stress/drug effects , Oxidation-Reduction/drug effects
15.
Addict Biol ; 29(7): e13423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949205

ABSTRACT

In recent years, electronic cigarettes (e-cigs) have gained popularity as stylish, safe, and effective smoking cessation aids, leading to widespread consumer acceptance. Although previous research has explored the acute effects of combustible cigarettes or nicotine replacement therapy on brain functional activities, studies on e-cigs have been limited. Using fNIRS, we conducted graph theory analysis on the resting-state functional connectivity of 61 male abstinent smokers both before and after vaping e-cigs. And we performed Pearson correlation analysis to investigate the relationship between alterations in network metrics and changes in craving. E-cig use resulted in increased degree centrality, nodal efficiency, and local efficiency within the executive control network (ECN), while causing a decrease in these properties within the default model network (DMN). These alterations were found to be correlated with reductions in craving, indicating a relationship between differing network topologies in the ECN and DMN and decreased craving. These findings suggest that the impact of e-cig usage on network topologies observed in male smokers resembles the effects observed with traditional cigarettes and other forms of nicotine delivery, providing valuable insights into their addictive potential and effectiveness as aids for smoking cessation.


Subject(s)
Craving , Electronic Nicotine Delivery Systems , Executive Function , Spectroscopy, Near-Infrared , Vaping , Humans , Male , Adult , Executive Function/drug effects , Executive Function/physiology , Young Adult , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain/drug effects , Smoking Cessation , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/drug effects
16.
Sci Rep ; 14(1): 15506, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969725

ABSTRACT

Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 µg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.


Subject(s)
Brain , DNA Glycosylases , DNA Repair , Kynurenic Acid , Animals , DNA Repair/drug effects , Sheep , Kynurenic Acid/metabolism , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Brain/metabolism , Brain/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , DNA Damage/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Female , Hippocampus/metabolism , Hippocampus/drug effects , Excision Repair
17.
Brain Behav ; 14(7): e3621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970239

ABSTRACT

INTRODUCTION: Hepatic encephalopathy (HE) is a severe neuropsychiatric complication of liver diseases characterized by neuroinflammation. The efficacies of nonabsorbable rifaximin (RIF) and lactulose (LAC) have been well documented in the treatment of HE. [18F]PBR146 is a translocator protein (TSPO) radiotracer used for in vivo neuroinflammation imaging. This study investigated anti-neuroinflammation effect of RIF or/and LAC in chronic HE rats by [18F]PBR146 micro-PET/CT. METHODS: Bile duct ligation (BDL) operation induced chronic HE models, and this study included Sham+normal saline (NS), BDL+NS, BDL+RIF, BDL+LAC, and BDL+RIF+LAC groups. Behavioral assessment was performed to analyze the motor function, and fecal samples were collected after successfully established the chronic HE model (more than 28 days post-surgery). In addition, fecal samples collection and micro-PET/CT scans were performed sequentially. And we also collected the blood plasma, liver, intestinal, and brain samples after sacrificing the rats for further biochemical and pathological analyses. RESULTS: The RIF- and/or LAC-treated BDL rats showed similar behavioral results with Sham+NS group, while the treatment could not reverse the biliary obstruction resulting in sustained liver injury. The RIF or/and LAC treatments can inhibit IFN-γ and IL-10 productions. The global brain uptake values of [18F]PBR146 in BDL+NS group was significantly higher than other groups (p < .0001). The brain regions analysis showed that the basal ganglia, hippocampus, and cingulate cortex had radiotracer uptake differences among groups (all p < .05), which were consistent with the brain immunohistochemistry results. Sham+NS group was mainly enriched in Christensenella, Coprobacillus, and Pseudoflavonifractor. BDL+NS group was mainly enriched in Barnesiella, Alloprevotella, Enterococcus, and Enterorhabdus. BDL+RIF+LAC group was enriched in Parabacteroides, Bacteroides, Allobaculum, Bifidobacterium, and Parasutterella. CONCLUSIONS: RIF or/and LAC had anti-neuroinflammation in BDL-induced chronic HE rats with gut microbiota alterations. The [18F]PBR146 could be used for monitoring RIF or/and LAC treatment efficacy of chronic HE rats.


Subject(s)
Hepatic Encephalopathy , Lactulose , Rats, Sprague-Dawley , Rifaximin , Animals , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/diagnostic imaging , Hepatic Encephalopathy/metabolism , Rifaximin/pharmacology , Rats , Male , Lactulose/pharmacology , Positron Emission Tomography Computed Tomography , Disease Models, Animal , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/diagnostic imaging , Gastrointestinal Agents/pharmacology , Gastrointestinal Agents/administration & dosage , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Fluorine Radioisotopes , Carrier Proteins , Receptors, GABA-A
18.
Gut Microbes ; 16(1): 2374608, 2024.
Article in English | MEDLINE | ID: mdl-38972055

ABSTRACT

With the increasing of aging population and the consumption of high-fat diets (HFD), the incidence of Alzheimer's disease (AD) has skyrocketed. Natural antioxidants show promising potential in the prevention of AD, as oxidative stress and neuroinflammation are two hallmarks of AD pathogenesis. Here, we showed that quinic acid (QA), a polyphenol derived from millet, significantly decreased HFD-induced brain oxidative stress and neuroinflammation and the levels of Aß and p-Tau. Examination of gut microbiota suggested the improvement of the composition of gut microbiota in HFD mice after QA treatment. Metabolomic analysis showed significant increase of gut microbial tryptophan metabolites indole-3-acetic acid (IAA) and kynurenic acid (KYNA) by QA. In addition, IAA and KYNA showed negative correlation with pro-inflammatory factors and AD indicators. Further experiments on HFD mice proved that IAA and KYNA could reproduce the effects of QA that suppress brain oxidative stress and inflammation and decrease the levels of of Aß and p-Tau. Transcriptomics analysis of brain after IAA administration revealed the inhibition of DR3/IKK/NF-κB signaling pathway by IAA. In conclusion, this study demonstrated that QA could counteract HFD-induced brain oxidative stress and neuroinflammation by regulating inflammatory DR3/IKK/NF-κB signaling pathway via gut microbial tryptophan metabolites.


Subject(s)
Brain , Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , NF-kappa B , Oxidative Stress , Quinic Acid , Signal Transduction , Tryptophan , Animals , Gastrointestinal Microbiome/drug effects , Tryptophan/metabolism , Diet, High-Fat/adverse effects , Mice , NF-kappa B/metabolism , Signal Transduction/drug effects , Male , Oxidative Stress/drug effects , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/metabolism , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/prevention & control , I-kappa B Kinase/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Indoleacetic Acids/metabolism , Kynurenic Acid/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/prevention & control
19.
Nutrients ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999726

ABSTRACT

Accumulating evidence shows a strong correlation between type 2 diabetes mellitus, mitochondrial dysfunction, and oxidative stress. We evaluated the effects of dietary peanut shell extract (PSE) supplementation on mitochondrial function and antioxidative stress/inflammation markers in diabetic mice. Fourteen db/db mice were randomly assigned to a diabetic group (DM in AIN-93G diet) and a PSE group (1% wt/wt PSE in AIN-93G diet) for 5 weeks. Six C57BL/6J mice were fed with an AIN-93G diet for 5 weeks (control group). Gene and protein expression in the liver, brain, and white adipose tissue (WAT) were determined using qRT-PCR and Immunoblot, respectively. Compared to the control group, the DM group had (i) increased gene and protein expression levels of DRP1 (fission), PINK1 (mitophagy), and TNFα (inflammation) and (ii) decreased gene and protein expression levels of MFN1, MFN2, OPA1 (fusion), TFAM, PGC-1α (biogenesis), NRF2 (antioxidative stress) and IBA1 (microglial activation) in the liver, brain, and WAT of db/db mice. Supplementation of PSE into the diet restored the DM-induced changes in the gene and protein expression of DRP1, PINK1, TNFα, MFN1, MFN2, OPA1, TFAM, PGC-1α, NRF2, and IBA1 in the liver, brain, and WAT of db/db mice. This study demonstrates that PSE supplementation improved mitochondrial function in the brain, liver, and WAT of db/db mice, in part due to suppression of oxidative stress and inflammation.


Subject(s)
Arachis , Inflammation , Mice, Inbred C57BL , Mitochondria , Oxidative Stress , Plant Extracts , Animals , Oxidative Stress/drug effects , Arachis/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Plant Extracts/pharmacology , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Liver/drug effects , Brain/metabolism , Brain/drug effects , Dietary Supplements , Antioxidants/pharmacology , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects
20.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999791

ABSTRACT

With the recognition of the importance of the gut-brain axis in Parkinson's disease (PD) etiology, there is increased interest in developing therapeutic strategies that target α-synuclein, the hallmark abhorrent protein of PD pathogenesis, which may originate in the gut. Research has demonstrated that inhibiting the aggregation, oligomerization, and fibrillation of α-synuclein are key strategies for disease modification. Polyphenols, which are rich in fruits and vegetables, are drawing attention for their potential role in this context. In this paper, we reviewed how polyphenols influence the composition and functional capabilities of the gut microbiota and how the resulting microbial metabolites of polyphenols may potentially enhance the modulation of α-synuclein aggregation. Understanding the interaction between polyphenols and gut microbiota and identifying which specific microbes may enhance the efficacy of polyphenols is crucial for developing therapeutic strategies and precision nutrition based on the microbiome.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Parkinson Disease , Polyphenols , alpha-Synuclein , Parkinson Disease/metabolism , Parkinson Disease/microbiology , Parkinson Disease/drug therapy , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Polyphenols/pharmacology , Humans , alpha-Synuclein/metabolism , Brain-Gut Axis/physiology , Animals , Brain/metabolism , Brain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...