Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.433
Filter
1.
Cell Biol Toxicol ; 40(1): 63, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093513

ABSTRACT

Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.


Subject(s)
Anesthetics , Apoptosis , Neurotoxicity Syndromes , Humans , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/etiology , Animals , Anesthetics/adverse effects , Anesthetics/toxicity , Anesthetics/pharmacology , Apoptosis/drug effects , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Pyroptosis/drug effects , Oxidative Stress/drug effects , Necroptosis/drug effects , Brain/drug effects , Brain/pathology , Brain/growth & development , Ferroptosis/drug effects , Signal Transduction/drug effects
2.
Commun Biol ; 7(1): 997, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147853

ABSTRACT

The effects of neurotoxicant cadmium (Cd) exposure on brain development have not been well elucidated. To investigate this, we have herein subjected pregnant mice to low-dose Cd throughout gestation. Using single-cell RNA sequencing (scRNA-seq), we explored the cellular responses in the embryonic brain to Cd exposure, and identified 18 distinct cell subpopulations that exhibited varied responses to Cd. Typically, Cd exposure impeded the development and maturation of cells in the brain, especially progenitor cells such as neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). It also caused significant cell subpopulation shifts in almost all the types of cells in the brain. Additionally, Cd exposure reduced the dendritic sophistication of cortical neurons in the offspring. Importantly, these changes led to aberrant Ca2+ activity in the cortex and neural behavior changes in mature offspring. These data contribute to our understanding of the effects and mechanisms of Cd exposure on brain development and highlight the importance of controlling environmental neurotoxicant exposure at the population level.


Subject(s)
Brain , Cadmium , Single-Cell Analysis , Transcriptome , Animals , Mice , Cadmium/toxicity , Brain/metabolism , Brain/drug effects , Brain/growth & development , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Mice, Inbred C57BL , Male , Neurons/metabolism , Neurons/drug effects
3.
Commun Biol ; 7(1): 987, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143328

ABSTRACT

The ability to organize and memorize the unfolding of events over time is a fundamental feature of cognition, which develops concurrently with the maturation of the brain. Nonetheless, how temporal processing evolves across the lifetime as well as the links with the underlying neural substrates remains unclear. Here, we intend to retrace the main developmental stages of brain structure, function, and cognition linked to the emergence of timing abilities. This neurodevelopmental perspective aims to untangle the puzzling trajectory of temporal processing aspects across the lifetime, paving the way to novel neuropsychological assessments and cognitive rehabilitation strategies.


Subject(s)
Brain , Cognition , Humans , Cognition/physiology , Brain/physiology , Brain/growth & development
4.
PLoS One ; 19(8): e0307406, 2024.
Article in English | MEDLINE | ID: mdl-39163384

ABSTRACT

A large body of research has linked childhood family socioeconomic status (SES) to neurodevelopment in childhood and adolescence. However, it remains unclear to what extent childhood family SES relates to brain functioning in adulthood. To address this gap, the present study investigated the associations between retrospective accounts of objective and subjective childhood family SES and two well-established electrophysiological indices of brain functioning in adulthood-the MMN and P3b event-related potentials (ERP) components, as neural correlates of automatic change detection and cognitive control respectively. Higher objective childhood family SES, as proxied by parent educational attainment in childhood, was associated with larger (more positive) P3b amplitudes in adulthood. In contrast, there was no association between childhood parent educational attainment and the magnitude of MMN. Adult reports of subjective family SES during childhood were not related to the magnitude of MMN or P3b. These findings suggest that the links between childhood parent educational attainment and brain functioning may extend into adulthood, especially for brain functions supporting cognitive control. These results also imply that, when using retrospective accounts of childhood family SES, objective and subjective reports likely proxy different childhood experiences that have distinct links with specific neurodevelopmental outcomes, and that some of these links may not persist into adulthood. Our findings lay the groundwork for future investigations on how and why childhood family SES relates to brain functioning in adulthood.


Subject(s)
Brain , Social Class , Humans , Male , Female , Adult , Brain/physiology , Brain/growth & development , Child , Electroencephalography , Evoked Potentials/physiology , Retrospective Studies , Young Adult , Cognition/physiology , Adolescent , Educational Status , Family
5.
Wiad Lek ; 77(6): 1277-1283, 2024.
Article in English | MEDLINE | ID: mdl-39106392

ABSTRACT

Long-chain ω-3 PUFAs such as DHA and EPA are often present in high amounts in algae and fish. DHA in particular is crucial for the proper development and functioning of the brain because it is the main structural component of ω-3 PUFA in the brain. This makes it an indispensable element of the phospholipids of the nervous membrane. The purpose of this article is to present the benefits of Omega-3 acids in the functioning of the nervous system. The text discusses a literature review focusing on the impact of omega-3 fatty acids. Polyunsaturated fatty acids (PUFAs) are essential for overall health and have been extensively studied for their contributions to human well-being and disease management. Recent research indicates their effectiveness in preventing and treating various diseases. Omega-3 PUFAs have been identified as therapeutic agents, particularly in combating inflammatory conditions like cardiovascular and neurodegenerative diseases. The aim of this article is to present the benefits of omega-3 fatty acids supplementation. Publications outlining properties of polyunsaturated fatty acids on the brain and articles presenting the effects of polyunsaturated fatty acids were reviewed using the Pubmed platform. The review included the keywords "Omega-3 fatty acids" "DHA" "EPA" "PUFA.


Subject(s)
Brain , Fatty Acids, Omega-3 , Brain/growth & development , Brain/metabolism , Fatty Acids, Omega-3/immunology , Humans
6.
Sensors (Basel) ; 24(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124026

ABSTRACT

Brain networks are hypothesized to undergo significant changes over development, particularly during infancy. Thus, the aim of this study is to evaluate brain maturation in the first year of life in terms of electrophysiological (EEG) functional connectivity (FC). Whole-brain FC metrics (i.e., magnitude-squared coherence, phase lag index, and parameters derived from graph theory) were extracted, for multiple frequency bands, from baseline EEG data recorded from 146 typically developing infants at 6 (T6) and 12 (T12) months of age. Generalized linear mixed models were used to test for significant differences in the computed metrics considering time point and sex as fixed effects. Correlational analyses were performed to ascertain the potential relationship between FC and subjects' cognitive and language level, assessed with the Bayley-III scale at 24 (T24) months of age. The results obtained highlighted an increased FC, for all the analyzed frequency bands, at T12 with respect to T6. Correlational analyses yielded evidence of the relationship between FC metrics at T12 and cognition. Despite some limitations, our study represents one of the first attempts to evaluate brain network evolution during the first year of life while accounting for correspondence between functional maturation and cognitive improvement.


Subject(s)
Brain , Electroencephalography , Humans , Electroencephalography/methods , Brain/physiology , Brain/growth & development , Brain/diagnostic imaging , Infant , Male , Female , Cognition/physiology , Nerve Net/physiology , Nerve Net/growth & development
7.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125882

ABSTRACT

Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.


Subject(s)
Brain-Derived Neurotrophic Factor , GABAergic Neurons , Humans , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , GABAergic Neurons/metabolism , Receptors, Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Brain/metabolism , Brain/growth & development
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125913

ABSTRACT

Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.


Subject(s)
Prenatal Exposure Delayed Effects , Substance-Related Disorders , Humans , Pregnancy , Female , Prenatal Exposure Delayed Effects/chemically induced , Adolescent , Animals , Male , Nervous System Diseases/chemically induced , Brain/drug effects , Brain/growth & development , Neurodevelopmental Disorders/chemically induced
9.
Genes Brain Behav ; 23(4): e12911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39171374

ABSTRACT

Neutral sphingomyelinase-2 (nSMase2), gene name sphingomyelin phosphodiesterase-3 (Smpd3), is a key regulatory enzyme responsible for generating the sphingolipid ceramide. The function of nSMase2 in the brain is still controversial. To better understand the functional roles of nSMase2 in the aging mouse brain, we applied RNA-seq analysis, which identified a total of 1462 differentially abundant mRNAs between +/fro and fro/fro, of which 891 were increased and 571 were decreased in nSMase2-deficient mouse brains. The most strongly enriched GO and KEGG annotation terms among transcripts increased in fro/fro mice included synaptogenesis, synapse development, synaptic signaling, axon development, and axonogenesis. Among decreased transcripts, enriched annotations included ribosome assembly and mitochondrial protein complex functions. KEGG analysis of decreased transcripts also revealed overrepresentation of annotations for Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD). Ingenuity Pathway Analysis (IPA) tools predicted lower susceptibility to these neurodegenerative disorders, as well as predictions agreeing with stronger synaptic function, learning, and memory in fro/fro mice. The IPA tools identified signaling proteins, epigenetic regulators, and microRNAs as likely upstream regulators of the broader set of genes encoding the affected transcripts. It also revealed 16 gene networks, each linked to biological processes identified as overrepresented annotations among the affected transcripts by multiple analysis methods. Therefore, the analysis of these RNA-seq data indicates that nSMase2 impacts synaptic function and neural development, and may contribute to the onset and development of neurodegenerative diseases in middle-aged mice.


Subject(s)
Brain , Sphingomyelin Phosphodiesterase , Animals , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Mice , Brain/metabolism , Brain/growth & development , Transcriptome , Aging/genetics , Aging/metabolism , Mice, Inbred C57BL , Male
10.
Neurology ; 103(6): e209744, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39173100

ABSTRACT

BACKGROUND AND OBJECTIVES: The aging population is growing faster than all other demographic strata. With older age comes a greater risk of health conditions such as obesity and high blood pressure (BP). These cardiometabolic risk factors (CMRs) exhibit prominent sex differences in midlife and aging, yet their influence on brain health in females vs males is largely unexplored. In this study, we investigated sex differences in relationships between BP, body mass index (BMI), and brain age over time and tested for interactions with APOE ε4 genotype (APOE4), a known genetic risk factor of Alzheimer disease. METHODS: The sample included participants from 2 United Kingdom-based longitudinal birth cohorts, the Lothian Birth Cohort (1936) and Insight 46 (1946). Participants with MRI data from at least 1 time point were included to evaluate sex differences in associations between CMRs and brain age. The open-access software package brainageR 2.1 was used to estimate brain age for each participant. Linear mixed-effects models were used to assess the relationships between brain age, BMI, BP, and APOE4 status (i.e., carrier vs noncarrier) in males and females over time. RESULTS: The combined sample comprised 1,120 participants (48% female) with a mean age (SD) of 73 (0.72) years in the Lothian Birth Cohort and 71 (0.68) years in Insight 46 at the time point 1 assessment. Approximately 30% of participants were APOE4 carriers. Higher systolic and diastolic BP was significantly associated with older brain age in females only (ß = 0.43-0.56, p < 0.05). Among males, higher BMI was associated with older brain age across time points and APOE4 groups (ß = 0.72-0.77, p < 0.05). In females, higher BMI was linked to older brain age among APOE4 noncarriers (ß = 0.68-0.99, p < 0.05), whereas higher BMI was linked to younger brain age among carriers, particularly at the last time point (ß = -1.75, p < 0.05). DISCUSSION: This study indicates sex-dependent and time-dependent relationships between CMRs, APOE4 status, and brain age. Our findings highlight the necessity of sex-stratified analyses to elucidate the role of CMRs in individual aging trajectories, providing a basis for developing personalized preventive interventions.


Subject(s)
Aging , Apolipoprotein E4 , Body Mass Index , Brain , Sex Characteristics , Humans , Male , Female , Apolipoprotein E4/genetics , Aged , Longitudinal Studies , Brain/metabolism , Brain/diagnostic imaging , Brain/growth & development , Aging/genetics , Blood Pressure/physiology , Magnetic Resonance Imaging , Cohort Studies , United Kingdom/epidemiology , Cardiometabolic Risk Factors
11.
Sci Rep ; 14(1): 18632, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128924

ABSTRACT

LSD is a hallucinogen with complex neurobiological and behavioral effects. Underlying these effects are changes in brain neuroplasticity. This is the first study to follow the developmental changes in brain structure and function following LSD exposure in periadolescence. We hypothesized LSD given during a time of heightened neuroplasticity, particularly in the forebrain, would affect cognitive and emotional behavior and the associated underlying neuroanatomy and neurocircuitry. Female and male mice were given vehicle, single or multiple treatments of 3.3 µg of LSD by oral gavage starting on postnatal day 51. Between postnatal days 90-120 mice were imaged and tested for cognitive and motor behavior. MRI data from voxel-based morphometry, diffusion weighted imaging, and BOLD resting state functional connectivity were registered to a mouse 3D MRI atlas with 139 brain regions providing site-specific differences in global brain structure and functional connectivity between experimental groups. Motor behavior and cognitive performance were unaffected by periadolescent exposure to LSD. Differences across experimental groups in brain volume for any of the 139 brain areas were few in number and not focused on any specific brain region. Multiple exposures to LSD significantly altered gray matter microarchitecture across much of the brain. These changes were primary associated with the thalamus, sensory and motor cortices, and basal ganglia. The forebrain olfactory system and prefrontal cortex and hindbrain cerebellum and brainstem were unaffected. The functional connectivity between forebrain white matter tracts and sensorimotor cortices and hippocampus was reduced with multidose LSD exposure. Does exposure to LSD in late adolescence have lasting effects on brain development? The bulk of our significant findings were seen through changes is DWI values across 74 brain areas in the multi-dose LSD group. The pronounced changes in indices of anisotropy across much of the brain would suggest altered gray matter microarchitecture and neuroplasticity. There was no evidence of LSD having consequential effects on cognitive or motor behavior when animal were evaluated as young adults 90-120 days of age. Neither were there any differences in the volume of specific brain areas between experimental conditions. The reduction in connectivity in forebrain white matter tracts with multidose LSD and consolidation around sensorimotor and hippocampal brain areas requires a battery of tests to understand the consequences of these changes on behavior.


Subject(s)
Brain , Lysergic Acid Diethylamide , Animals , Male , Female , Brain/drug effects , Brain/growth & development , Brain/diagnostic imaging , Mice , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/administration & dosage , Hallucinogens/administration & dosage , Hallucinogens/pharmacology , Cognition/drug effects , Magnetic Resonance Imaging , Neuronal Plasticity/drug effects , Administration, Oral , Motor Activity/drug effects , Behavior, Animal/drug effects , Gray Matter/drug effects , Gray Matter/growth & development , Gray Matter/diagnostic imaging
12.
BMC Biol ; 22(1): 171, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135168

ABSTRACT

BACKGROUND: Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS: This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS: The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.


Subject(s)
Brain , Fatty Acids, Nonesterified , Homeostasis , Animals , Brain/metabolism , Brain/growth & development , Fatty Acids, Nonesterified/metabolism , Lipase/metabolism , Lipase/genetics , Moths/growth & development , Moths/physiology , Moths/metabolism , Larva/growth & development , Larva/metabolism , Juvenile Hormones/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Metamorphosis, Biological/physiology , Ecdysterone/metabolism
13.
Endocrinology ; 165(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39148446

ABSTRACT

The nuclear receptors of thyroid hormone exert a broad influence on brain development and then on adult brain physiology. However, the cell-autonomous function of the receptors is combined with their indirect influence on cellular interactions. Mouse genetics allows one to distinguish between these 2 modes of action. It revealed that 1 of the main cell-autonomous functions of these receptors is to promote the maturation of GABAergic neurons. This review presents our current understanding of the action of thyroid hormone on this class of neurons, which are the main inhibitory neurons in most brain areas.


Subject(s)
GABAergic Neurons , Receptors, Thyroid Hormone , Thyroid Hormones , Animals , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/genetics , Thyroid Hormones/metabolism , Thyroid Hormones/physiology , Humans , Mice , Brain/growth & development , Brain/metabolism
14.
Science ; 385(6710): 711-712, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39146432

ABSTRACT

Patterns of spontaneous neuronal activity instruct the refinement of developing brain circuits.


Subject(s)
Brain , Neuronal Plasticity , Synapses , Animals , Synapses/physiology , Brain/cytology , Brain/physiology , Brain/growth & development , Neurons/physiology , Neurons/cytology , Mice
15.
Proc Natl Acad Sci U S A ; 121(33): e2314074121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39121162

ABSTRACT

Adolescent development of human brain structural and functional networks is increasingly recognized as fundamental to emergence of typical and atypical adult cognitive and emotional proodal magnetic resonance imaging (MRI) data collected from N [Formula: see text] 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural scans and 448 functional MRI scans. We estimated the morphometric similarity between each possible pair of 358 cortical areas on a feature vector comprising six macro- and microstructural MRI metrics, resulting in a morphometric similarity network (MSN) for each scan. Over the course of adolescence, we found that morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate cortex, but generally decreased in neocortical areas, and these results were replicated in an independent developmental MRI cohort (N [Formula: see text] 304). Increasing hubness of paralimbic nodes in MSNs was associated with increased strength of coupling between their morphometric similarity and functional connectivity. Decreasing hubness of neocortical nodes in MSNs was associated with reduced strength of structure-function coupling and increasingly diverse functional connections in the corresponding fMRI networks. Neocortical areas became more structurally differentiated and more functionally integrative in a metabolically expensive process linked to cortical thinning and myelination, whereas paralimbic areas specialized for affective and interoceptive functions became less differentiated, as hypothetically predicted by a developmental transition from periallocortical to proisocortical organization of the cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct neurodevelopmental programs during typical adolescence.


Subject(s)
Magnetic Resonance Imaging , Neocortex , Humans , Adolescent , Female , Male , Neocortex/diagnostic imaging , Neocortex/growth & development , Neocortex/physiology , Adult , Young Adult , Brain Mapping/methods , Adolescent Development/physiology , Nerve Net/physiology , Nerve Net/diagnostic imaging , Nerve Net/growth & development , Brain/diagnostic imaging , Brain/growth & development , Brain/physiology
16.
Neurobiol Dis ; 199: 106607, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029564

ABSTRACT

Cell metabolism is a key regulator of human neocortex development and evolution. Several lines of evidence indicate that alterations in neural stem/progenitor cell (NPC) metabolism lead to abnormal brain development, particularly brain size-associated neurodevelopmental disorders, such as microcephaly. Abnormal NPC metabolism causes impaired cell proliferation and thus insufficient expansion of NPCs for neurogenesis. Therefore, the production of neurons, which is a major determinant of brain size, is decreased and the size of the brain, especially the size of the neocortex, is significantly reduced. This review discusses recent progress understanding NPC metabolism, focusing in particular on glucose metabolism, fatty acid metabolism and amino acid metabolism (e.g., glutaminolysis and serine metabolism). We provide an overview of the contributions of these metabolic pathways to brain development and evolution, as well as to the etiology of neurodevelopmental disorders. Furthermore, we discuss the advantages and disadvantages of various experimental models to study cell metabolism in the developing brain.


Subject(s)
Brain , Neural Stem Cells , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/physiopathology , Brain/metabolism , Brain/pathology , Brain/growth & development , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurogenesis/physiology , Organ Size/physiology
17.
Biol Res ; 57(1): 49, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068496

ABSTRACT

BACKGROUND: The significant role of embryonic cerebrospinal fluid (eCSF) in the initial stages of brain development has been thoroughly studied. This fluid contains crucial molecules for proper brain development such as members of the Wnt and FGF families, apolipoproteins, and retinol binding protein. Nevertheless, the source of these molecules remains uncertain since they are present before the formation of the choroid plexus, which is conventionally known as the primary producer of cerebrospinal fluid. The subcommissural organ (SCO) is a highly conserved gland located in the diencephalon and is one of the earliest differentiating brain structures. The SCO secretes molecules into the eCSF, prior to the differentiation of the choroid plexus, playing a pivotal role in the homeostasis and dynamics of this fluid. One of the key molecules secreted by the SCO is SCO-spondin, a protein involved in maintenance of the normal ventricle size, straight spinal axis, neurogenesis, and axonal guidance. Furthermore, SCO secretes transthyretin and basic fibroblast growth factor 2, while other identified molecules in the eCSF could potentially be secreted by the SCO. Additionally, various transcription factors have been identified in the SCO. However, the precise mechanisms involved in the early SCO development are not fully understood. RESULTS: To uncover key molecular players and signaling pathways involved in the role of the SCO during brain development, we conducted a transcriptomic analysis comparing the embryonic chick SCO at HH23 and HH30 stages (4 and 7 days respectively). Additionally, a public transcriptomic data from HH30 entire chick brain was used to compare expression levels between SCO and whole brain transcriptome. These analyses revealed that, at both stages, the SCO differentially expresses several members of bone morphogenic proteins, Wnt and fibroblast growth factors families, diverse proteins involved in axonal guidance, neurogenic and differentiative molecules, cell receptors and transcription factors. The secretory pathway is particularly upregulated at stage HH30 while the proliferative pathway is increased at stage HH23. CONCLUSION: The results suggest that the SCO has the capacity to secrete several morphogenic molecules to the eCSF prior to the development of other structures, such as the choroid plexus.


Subject(s)
Brain , Gene Expression Profiling , Subcommissural Organ , Animals , Brain/metabolism , Brain/embryology , Brain/growth & development , Subcommissural Organ/metabolism , Subcommissural Organ/embryology , Chick Embryo , Gene Expression Regulation, Developmental
18.
Neurobiol Dis ; 199: 106597, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992777

ABSTRACT

Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.


Subject(s)
Brain , Single-Cell Analysis , Humans , Brain/growth & development , Brain/pathology , Brain/metabolism , Child , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Animals
19.
Neuropharmacology ; 257: 110060, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38960134

ABSTRACT

The escalating incidence of opioid-related issues among pregnant women in the United States underscores the critical necessity to understand the effects of opioid use and Medication for Opioid Use Disorders (MOUDs) during pregnancy. This research employed a translational rodent model to examine the impact of gestational exposure to buprenorphine (BUP) or morphine on maternal behaviors and offspring well-being. Female rats received BUP or morphine before conception, representing established use, with exposure continuing until postnatal day 2 or discontinued on gestational day 19 to mimic treatment cessation before birth. Maternal behaviors - including care, pup retrieval, and preference - as well as hunting behaviors and brain neurotransmitter levels were assessed. Offspring were evaluated for mortality, weight, length, milk bands, surface righting latency, withdrawal symptoms, and brain neurotransmitter levels. Our results reveal that regardless of exposure length (i.e., continued or discontinued), BUP resulted in reduced maternal care in contrast to morphine-exposed and control dams. Opioid exposure altered brain monoamine levels in the dams and offspring, and was associated with increased neonatal mortality, reduced offspring weight, and elevated withdrawal symptoms compared to controls. These findings underscore BUP's potential disruption of maternal care, contributing to increased pup mortality and altered neurodevelopmental outcomes in the offspring. This study calls for more comprehensive research into prenatal BUP exposure effects on the maternal brain and infant development with the aim to mitigate adverse outcomes in humans exposed to opioids during pregnancy.


Subject(s)
Analgesics, Opioid , Brain , Buprenorphine , Maternal Behavior , Morphine , Prenatal Exposure Delayed Effects , Pregnancy , Animals , Female , Morphine/adverse effects , Morphine/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Brain/drug effects , Brain/growth & development , Brain/metabolism , Analgesics, Opioid/toxicity , Analgesics, Opioid/adverse effects , Rats , Maternal Behavior/drug effects , Rats, Sprague-Dawley , Animals, Newborn , Behavior, Animal/drug effects , Male , Substance Withdrawal Syndrome , Opioid-Related Disorders
SELECTION OF CITATIONS
SEARCH DETAIL